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ABSTRACT: In an adiabatic mixed quantum-classical
simulation, the avoided crossing of weakly coupled eigenstates
can lead to unphysical discontinuities in wave function
dynamics, otherwise known as the trivial crossing problem.
A standard solution to the trivial crossing problem eliminates
spatial discontinuities in wave function dynamics by imposing
changes to the eigenstate of the wave function. In this paper,
we show that this solution has the side effect of introducing
transient discontinuities in the nodal symmetry of the wave
function. We present an alternative solution to the trivial
crossing problem that preserves both the spatial and nodal structure of the adiabatic wave function. By considering a model of
exciton dynamics on conjugated polymer systems, we show that failure to preserve wave function symmetry yields exciton
dynamics that depends unphysically on polymer system size. We demonstrate that our symmetry-preserving solution to the
trivial crossing problem yields more realistic dynamics and can thus improve the accuracy of simulations of larger systems that
are prone to the trivial crossing problem.

I. INTRODUCTION

Many approaches to mixed quantum-classical simulation are
based on the use of adiabatic dynamics, where the classical
degrees of freedom (e.g., the nuclei) evolve according to the
potential energy surface of a single specific eigenstate of the
quantum subsystem. If the quantum subsystem has multiple
eigenstates, then the dynamics of the classical subsystem can
lead to variations in eigenstate energies and the emergence of
avoided crossings, as illustrated in Figure 1a. As a system
moves along a single eigenstate through a typical avoided
crossing, the adiabatic wave function transforms gradually from
one eigenstate to the other in a manner that can be expressed
as a linear combination of the two corresponding diabatic
states, as shown in Figure 1c. However, in the limit that the
diabatic states are uncoupled, the quantum subsystem will
exhibit a near-discontinuous transition at the crossing point,
where the eigenstates are essentially degenerate in energy, as
depicted in Figure 1b. This abrupt unphysical change in the
characteristics of the adiabatic wave function due to the
crossing of eigenstates, as illustrated in Figure 1d, is known as
the trivial crossing problem (TCP).1−9

A common solution to the TCP is to force the quantum
subsystem to change eigenstates at the crossing point in order
to maintain the continuity of the adiabatic wave function.2,10,11

However, this type of approach necessarily introduces a
discontinuous transition in the number of nodes in the
adiabatic wave function. In systems that require long time
dynamics or that feature multiple trivial crossings, we show
that this change in nodal symmetry can lead to inaccurate and

inconsistent electronic adiabatic dynamics. In this Article, we
present a solution to the TCP that preserves the symmetry of
the adiabatic wave function in simulations of adiabatic
dynamics. We demonstrate our approach and highlight its
utility by applying it to model the dynamics of electronically
excited conjugated polymer systems.
The TCP represents a breakdown in the adiabatic

approximation. In the adiabatic limit, where classical degrees
of freedom evolve infinitely slowly, the wave function of the
quantum subsystem can instantaneously adjust to the motion
of classical degrees of freedom and can thus access arbitrarily
large changes in electronic state through arbitrarily small
electronic couplings. Away from this limit, however, non-
adiabatic effects are required to accurately represent the state
of the system as it travels through and exits a trivial crossing.
Nonadiabatic effects enable a wave function to transform in
response to variations in the electronic energy levels and
couplings by spreading across different eigenstates of the
quantum subsystem.12 In the case of a trivial crossing, this
transformation could prevent the occurrence of unphysical
discontinuities and effectively preserves the diabatic character-
istics of the wave function.5,7,9

In simulations of adiabatic dynamics (i.e., where the wave
function of the quantum subsystem is at all times represented
by a single eigenstate), it has been proposed that these
nonadiabatic effects can be effectively captured by imposing an
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appropriate change of eigenstate for the wave function as it
passes through a trivial crossing. This approach to preventing
the trivial crossing problem has been widely adopted because it
provides an efficient solution without the need to perform
computationally expensive nonadiabatic dynamics. Methods
based on this approach typically involve two steps. First, a
trivial crossing is identified on the basis of the occurrence of an
abrupt change in the adiabatic wave function from one time
step to the next. Second, a new eigenstate is chosen such that
this change is effectively minimized. Changes in wave function
character are quantified in a variety of ways, for example, by
computing the overlap integral of eigenstates at sequential
points in time.2,10,11,13 Variations of this approach include the
consideration of additional factors such as energy gaps between
two eigenstates,1 nonadiabatic coupling vectors,1,4,10,14 or
differences in calculated surface hopping probabilities.6 Other
methods circumvent the trivial crossing problem by identifying
problematic eigenstates and artificially forbidding their
occupation.13−15 Notably, in these methods, the forbidden
states still belong to the quantum subsystem, so preventing
their occupation can still require the reassignment of the wave
function eigenstate.
Changing the eigenstate of a wave function necessarily

results in a change of the number of nodes in that wave
function, because the nodal structure of a given eigenstate
depends on its eigenstate index, with the first (i.e., lowest
energy) eigenstate having zero nodes, the second having one
node, and so on.16 In simulations of adiabatic dynamics, a
change in nodal structure can lead to impulsive and physically

unwarranted changes in the interactions between the classical
and quantum subsystems.
In this Article, we present a solution to the trivial crossing

problem that eliminates the need to change the eigenstate
index of the adiabatic wave function through dynamically inert
modifications of the Hamiltonian of the quantum subsystem.
Section II introduces the general theoretical framework for this
method. Sections III and IV present the application of this
method in simulating exciton dynamics on extended
conjugated polymer chains. Section V highlights the
importance of preserving the nodal symmetry of wave function.
Finally, we summarize and discuss implications of our method
for large-scale adiabatic simulations.

II. MODIFYING THE HAMILTONIAN TO ELIMINATE
TRIVIAL CROSSINGS
II.A. General Theoretical Framework for Two-State

Systems. Our solution to the trivial crossing problem is to
modify the system’s Hamiltonian so that purely adiabatic
dynamics is free from the occurrence of trivial crossings. In this
section, we present a general theoretical formalism for
constructing such a modified Hamiltonian. We begin by
considering a system comprised of a quantum subsystem and a
classical subsystem that are coupled and subject to the Born−
Oppenheimer approximation. That is, we assume that the
quantum subsystem is defined by the Hamiltonian Ĥ[x(t)],
where x(t) denotes the time dependent configuration of the
classical subsystem. An adiabatic state of the quantum
subsystem, denoted by |Ψi⟩, and its associated energy level,
denoted by λi, are given by the solution to the time-
independent Schrödinger equation

H i i iλ̂ |Ψ⟩ = |Ψ⟩ (1)

for i = 1, 2, .... Adiabatic states are generally indexed in order of
increasing λ, i.e., with |Ψ1⟩ representing the eigenstate with the
lowest eigenvalue.
We assume that the classical subsystem evolves under the

combined influence of a potential energy surface, such as a
molecular mechanics force field, which only depends on x(t),
and the forces from the quantum subsystem, which are given
by the Hellmann−Feynman formula

F
H
x

n
k k

( ) = −⟨Ψ| ∂
̂

∂
|Ψ⟩α

α (2)

where xα denotes the position of the αth classical degree of
freedom. Notably, this expression describes the specific
contribution of the nth adiabatic state to the overall nuclear
forces. For example, the molecular mechanics force field
approximates the electronic ground state forces and the
Hellmann−Feynman forces approximate the difference in the
ground and excited state forces. The formalism we present
below is designed specifically for systems that are initialized
with the quantum subsystem in the n = 1 state; however, the
methodology can be easily generalized to handle arbitrary (i.e.,
n ≠ 1) initial conditions. We treat only two-state crossings,
noting that in many cases a multistate crossing can be reduced
to a series of two-state crossings by decreasing the propagation
time step.
Like other proposed solutions to the trivial crossing

problem, our method involves two steps. First, we detect the
occurrence of a trivial crossing. Second, we correct the
dynamics to eliminate its effect. Detecting the crossing of two

Figure 1. Panels a and b illustrate the energy levels for two eigenstates
of a quantum subsystem moving through a traditional avoided and
weakly coupled trivial crossing, respectively. Dashed black arrows
indicate the path following a simulation of adiabatic dynamics on the
lowest energy eigenstate of the quantum subsystem. Panels c and d
depict how the physical character of the quantum subsystem, as
represented by an observable quantity ⟨A⟩, changes for the systems
represented by panels a and b, respectively. A1 and A2 indicate the
values of A in two diabatic states. The line color in each panel
represents the diabatic identity of each eigenstate or observable.
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states, where the adiabatic wave function is rapidly trans-
forming in time, is straightforward; however, distinguishing a
trivial crossing from a physical one (e.g., differentiating Figure
1a from Figure 1b) can be challenging because the definition of
a trivial crossing is inherently ambiguous.17 To address this
challenge, we use a diabatization approach to quantify the
coupling between crossing states, and we use this coupling as a
basis to differentiate trivial from avoided crossings.
To illustrate the concept behind our approach, consider a

mixed quantum-classical system with a two-state quantum
subsystem that is represented by two time independent basis
states (i.e., diabats), |ϕa⟩ and |ϕb⟩, that are defined by diabatic
Hamiltonians, Ĥa and Ĥb, respectively. For any given
configuration of the classical subsystem, x(t), the Hamiltonian
for the quantum subsystem can therefore be written as

H t H t H t V tx x x x( ) ( ) ( ) ( )a b
̂ [ ] = ̂ [ ] + ̂ [ ] + ̂[ ] (3)

where

H t E tx x( ) ( )a a aa ϕ ϕ̂ [ ] = [ ]| ⟩⟨ | (4)

H t E tx x( ) ( )b b b bϕ ϕ̂ [ ] = [ ]| ⟩⟨ | (5)

and

V t V t V tx x x( ) ( ) ( )ab a b ab b aϕ ϕ ϕ ϕ̂ [ ] = [ ]| ⟩⟨ | + [ ]| ⟩⟨ | (6)

In these equations, Ea and Eb are the energies of the respective
diabatic states, and Vab is the coupling magnitude between the
diabats.
Under the Born−Oppenheimer approximation, the eigen-

states and eigenvalues of the quantum subsystem can be solved
by diagonalizing the full Hamiltonian. In order for the diabatic
coupling to be physically meaningful, the diabatic states must
be orthogonal.17 For orthonormal diabatic states, the adiabatic
energy gap is related to the coupling strength by

E E V( ) 4b ab2 1 a
2 2λ λ− = − + (7)

At a crossing point (i.e., Ea = Eb), the left-hand side of eq 7 is
minimized and the intrinsic value of Vab can be determined.
However, since the quantities in eq 7 generally depend on x(t),
a minimum in λ2 − λ1 does not necessarily correspond to a
crossing point. We thus base our identification of crossing
points on the diabatic composition of the adiabatic wave
function. Specifically, the eigenstates of the full Hamiltonian in
eq 3 have the general form18

t c t c t( ) ( ) ( )a a b b1
(1) (1)ϕ ϕ|Ψ ⟩ = | ⟩ + | ⟩ (8)

t c t c t( ) ( ) ( )a a b b2
(2) (2)ϕ ϕ|Ψ ⟩ = | ⟩ + | ⟩ (9)

where |ca
(α)(t)|2 + |cb

(α)(t)|2 = 1. The coefficients in the equations
above can be determined through a unitary transformation of
Ĥ (see the Supporting Information for more details) and
expressed as simple functions of the mixing angle

t
V t

E t E t
x

x
x x

( ) arctan
2 ( )

( ) ( )
ab

ba
τ[ ] =

[ ]
[ ] − [ ] (10)

Notably, at a crossing point, τ = ±π/2, corresponding to the
case where each adiabatic state contains an equal mixture of
|ϕa⟩ and |ϕb⟩.
We distinguish between avoided and trivial crossings on the

basis of the strength of the intrinsic coupling, Vab, evaluated at
the crossing point. We identify crossing points on the basis of

the diabatic composition of the adiabatic wave functions.
Specifically, we evaluate the joint probability density between
eigenstates 1 and 2

P t t tx r x r x r( ) ( ; ( )) ( ; ( )) d1,2 1 2∫ ρ ρ[ ] =
(11)

where ρi(r) = |Ψi(r)|
2 and the integral is carried out over all

space. The quantity P1,2 depends on the configuration of the
classical subsystem and thus varies in time along a trajectory.
As a system enters a crossing and the eigenstates adopt
complementary superposition states, the value of P1,2 increases
to a local maximum when τ ≈ ±π/2, i.e., the eigenstates are
maximally overlapping. We assume that this local maximum
corresponds to the crossing point and thus defines the crossing
time, tc, as the point in time where P1,2 is at a local maximum.
Likewise, P1,2 will go through another local maximum if the
two states recross. We denote the time point of recrossing as tr.
At the crossing point, we compute Vab using eq 6 and
categorize the point as an avoided crossing, if |Vab| ≥ Vc, or a
trivial crossing, if |Vab| < Vc. The value of Vc can be determined
on the basis of theoretical models, such as the Landau−Zener
formula,18 or fit to match experimental data, as we describe in
more detail in sections III and IV below.
Once a trivial crossing is identified, we correct the TCP by

temporarily modifying the Hamiltonian to effectively eliminate
the higher energy (crossing) diabatic state. There are
numerous ways to perform such a modification, for example,
by incorporating a diabatic switching function into the original
Hamiltonian

H t H f t H V( ) ( )a b b abmod
̂ = ̂ + [ ̂ + ̂ ] (12)

where the switching function is defined as

f t
V V t t t

( )
0 if and

1 otherwiseb
ab c c r

l
moo
noo

=
| | ≤ ≤ ≤

(13)

The switching function f b eliminates the influence of the
diabatic state |ϕb⟩ during the trivial crossing period, starting
from the trivial crossing point (t = tc) and ending at the trivial
recrossing point (t = tr). The evolution of the classical
subsystem then proceeds according to the forces derived from
the lowest energy eigenstate of the modified Hamiltonian in eq
12 (i.e., |Ψ1

(mod)⟩) and from the molecular mechanics force
field. Notably, the modified Hamiltonian has the property that
E1
(mod) ≈ E1 at t = tc and tr, |⟨Ψ1

(mod)(t)|Ψ1(t)⟩| ≈ 0.5 at t = tc,
and |⟨Ψ1

(mod)(t)|Ψ1(t)⟩| ≈ 1 at t = tr.
This type of two-state solution can be generally applied to

more complicated many-state systems provided that the
diabatic wave functions and their coupling term do not change
significantly between the trivial crossing and recrossing points.
If diabatic states do undergo significant changes during the
trivial crossing interval (i.e., tc < t < tr), then it must be verified
that the coupling (e.g., Vab) remains below the threshold
during the entire time interval. If this is not the case, then
purely adiabatic dynamics is probably inappropriate for
describing the evolution of the quantum subsystem. For
multistate systems, this approach can be applied recursively to
address trivial crossings that occur within the dynamics of the
modified Hamiltonian. In this case, the modified Hamiltonian
can itself be modified, as shown in the Supporting Information.

II.B. Solutions for the Tight-Binding Model. In this
model, the quantum subsystem is expressed using a
Hamiltonian of the form
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H t t i i J t i jx x x( ) ( ) ( )
i

i
i j

ij∑ ∑ε̂ [ ] = [ ]| ⟩⟨ | + [ ]| ⟩⟨ |
≠ (14)

where |i⟩ represents a member of an orthonormal time-
independent basis, εi is the energy of the system in basis state |
i⟩, and Jij is the coupling between basis states |i⟩ and |j⟩. As the
notation indicates, in a mixed quantum-classical simulation,
both εi and Jij generally depend on the state of the classical
subsystem. For quantum subsystems that adopt this common
form, it is convenient to define diabatic states in the same basis
as the original Hamiltonian, i.e.,

c ia
i

i
a( )∑ϕ| ⟩ = | ⟩

(15)

c ib
i

i
b( )∑ϕ| ⟩ = | ⟩

(16)

where the coefficients define the subset of basis states that
make up the diabat and ci

(b) = 0 if ci
(a) ≠ 0 and vice versa.

Likewise, the diabatic Hamiltonian can be defined as

H i i J i ja
i a

i
i j a

ij
( )

∑ ∑ε̂ = | ⟩⟨ | + | ⟩⟨ |
∈ ≠ ∈ (17)

where the summations only include those basis states with
nonzero values of ci

(a). An analogous diabatic Hamiltonian can
be generated for Ĥb, so that the coupling operator takes the
form

V J i j J j i( )ab
i a j b

ij ji∑ ∑= | ⟩⟨ | + | ⟩⟨ |
∈ ∈ (18)

With this formulation, the full Hamiltonian can be expressed
in terms of the two lowest energy diabatic Hamiltonians, Ĥa
and Ĥb, their coupling operator, V̂ab, and a third effective
diabatic state, c, representing the remainder of the quantum
subsystem, i.e.,

H H H V H V V( )a b ab c ac bc
̂ = ̂ + ̂ + ̂ + ̂ + ̂ + ̂ (19)

where the basis states associated with diabat c are all of those
not included in either diabat a or b. In this notation, the
effective diabat c may contain multiple eigenstates of the
original Hamiltonian, while diabats a and b each correspond to
a single eigenstate. By construction, these diabatic states are
nonoverlapping and the Hamiltonian decomposition in eq 19
can be expressed in matrix form

H

H V V

V H V

V V H

a ac ab

ac c bc

ab bc b

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
=

(20)

The relationship between the diabatic and adiabatic
representations is illustrated in Figure 2a,b.
To prevent trivial crossings in a tight binding Hamiltonian

model, we apply the switching function algorithm (eq 12). In
this method, the basis states associated with diabat b are
removed from the Hamiltonian in eq 14 during the trivial
crossing period to eliminate the influence of the crossing diabat
b, as illustrated in Figure 2c. In addition to the switching
function algorithm, another strategy for modifying the
Hamiltonian is to artificially shift the energy level of the
crossing diabatic state, as depicted in Figure 2d. This strategy is
convenient to implement in adiabatic simulations because the
size of the quantum subsystem is preserved upon switching

between the standard and modified Hamiltonians. Formally,
the modified Hamiltonian for this approach is given by the
form

H H i i
i b

bmod ∑̂ = ̂ + Δ | ⟩⟨ |
∈ (21)

where Δb is a constant that is large enough to eliminate the
crossing of diabats a and b along the entire time interval tc ≤ t
≤ tr.

III. APPLICATION: EXCITON DYNAMICS ON
EXTENDED CONJUGATED POLYMER SYSTEMS

The energy transport properties of electronically excited
conjugated polymers contribute significantly to the perform-
ance of organic electronic applications, such as organic
photovoltaic and light-emitting devices.19−21 One of the
challenges in modeling excited state properties is that these
systems tend to exhibit frequent trivial crossings, as first
discovered by Fernandez-Alberti et al. for phenylene
ethynylene oligomer chains.2 Furthermore, the frequency of
trivial crossings in these systems increases with polymer chain
length, making it difficult to simulate anything but short (e.g.,
∼10 monomer units) isolated oligomers. A robust and accurate
solution to the TCP is therefore essential to enabling the
simulation of experimentally relevant time and length scales.
The tendency of these systems to exhibit TCPs arises

because these systems possess a manifold of low-lying
electronic excited states that are easily localized to nanometer

Figure 2. Schematic of a three-state system showing a trivial crossing
problem and its proposed solutions. (a) Energy level crossings in
diabatic basis. Here ϕc′ represents the lowest eigenvalue of the
effective diabat c (see text for more details). (b) The same system as
that in panel a but in the adiabatic basis. In this example, since the
coupling between states a and b is negligible, this case presents a TCP.
Panels c and d show the consequences of our solution to the TCP in
the adiabatic basis. Panel c shows the effect of eliminating the crossing
diabat, as in eq 12. Panel d shows the effect of shifting the eigenvalue
of the crossing diabat, as in eq 21.
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length scales in the presence of room temperature thermal
disorder. When these states are spatially separated, they exhibit
weak coupling and can thus contibute to TCPs. For extended
conjugated polymers on their ground-state potential energy
surface, the low lying excited states occupy the same crowded
band of energies. This band includes numerous avoided and
trivial crossings. By contrast, when the system is on an excited-
state potential energy surface, the active eigenstate can be
preferentially stabilized via polaronic interactions between the
classical and quantum subsystems. These interactions helps
reduce the energy of the active state and the number of state
crossings.
Polaronic effects in neutral conjugated polymer systems arise

due to the interaction of an electronic excitation, also known as
an exciton, with the nuclear degrees of freedom. These
interactions favor the planarization of the monomer−monomer
torsional landscape.22 This planarization results in a higher
degree of π-conjugation and thus a lowering of the excited state
energy level.23 Since these planarizing forces are colocalized
with the position of the exciton, only a limited region of the
polymer chain is influenced, resulting in a phenomenon known
as exciton self-trapping.24−27 The dynamics of self-trapped
excitons is thus naturally described in diabatic states that are
spatially localized over several monomer units.
III.A. Model Description. The dynamics of an electroni-

cally excited conjugated polymer system can be efficiently
modeled using a mixed quantum/classical approach in which
the quantum subsystem is described by a Frenkel exciton
Hamiltonian.28 In the Frenkel exciton Hamiltonian, the excited
states of a polymer with N monomers are expressed in an
orthonormal basis of single monomer excitations, with a
Hamiltonian of the form

H i i J i j
i

N

i
i j

ijFrenkel ∑ ∑ε̂ = | ⟩⟨ | + | ⟩⟨ |
≠ (22)

where |i⟩ represents the state in which only the ith monomer is
excited (all other monomers are thus assumed to be in the
ground state), εi is the associated monomer excitation energy,
and Jij is the electronic coupling between states |i⟩ and |j⟩. In
the results presented below, we adopt a variation of this model
that is specific to the physics of conjugated polymer systems
and similar to that developed by Tozer and Barford to model
poly(para-phenylene) chains.11 In this variation, the monomer
excitation energies are all assumed to be identical, given by the
parameter ϵ0, and the coupling Jij is assumed to be the sum of a
through-bond and a through-space contribution. The Hamil-
tonian of our model is given by

H i i J i j

J i i i i( 1 1 )

i

N

i j

N

ij

i

N

i

poly 0
(dip)

1
(bond)

∑ ∑

∑

ε̂ = | ⟩⟨ | + | ⟩⟨ |

+ | ⟩⟨ + | + | + ⟩⟨ |

≠
−

(23)

where Jij
(dip) describes the through-space dipolar coupling of

states |i⟩ and |j⟩ and Ji
(bond) describes the through-bond

coupling of adjacent monomers. Specifically, the through-space
coupling is given by

J
R4ij

ij

ij

(dip) 0
2

r 0
3

κ μ

πϵ ϵ
=

(24)

where μ0 is the strength of the transition dipole of state |i⟩, ϵr
and ϵ0 denote the dielectric constant and the vacuum
permittivity, respectively, Rij = |Rij| is the separation between
monomer units i and j, and RR R3( )( )/ij i j ij i ij j ij

2κ μ μ μ μ= ̂ · ̂ − · ̂ · ̂
is the dipole orientation factor, where μ̂i is the unit dipole
vector for the transition dipole of state |i⟩.29 The through-bond
coupling is given by

J J cos ( )i i
(bond)

SE
2 θ= (25)

where JSE is a constant determined by the electronic exchange
coupling between bonded monomers and θi is the torsional
angle between monomers i and (i + 1).
For the classical subsystem, we utilize a coarse grained

model of a polymer that only includes the degrees of freedom
that have dependencies in the quantum Hamiltonian of eq 23.
Namely, this includes the relative positions of monomers and
the set of monomer−monomer torsional angles. In this coarse
grained model, we describe the dynamics of the torsional
landscape via a Langevin equation

I
t t

U
F t

d
d

d
d

d ( )

d
( ) ( )i i i

i

n
i i

2

2
g

ex
( )θ

η
θ θ

θ
θ ξ= − − + +

(26)

where I is the moment of inertia of a monomer ring about a
rotational axis parallel to the polymer backbone, η is the
friction coefficient for a given solvent, Ug(θ) is the ground state
torsional potential energy function, Fex

(n) is the torque exerted
on monomer rings by the nth exciton state, and ξ is the
stochastic torque on monomers due to the random fluctuations
in the solvent. We model these random fluctuations as white
noise with a correlation function, ⟨ξi(t)ξj(t + δt)⟩ =
2ηkBTδijδ(δt), where kBT is the Boltzmann constant times
temperature. In this work, the ground state potential energy
function, Ug(θ), was numerically tabulated on the basis of the
analysis of all-atom molecular dynamics simulation data, as
described in more detail in the following subsection.
We determine the difference between the ground state and

the excited state forces from the Hellmann−Feynman theorem

F
H

J b b

( )

2 sin(2 )

n
i n

i
n

i i
n

i
n

ex
( ) ex

SE
( )

1
( )

θ
θ

θ

= −⟨Ψ |
∂ ̂

∂
|Ψ ⟩

= + (27)

where bi
(n) = ⟨i|Ψn⟩. Notably, this expression for the excited

state force vanishes in regions of the polymer that are far from
the position of the localized exciton. We assume that there is a
separation of time scales between the lifetime of an exciton and
the changes in the spatial configuration of the polymer. Thus,
we treat the relative monomer positions as static. In this work,
we assume the polymer is in an idealized extended linear
configuration unless described otherwise.

III.B. Model Parameterization. We parametrize our
model to correspond to simulation results generated for
polythiophene in nonpolar solvent at T = 300 K. The
parameters of the quantum Hamiltonian are assigned on the
basis of mixed QM/MM excited-state all-atom molecular
dynamics (MD) simulations. These simulations utilize a
QCFF/PI approach,30 similar to one originally developed by
Warshel and Karplus.31 In this approach, the electronic
structure is only explicitly evaluated for the π-electrons,
which are treated using a semiempirical Pariser−Parr−Pople
(PPP) type Hamiltonian.32−34 All other electronic degrees of
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freedom are treated implicitly in the parametrization of the
molecular mechanics force field. Excited state properties are
computed using configuration interaction with single excita-
tions (i.e., CIS).
Following the specific approach of refs 35 and 36, we

generate multiple independent trajectories of a 30-mer
thiophene at T = 300 K in the first electronically excited
state. This method is described in more detail in the
Supporting Information. Shorter quaterthiophene oligomers
are simulated in the ground state to compute the ground state
torsional potential energy, Ug(θ), used in eq 26. Ug(θ) is
tabulated to reproduce the potential of mean force for ring−
ring torsional angles computed from atomistic quaterthiophene
simulations, and the resulting potential is described in the
Supporting Information.
This ground state torsional potential is bimodal with a local

minimum at 35° (cis-configuration) and a global minimum at
143° (trans-configuration) that are separated by a barrier of
approximately 12 meV. We assume that torsional angles are
independent, which is supported by correlation analysis of the
MD simulations. We neglect the subtle differences in Ug(θ)
that emerge at the chain ends. Further details about the MD
simulations can be found in the Supporting Information.
Table 1 lists the parameters we derive on the basis of the

results of these simulations. These values are used to simulate

the motion of exciton in a polythiophene chain in nonpolar
solvent at room temperature (T = 300 K).
III.C. Model Implementation. Using our coarse grained

model, we consider the time evolution of the exciton wave
function starting in the lowest energy excited state. Before
initializing our exciton dynamics, we prepare a polythiothene
chain with N-monomers whose centroid positions are
uniformly spaced by 3.88 Å along the x-axis. The initial
torsional angles and their velocities are randomly drawn from a
uniform distribution between −180° and 180° and from the
Maxwell−Boltzmann distribution at T = 300 K, respectively.
We first equilibrate the ground state torsional angle
configuration for 10 ps. The system is then evolved along
the potential energy surface of the lowest eigenstate (n = 1) via
eq 26. We numerically integrate eq 26 using the method
developed by Vanden-Eijnden and Ciccotti37 with a time step
of δt = 1 fs. All results presented in this paper have been
insensitive to the integration time step as long as δt ≤ 1 fs.
During adiabatic dynamics, we identify crossing points by

evaluating the joint probability density, P1,2, as described in
section II.A. We assume that, at a crossing point, |Ψ1⟩ and |Ψ2⟩
represent spatially symmetric and antisymmetric linear
combinations of diabatic states |ϕa⟩ and |ϕb⟩ (see eqs 8 and
9). We diabatize the quantum subsystem on the basis of this
assumption by locating the node in |Ψ2⟩ and then constructing
two orthonormal diabatic states that are constrained to lie on

opposite sides of the node. We set |ϕa⟩ (or |ϕb⟩) to be the
diabatic wave functions with bigger (or smaller) overlap with
the active state prior to the crossing point, |Ψ1(tc − δt)⟩. The
resulting diabats can thus be represented in a block matrix
form similar to that of eq 20.
We compute the electronic coupling between the diabatic

states under a line dipole approximation38
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where ci
(a) = ⟨i|ϕa⟩ and cj

(b) = ⟨j|ϕb⟩.
We perform adiabatic dynamics along the lowest potential

energy surface of the exciton Hamiltonian and use the joint
probability density (eq 11) and the switching function
algorithm (eq 12) described in section II to identify and
prevent trivial crossings. We define the recrossing point to be
when |⟨Ψ1

(mod)(t)|Ψ1(t)⟩| = Sc, where Sc equals 1 in theory.
However, in practice, it is less than 1 due to discrete time steps
and floating point error during the evaluation of the overlap
integral. In this conjugated polymer example, we have chosen
this recrossing threshold value to be Sc = 0.99, though any
value greater than 0.7 works essentially the same without
changing the adiabatic dynamics (see Figure S1). The
algorithm we employ in these simulations is illustrated in the
form of a flowchart in Figure 3.

Table 1. Parameters of the Exciton Model of Conjugated
Polymers

quantum

ε0 (eV) JSE (eV) ϵr μ0 (D)

5.0 −0.5 2.7 9.0
classical

I (eV fs2 deg−2) η (eV fs deg−2)

3.0 0.0035

Figure 3. Algorithm flowchart for the symmetry-preserving adiabatic
dynamics. Here k is defined as the number of recursive modifications
made to the original Hamiltonian Ĥ in the response to trivial
crossings. In this notation, Ĥmod

(0) is equivalent to the original
unmodified Hamiltonian. For the results presented in this paper, we
use Sc = 0.99.
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In Figure 4a, we illustrate the outcome of our diabatization
scheme for two eigenstates, Ψ1 and Ψ2, at their crossing point.

The figure also contrasts the cases of strongly and weakly
coupled states. Figure 4b contains a plot of the average
coupling between crossing diabatic states as a function of the
distance between the diabats

d x xab a a b bϕ ϕ ϕ ϕ= |⟨ | |̂ ⟩| − |⟨ | |̂ ⟩| (29)

The coupling strength versus distance converges to a point
dipole scaling, i.e., V ∝ 1/r3, for d > 200 Å, corresponding to

50 or more monomer units. The variation in computed
coupling strength, as indicated in shaded areas, stems from
variations in the state of the classical subsystem (i.e., the ring−
ring torsional landscape) within our sampled ensemble of
crossing points.
While the implementation of our method adds to the

baseline computational expense of a purely adiabatic
simulation, it is less costly than performing a standard
nonadiabatic simulation. Even the most efficient nonadiabatic
methods, such as those based on surface hopping,39 require the
generation of an ensemble of individual trajectories, potentially
increasing the computational scaling significantly relative to a
single purely adiabatic simulation with our method. In
addition, nonadiabatic techniques that use discrete time steps
can straddle a trivial crossing and thus miss its impulsive
influence altogether. Preventing this straddling effect therefore
necessitates its own solutions, such as adaptive time stepping.40

It is worth noting that in cases where purely adiabatic
dynamics is unreliable, such as in systems with dense and
highly coupled manifolds of states, our approach is likely
unreliable.

III.D. Selecting the Coupling Cutoff, Vc. We categorize
crossing points as trivial or not on the basis of the computed
value of the diabatic coupling, |Vab|. Specifically, we identify a
trivial crossing as having a value of |Vab| < Vc and a standard
avoided crossing as having a value of |Vab| ≥ Vc. Standard
Born−Oppenheimer adiabatic dynamics corresponds to the
case where Vc = 0, while the limit of large Vc corresponds to a
type of diabatic dynamics, albeit potentially unphysical.
One way to designate the value of Vc is through the

Landau−Zener formula18
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which specifies the nonadiabatic transition probability for a
two-state system. In Figure 4c, we plot a histogram of the
values of PLZ and the corresponding values of |Vab| as
computed from an equilibrium ensemble of configurations
from our model. We observe significant scatter in the data but
identify the expected trend that PLZ increases with decreasing |
Vab|. This trend suggests the tendency of the system to exhibit
nonadiabatic effects in response to a weakly coupled state
crossing. We utilize this trend to assign a value of Vc. In
particular, we choose Vc = 5 meV, corresponding to the
coupling value that has a Landau−Zenner transition
probability of about 95%. We find that the qualitative results
of our findings presented in the rest of the paper do not
depend on Vc as long as it is chosen such that PLZ ≳ 0.7.

IV. DEMONSTRATING THE PERFORMANCE OF OUR
APPROACH

In this section, we consider the dynamics of an excited state
conjugated polymer system and show that our solution to the
TCP yields physically reasonable adiabatic dynamics while
preserving the nodeless symmetry of the excitonic wave
function. We have used the switching function algorithm (eq
12) to demonstrate our trivial crossing correction approach,
though the energy shifting method (eq 21) works equally well
(see Figure S2). Specifically, we compare adiabatic trajectories
of the lowest exciton state of a thiophene 200-mer initiated in
identical states but with three different methods: the standard

Figure 4. Electronic coupling between diabats of a 100-mer chain,
computed from our model. (a) A snapshot of strong (Vab = 50 meV)
versus weak (Vab = 0.5 meV) electronic coupling. The solid lines
indicate adiabatic states (1 = gray, 2 = green) near the crossing points.
The shaded curves represent diabatic states ϕa (red) and ϕb (blue).
(b) Electronic coupling versus the distance between two diabatic
wave functions. The average electronic coupling for a given distance is
plotted in a black line, while the shaded gray region represents one
standard deviation about the mean. The dotted red line shows the
point-dipole approximation, V ∝ 1/r3. (c) The relationship between
the Landau−Zener transition probability, PLZ, and the diabatic
coupling, |Vab|. The red line indicates the average value of PLZ. The
shading represents the number of data points falling inside each bin
normalized by the maximum number for a given coupling value. In
panels b and c, the plotted data reflects statistics over approximately 4
× 105 crossing time points sampled from 5000 independent
trajectories.
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Born−Oppenheimer-type adiabatic dynamics, our symmetry-
preserving method, and a common non-symmetry-preserving
approach also known as the overlap method. In the overlap
method, the active adiabatic state for any given time step is
selected to yield maximal wave function overlap with the active
state of the previous time step. In this case, overlap between
states i and j at adjacent time steps is given by

S t t t( ) ( )i j i j, δ= |⟨Ψ |Ψ + ⟩| (31)

where δt is the length of a single time step. As the active state
hops between different eigenstates in the non-symmetry-
preserving method, we conserve the phase of the active
eigenstate as detailed in the Supporting Information. The
results of these three trajectories are plotted in Figure 5.

We observe impulsive long-range exciton hopping in the
Born−Oppenheimer dynamics case at t ≈ 0.1 ps, marked by a
dashed line in Figure 5a and d. This long-range hopping event
corresponds to a TCP, which is absent in both non-symmetry-
preserving (Figure 5b) and symmetry-preserving (Figure 5c)
methods. Notably, the TCP-free dynamics behaves identically
as the Born−Oppenheimer dynamics until the point of trivial
crossing (i.e., t ≈ 0.1 ps), where they evolve along differing
adiabatic potential energy surfaces and thus begin to diverge.
In the symmetry-preserving method, the lowest exciton state
appears spatially unimodal unless it goes through an avoided
crossing (e.g., at t = 0.3 and 0.72 ps).
In our symmetry-preserving method and in Born−

Oppenheimer dynamics, the active state is always a nodeless
state, where the amplitude of the wave function remains

Figure 5. Comparing adiabatic dynamics from our symmetry-preserving method with the standard uncorrected Born−Oppenheimer and the non-
symmetry-preserving methods for a trajectory initialized from identical configurations. (a−c) Shading corresponds to the wave function of the
active adiatabic state. (a) In the Born−Oppenheimer dynamics, the active state is always the lowest eigenstate of the original Hamiltonian. The
dashed vertical line marks a trivial crosssing point, tc = 0.1 ps, indicated by discontinuities in exciton position. (b) In the non-symmetry-preserving
method, the active state hops between different adiabatic states, whose hopping time points are marked by dashed lines. (c) In the symmetry-
preserving method, the active state is the lowest eigenstate of the modified Hamiltonian. A coupling cutoff, Vc, of 5 meV is used. Solid vertical lines
mark the time when the Hamiltonian is modified in response to a trivial crossing. The dashed line indicates the point when the trivial crossing
problem vanishes and the Hamiltonian is restored to its original unmodified form. (d−f) Time dependence of the excited state energy levels of the
lowest eigenstates. The red curve indicates the active eigenstate, which determines the potential energy surface used to propagate adiabatic
dynamics. (g−i) Snapshots of the active state wavefuntion at the vicinity of the first trivial crossing, tc = 0.1 ps, with δt = 1 fs. While wave functions
before and at the trivial crossing (black and red curves) are the same, resulting wave functions (blue curves) are different for all three methods once
they pass through the trivial crossing.
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positive throughout the entire trajectory, as illustrated in
Figure 5a, c, g, and i. In the standard non-symmetry-preserving
method, the nodal symmetry of the active wave function
changes during the trivial crossing period, indicated by the
appearance of negative amplitudes depicted in Figure 5b (red
regions) and h (blue curve). For this particular example in
Figure 5, the negative amplitudes are 1−2 orders of magnitude
less than the positive ones, as noted by the color scale. Thus,
Hellmann−Feynman forces, which are proportional to the
active state wave function amplitude (eq 27), and the resulting
nuclear configurations in both cases are nearly the same, as
indicated by red curves in Figure 5e and f. In general, however,
we find that increasing the number of nodes leads to smaller
magnitudes in Hellmann−Feynman forces. This leads to
differences in adiabatic dynamics sampled using the non-
symmetry-preserving method compared to our symmetry-
preserving scheme, as further discussed in section V below.

V. THE EFFECT OF NODAL SYMMETRY
PRESERVATION ON EXCITON TRANSPORT
PROPERTIES

We now apply our method for simulating wave function
symmetry-preserving dynamics to study the migration of the
lowest exciton state in long chain polythiophenes. We also
demonstrate that failure to preserve the nodal symmetry of the
adiabatic wave function can lead to unphysical exciton
dynamics. We first compare the dynamics generated with our
symmetry-preserving method to the dynamics generated with a
non-symmetry-preserving method of solving the TCP. We
characterize the dynamical properties of excitons in terms of
their diffusion coefficients, which we quantify by computing
exciton mean-squared-displacements (MSD), and their sizes.
For a sample of M independent exciton trajectories, MSD is
defined as

t
M

x t xMSD( )
1

( ) (0)
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M

m m
2∑= | − |
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where xm(t) = ⟨Ψ1
(m)(t)|x̂|Ψ1

(m)(t)⟩ is the centroid position of
the exciton wave function at time t for the mth trajectory.
Exciton sizes are quantified in terms of the inverse
participation ratio (IPR)
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=
∑ ⟨ |Ψ⟩ (33)

which roughly corresponds to the number of basis states (i.e.,
excited monomers) that participate in a given excited state.
One contributing factor to differences between symmetry-

preserving and non-symmetry-preserving dynamics is that the
size of an adiabatic wave function generally increases with the
number of wave function nodes. As such, the hopping between
adiabatic states to prevent the TCP can lead to an unintended
increase in wave function size. To illustrate this, we have
computed the probability distribution of IPR values, P(IPR),
for each of the five lowest eigenstates of an ensemble of ground
state torsional configurations of a model thiophene 100-mer.
The results, plotted in Figure 6, illustrate that both the mean
and the width of P(IPR) increase with state index. In
particular, the n > 1 state features exaggerated high-IPR tails
(Figure 6b) that reflect a greatly increased prevalence of highly
delocalized states.

To illustrate the consequences of this effect, we compare the
MSD of excitons generated using our symmetry-preserving
approach to that generated with a non-symmetry-preserving
method (eq 31). In all cases, the trajectories are initialized in
the lowest energy excited state of a randomly selected
equilibrium ground state configuration. To eliminate polymer
chain end effects, we have implemented quenching boundary
conditions that terminate dynamical trajectories if more than
90% of the exciton wave function is occupying the 15 terminal
monomers on either end of the polymer chain. Quenched
trajectories are included in the reported statistics and account
for approximately 15% (for N = 300) to 50% (for N = 100) of
overall trajectories with an average quenching time of tquench ≈
5 ps with Vc = 5 meV.
The results plotted in Figure 7a and b show that the early

time exciton diffusivity differs significantly between these two
approaches to solving the TCP. The early time exciton
diffusivity is given by the quantity Dshort = MSD(t = 1 ps)/[2·1
ps], where the factor 2 in the denominator accounts for
diffusion in one dimension. We find that Dshort for the non-
symmetry-preserving method yields larger values of the
diffusion constant. Notably, the short time diffusivity of the
non-symmetry-preserving approach grows with the length of
the polymer chain. This length dependence is unexpected for
chains with monomer numbers of N d lIPR / 400≳⟨ ⟩ + ⟨ ⟩ ≈ ,
where ⟨IPR⟩ is the average size of the diabat (⟨IPR⟩ ≈ 8), ⟨d⟩
is the average distance between diabats undergoing avoided
crossings (⟨d⟩ = 150 Å for PLZ ≈ 0.99), and l0 is the distance
between two thiophene rings (l0 = 3.88 Å). The plateau in the
MSD at longer times for the non-symmetry-preserving method
represents a finite size effect.
Figure 7b highlights that our symmetry-preserving approach

delivers the desired physical behavior that exciton diffusivity is
independent of chain length for sufficiently long polymer
chains. For shorter chains (N < 200), the plateau in the MSD
at longer times is due to a finite size effect. On the basis of the

Figure 6. Dependence of exciton sizes on its eigenstate index. (a)
Probability distribution for the IPR for the five lowest-energy wave
functions, n = 1, ..., 5. Distributions are computed over 500
equilibrium torsional configurations of a thiophene 100-mer in the
ground electronic state at T = 300 K. (b) A snapshot of five lowest-
energy adiabatic wave functions with their inverse participation ratios
(IPRs) rounded to the nearest integer.
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MSD data that are plotted in Figure 7b, we find that the
diffusivity at short times (t < 500 fs) is generally faster than
that at longer times. We attribute this difference to changes in
the classical degrees of freedom, particularly the torsional
landscape, that occur upon excitation. These changes result in
self-trapping, which reduces the mobility of the exciton.
Further evidence for self-trapping can be found by computing
the time dependent average of the exciton IPR. As plotted in
Figure 8, we find a rapid decrease in exciton size during the
first ∼100 fs immediately following excitation.
At longer times (i.e., t ≳ 5 ps), we observe a significant

difference between the IPR computed with the symmetry-
preserving and non-symmetry-preserving methods. Specifically,
the non-symmetry-preserving method leads to excitons that are
more delocalized than with the symmetry-preserving method.
We observe that the IPR for unmodified purely adiabatic
dynamics is essentially the same as that with the symmetry-
preserving method, indicating that the symmetry-preserving
method effectively populates nodeless and torsionally relaxed
adiabatic states. On the other hand, the tendency for the non-
symmetry-preserving approach to populate higher energy
states (n > 1), which are inherently more delocalized (see
Figure 6), leads to a small but unintended increase in mean
exciton size.
The two dominant modes of exciton mobility in long chain

conjugated polymers are the diffusion of the active diabat along
the length of the polymer chain, as mediated by torsional
fluctuations in the tails of the active diabatic state, and hopping
through avoided crossings. Since Vc controls the threshold for
this hopping mobility, it thus also contributes significantly to
the determination of exciton diffusivity. This can be seen in
Figure 7d, which contains a plot of the steady-state diffusivity

as a function of Vc. We find that D ranges between values of
0.005 and 0.04 cm2/s, depending on the choice of Vc.
Our simulated values of diffusivity are larger than the

estimated value of D ≈ 0.001 ± 0.0004 cm2/s based on
fluorescence quenching experiments by Healy et al.41 We
attribute this difference to the lack of disorder in monomer
excitation energy and in our assumption that the polymer chain
is in an ideal extended linear configuration. For instance, in the

Figure 7. Comparing dynamics under symmetry-preserving and non-symmetry-preserving solutions to the TCP. (a, b) Mean-squared displacement
(MSD) for excitons on polymer chains with varying number of monomer units, N. Panel a is computed with the non-symmetry-preserving overlap
method, and panel b is computed with our symmetry-preserving dynamics. For each polymer size, data is averaged over 3000 independent
trajectories carried out adiabatically in the lowest energy excited state. (c) Step size distribution for exciton displacements in the non-symmetry-
preserving method showing that there are more frequent long-range hops with increasing polymer chain lengths. (d) Dependence of diffusivity, D,
on Vc in the symmetry-preserving method. Steady state diffusivity is shown to be independent of polymer chain lengths (e.g., N = 100 and 300).
Error bars denote one standard deviation uncertainty among 10 samples, each averaged over 1000 independent trajectories.

Figure 8. Comparison of the time evolution of the average inverse
participation ratios (IPRs) computed on the basis of the symmetry-
preserving method (red), the non-symmetry-preserving overlap
method (blue), and the standard Born−Oppenheimer method
(black) for 300-mer chains. The data set for the symmetry-preserving
method is the same as that in Figure 7b. The dotted horizontal line
indicates the average IPR at t = 0, which is the same for all three
methods. Each data set represents an average over 3000 independent
trajectories.
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presence of configurational disorder, diffusivity computed from
our model is about 0.001 ± 0.0002 cm2/s at Vc = 10 meV,
which is about 20% smaller than that of linear configurations,
and is also in good agreement with experimental measurements
by Healy et al. We have simulated disordered polythiophene
backbone configurations using the coarse grained poly(3-
hexylthiophene) model by Schwarz et al.42 Details on
simulations with disordered polymer configurations are
described in the Supporting Information.
The large difference in steady-state diffusivity between our

symmetry-preserving method and the overlap-based non-
symmetry-preserving method is not entirely due to differences
in exciton size. The analysis of trajectories generated on long
chains indicates that, when the nodal structure of the wave
function is not preserved, the dynamics features frequent long-
range hops. These long-range hops, illustrated in Figure 7c,
serve to artificially enhance exciton diffusivity. The frequency
of these hops increases with increasing chain length even when
the chain is much larger than the exciton size. This finding
highlights that the effect is highly nonlocal and thus
inconsistent with physical expectations for these dynamics.
The origins of this nonlocal hopping behavior are the

relationship between the quantum force and the exciton wave
function amplitude as well as the use of wave function overlap
to identify trivial crossings. As the number of nodes increases,
the excitonic wave function exhibits several local maxima in
space, such that the planarizing forces (eq 27) also become
spatially nonlocal and lower in magnitude. These events lead to
frequent long-range hopping, which is in contrast to the
dynamics of the self-trapped lowest exciton state due to
spatially localized planarizing forces. Moreover, the overlap
method itself is not as robust in identifying trivial crossings as
the joint probability density approach employed in the
symmetry-preserving method. With the overlap method, the
signature of a trivial crossing is when Sk,n > Sk,k, where k is the
active state index and n ≠ k. In practice, we have determined
that this method is only reliable for detecting trivial crossings
when the diabatic coupling is very small, i.e., when |Vab| <0.1
meV, corresponding to states that are separated by more than
80 monomer units (see Figure S4).2,10,11 These results thus
suggest that in certain cases, such as those we have presented
here, the wave function overlap method for identifying trivial
crossings can be prone to false positives and thus produce
unphysical dynamics.

VI. CONCLUSION AND OUTLOOK
We have presented a theoretical framework for solving the
TCP in simulations of purely adiabatic dynamics that preserve
the nodal symmetry of the wave function without the need for
more expensive nonadiabatic techniques. We have shown how
changes in this symmetry can lead to artificial delocalization of
the wave function as well as false positives in the identification
of trivial crossings.
The results presented here underscore the importance of

considering the nodal structure of the adiabatic wave function
when implementing dynamics that includes changes in
eigenstate. This includes nonadiabatic methods based on
surface hopping, which rely on gathering statistics of many
adiabatic trajectories.6,9,13,39 In such approaches, artificially
imposing hopping between eigenstates to prevent trivial
crossings may introduce uncontrolled sources of error. In
surface hopping methods, TCP is usually avoided by
decreasing the time step of the simulations.5,9 Our method

can be applied along the purely adiabatic segments of surface-
hopping trajectories (i.e., between surface hops) to allow for
larger time steps.
As we have highlighted, avoiding discontinuities in wave

function nodal symmetry during simulations of adiabatic
dynamics is especially important in large-scale systems with
many noninteracting (uncoupled) diabatic states whose energy
surfaces can potentially cross. When our symmetry-preserving
method is applied to simulations of exciton dynamics on long
chain conjugated polymer systems, the TCP is effectively
eliminated and exciton properties are free from unphysical
polymer chain length dependent artifacts. Therefore, the
symmetry-preserving method for solving the TCP ensures
reliable simulations for experimentally relevant system sizes, as
in the case of long conjugated polymer chains (>100
monomers).
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