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Abstract: Cu- and Sm-doped ZnO nanorod arrays were grown with 1 wt% of Sm and different
weight percents (0.0, 0.5, 1.0 and 1.5 wt%) of Cu by two-step hydrothermal method. The influence
of Cu concentration and precursor of Sm on the structural, optical and photovoltaic properties of
ZnO nanorod arrays was investigated. An X-ray diffraction study showed that the nanorod arrays
grown along the (002) plane, i.e., c-axis, had hexagonal wurtzite crystal structure. The lattice strain
is present in all samples and shows an increasing trend with Cu/Sm concentration. Field emission
scanning electron microscopy was used to investigate the morphology and the nanorod arrays grown
vertically on the FTO substrates. The diameter of nanorod arrays ranged from 68 nm to 137 nm and
was found highly dependent on Cu concentration and Sm precursor while the density of nanorod
arrays almost remains the same. The grown nanorod arrays served as photoelectrodes for fabricating
dye-sensitized solar cells (DSSCs). The overall light to electricity conversion efficiency ranged from
1.74% (sample S1, doped with 1 wt% of Sm and 0.0 wt% of Cu) to more than 4.14% (sample S4,
doped with 1 wt% of Sm and 1.5 wt% of Cu), which is 60% higher than former sample S1. The
increment in DSSCs efficiency is attributed either because of the doping of Sm3+ ions which increase
the absorption region of light spectrum by up/down conversion or the doping of Cu ions which
decrease the recombination and backward transfer of photo-generated electrons and increase the
electron transport mobility. This work indicates that the coupled use of Cu and Sm in ZnO nanorod
array films have the potential to enhance the performance of dye-sensitized solar cells.

Keywords: optical properties; Zn1−x−ySmxCuyO nanorod arrays; dye-sensitized solar cells; I-V measurements

1. Introduction

One-dimensional (1D) nanostructures have been an emerging class of oxide materials
for the last few years because of their outstanding electrical and optoelectronic proper-
ties. These excellent properties of 1D nanostructures make them suitable for potential
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applications in piezoelectric, gas sensing and solar cell devices [1–4]. Currently, there has
been a huge interest in 1D ZnO nanostructures (nanowire/nanotube/nanorod arrays) as
photoanodes in dye-sensitized solar cells because of low toxicity, easily reproducibility,
facile and low temperature synthesis methods [5]. Furthermore, 1D geometry of ZnO
provides direct pathways, necessitating for faster transport of photo-generated electrons
from the point of injection to the surface of the collecting electrode [6,7]. In other words, in
1D ZnO architectures, the mobility of charge carriers is higher, recombination possibility is
lower, and the charge carriers would not suffer any grain boundary scattering [8]. However,
the widespread use of 1D ZnO in DSSCs is still limited because of reduced surface area
which presented comparatively low conversion efficiency when compared to the standard
TiO2 nanoparticle film based DSSC. Basically, DSSCs consists of four key components, con-
ductive substrate + nanostructured semiconductor (working electrode), counter electrode,
redox-mediator (electrolyte) and visible-light absorber dye [9]. Different research groups
are working on different parts of the DSSCs. Some groups are performing their research
on working electrodes (coating of different materials like TiO2, SnO2, Nb2O5 ZnO and
so on, with different morphologies (e.g., 1D, 2D, 3D) on various substrates) [10–12], as
well as on counter electrodes (such as Pt/C coated, CoS, Au/GNP, alloys like FeSe and
CoNi0.25) [13,14]. Other research groups are working on dyes (organic, inorganic and natu-
ral dyes) [15,16], as well as on electrolytes (liquid, quasi-solid (gel/paste-like/membranes),
solid and water-based electrolytes) [17,18]. From the aforementioned components, working
electrodes play a crucial role in the performance of DSSCs. Among these semiconductor
materials, the overall light conversion efficiency of 1D ZnO nanowire/nanotube/nanorod
arrays based DSSCs remains around 4.7% [19]. There are several reasons behind this limited
efficiency. Firstly, 1D ZnO photoanodes inherently have low light harvesting capability.
Although, after loading N719/N749 dye (band gap 1.8 eV) the capability of photoanodes
increased and can function under the visible-light portion. It is well-known that the largest
part of the light spectrum consists of ultraviolet (UV) and near-infrared (NIR) light [20].
Unfortunately, DSSCs cannot absorb 50% of solar irradiation in the UV and NIR regions.
Secondly, 1D nanostructures have a high aspect ratio, but the dye loading capacity is sig-
nificantly lower because of the small surface area between nanowire/nanotube/nanorod
arrays. Thirdly, low dye adsorption in 1D geometry is either because of the electrostatic
repulsion of dye molecules at the surface of the semiconductor or the backward transfer
of electrons. These drawbacks decrease the short circuit current and open circuit voltage
in DSSCs and contribute significantly to the bottlenecking of the performance of the de-
vice. To address these lapses, many researchers tried to modify the ZnO nanostructures
using different strategies including doping with 3d transition metals such as Mn, Co, Cr,
Fe, Fr, Cu [21–24], or intra 4f transition rare earth (RE) metals such as La, Nd, Sm Ce,
Er, Yb, Dy [25,26], as well as the coupled use of these metals. Recently, doping with RE
gets paramount importance for the researchers because of their optical characteristics in
the intra 4f transition [26]. Doping of zinc oxide lattice with rare earth ions resolves the
problems related to non-absorbable light spectrum through up/down conversion of NIR
and UV radiation to visible wavelength region [27,28]. Doping of ZnO nanorod arrays with
Cu ions may decrease the recombination of photo-generated electrons and form a blocking
layer to stop the backward transfer of electron. Moreover, Cu forms new energy levels
between the valence and conduction band to increase the electron mobility which in turn
increase the performance of DSSCs. The doping of ZnO with coupled metals modifies the
flat-band potential auspiciously to enable more efficient injection of charge carriers at the
interface of ZnO and dye [29–33]. To the best of our knowledge, ZnO has been modified
independently with rare earth or transition metal ions, although the coupled use of Cu and
Sm has not been reported yet.

In this context, ZnO is used as host material, Cu and Sm are the doping materials. We
have discussed the optical, structural and photovoltaic properties of Cu-and Sm-doped
ZnO nanorod arrays first time to boost the efficiency of dye-sensitized solar cells. In this
regard, a plethora of publications have been published [31–33], showing doping with
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Au/Sm/Eu/Ce of ZnO/TiO2 separately. Although, none of these reports explain the
combined effect of Cu and Sm doping in ZnO nanorod arrays based DSSCs. The effect
of Sm and Cu doping on ZnO nanorod arrays was studied with a fixed concentration
of Sm (1 wt%) and different concentrations of Cu (0.0, 0.5, 1.0 and 1.5 wt%). Effects of
coupled use of Cu and Sm on the material characteristics of ZnO nanorod arrays and the
performance of dye-sensitized solar cells were investigated in detail. The results show
that the DSSC fabricated with 1 wt% of Sm and 1.5 wt% of Cu doped ZnO nanorod arrays
(sample S4) exhibit better efficiency compared to that of DSSC fabricated with 1 wt% of
Sm and 0.0 wt% of Cu doped ZnO nanorod arrays (sample S1). This result indicates that
the Cu-and Sm-doped ZnO nanorod arrays have promising applications in the field of
dye-sensitized solar cells, and the ZnO nanorod arrays synthesized with coupled use of RE
Sm and transition metal Cu are efficient for the improvement of DSSC’s performance.

2. Experimental Details
2.1. Chemicals

Analytical grade zinc acetate dehydrate (Zn (CH3COOH)2·2H2O) ZnAc), cupric ac-
etate (Cu (CH3COO)2·H2O) (CuAc), samarium acetate trihydrate (Sm (C2H3O2)3·3H2O)
(SmAc) hexamethylenetetramine (C6H12N4) (HMTA), ammoniumhydroxide (NH4OH),
polyethyleneimine (C2H5N)n (PEI) and ethanol were purchased from Sigma Aldrich,
Lahore, Pakistan and used without any prior treatment.

2.2. Methods

The growth of Cu- and Sm-doped ZnO nanorod arrays was completed in two steps: (1)
spin coating of seed layer and (2) hydrothermal method used for the growth of nanorod arrays.

2.2.1. Spin Coating of Seed Layer

To prepare the seed solution, 0.005 M of zinc acetate powder was taken, it was dis-
solved in 50 mL of ethanol by magnetic stirring. For uniform and full mixing, the solution
was continuously stirred at room temperature for 1 h. Before the ZnO seed layer deposition,
fluorine-doped tin oxide conducting glass (FTO, sheet resistance 8 Ω/cm2) substrates
were cleaned ultrasonically with acetone, isopropyl alcohol and ethanol for 10 min each,
respectively. The pretreatment of FTO substrates ware taken at room temperature and
dried in hot air with hair dryer. The ethanolic precursor seed solution was spin coated on
conducting side of fluorine-doped tin oxide (FTO) substrates at 3000 rpm for 30 s. After
each layer deposition, the substrates were heated in an electric oven at 100 ◦C for 10 min.
The heated substrates were removed from the electric oven and cooled down naturally at
room temperature before coating the next layer. This process was repeated three times to
get ~120 nm thick seed layer. Finally, the ZnO spin-coated seed layer films were annealed
at 400 ◦C for 30 min to convert zinc acetate to ZnO nanocrystals. These seed layers act as
uniform nucleation sites for the growth of nanorod arrays.

2.2.2. Nanorod Arrays Growth

The detailed synthesis procedure of Cu- and Sm-doped ZnO nanorod arrays shown
in Figure 1 was as follows: 100 wt% of zinc acetate, 1 wt% of samarium acetate and (0.0,
0.5, 1.0 and 1.5 wt%) of cupric acetate, as given in Table 1. These materials were used as
starting materials and dissolved in deionized water in a beaker with constant stirring for
2 h at 50 ◦C. To this solution, 15 mL of hexamethylenetetramine (HMTA) ware dropped
under magnetic stirring as a stabilizer. Then, 10 mL of ammonium hydroxide (NH4OH)
solution was added slowly in the aqueous solution to acquire pH in the range of 7 to 8.
Finally, 5 mL of PEI solution was added to the prepared solution and continued stirring
at 50 ◦C for another 1 h. After this step, 60 mL of obtained solutions were transferred to
100 mL glass bottles. The same procedure was repeated to prepare the solution of other
concentrations (0.5, 1.0 and 1.5 wt%). Although, the concentration of zinc acetate was
regulated according to the concentration of dopant (Cu). For more detail, see Table 1 to
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clarify the concentration and precursor for each sample (S1 to S4). Typically, the seeded
substrates were placed tilted in glass bottles with solutions in four groups with different
concentrations of Cu (0.0, 0.5, 1.0 and 1.5 wt%) and 1 wt% concentration of Sm. These glass
bottles were placed in a muffle furnace at 90 ◦C for 8 h and then allowed to cool at room
temperature naturally. In the last step, ZnO nanorod arrays grown FTO substrates were
removed from the glass bottles and washed with ultrapure water and annealed in air for
1 h at 300 ◦C.
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Table 1. Parameters specifying fabrication of Cu- and Sm-doped ZnO nanorod arrays.

Samples Zn1−x−ySmxCuyO Content of Sm (wt%) Content of Cu (wt%)

S1 Zn1−x−ySmxCuyO 1 0.0

S2 Zn1−x−ySmxCuyO 1 0.5

S3 Zn1−x−ySmxCuyO 1 1.0

S4 Zn1−x−ySmxCuyO 1 1.5

2.3. Dye-Sensitized Solar Cell Fabrication

After annealing and cooling to 100 ◦C, the warm Cu- and Sm-doped ZnO nanorod
arrays films of average area 0.25 cm2 were sensitized into a 0.5 mM solution of dye N719
in acetonitrile and retained in dark overnight for the dye adsorption process. When the
dye sensitization is completed, the photoelectrodes were taken out from the dye solution
and washed with acetonitrile in order to remove extra dye. Afterwards, the dye loaded
photoelectrodes were dried in air for 30 min. Platinum (Pt)-coated FTO glasses of the
similar area were used as counter electrodes. Each dye loaded photoanode and the counter
electrode were then sealed with the help of 30 µm thick Surlyn frame. The assembled cells
were then filled with iodide/triiodide I−/I−3 electrolyte, which consists of 0.5 M lithium
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iodide (LiI), 0.05 M iodine (I2) and 0.5 M 4-tertbutylpyridine in acetonitrile. The liquid
electrolyte was injected with a dropper through one of two small holes on the counter
electrode, which are drilled with the help of a table drill machine. Finally, the two holes
were wrapped by a thin glass cover slide in order to prevent the leakage of electrolyte out
of the cell. Four devices (DSSCs) were fabricated for each sample and characterized. Only
slight errors were observed in the cell parameters and these errors were listed in Table 3 by
means of the standard deviation.

2.4. Characterization and Measurements

The structural characterization of the as grown nanorod arrays was performed using X-
ray diffraction Bruker D8 (Bruker AXS, WI, USA) with Cu Kα radiations (λ = 0.154178 nm)
at a scanning rate of 0.02◦/s from 20 to 80 degrees. The morphology of hydrothermally
grown nanorod arrays was investigated by using a scanning electron microscope (SEM,
JEOL, JSM-6301F, Chicago, IL, USA). After dye-loading, optical absorption of the photoelec-
trodes was recorded by UV-Vis spectrophotometer from Ocean optics (Micropack DH-2000,
Birlen, Germany). DSSCs J-V characteristic were measured by a Keithley 2450 source
meter(SMU 2450, Tektronix, Beaverton, OR, USA) under 1 sun illumination AM 1.5 G (air
mass 1.5 global 100 mW/cm2). To check the stability of DSSCs, the cells were saved for
two months in the dark at room temperature. The stability test was performed every week
by measuring the I-V curves.

3. Results and Discussion
3.1. Crystal Structure of Nanorod Arrays

Figure 2 illustrates the XRD patterns of Cu- and Sm-doped ZnO nanorod array films.
The very strong diffraction peak corresponding to (002) plane of ZnO at 2θ = 34.35◦ is
observed in all samples. This peak confirms the hexagonal wurtzite phase of ZnO nanorod
arrays in all samples and reveals the fastest growth along the c-axis due to the lowest surface
free energy. The grown nanorod arrays are vertically well-aligned to the substrate surface as it is
clear from SEM images in Figure 3. In addition, four low intensity peaks corresponding to ZnO
(011), (012), (013) and (004) planes are also observed at 2θ = 36.65

◦
, 47.14

◦
, 63.31◦ and 73.32◦,

respectively (JCPDS card no. 004-3700). No diffraction peaks of Cu/Sm oxides/sub-oxide
are traced in the XRD patterns of ZnO nanorod arrays because of small concentration of
dopants. This result depicts the successful substitution of Cu2+/Sm3+ ions into the Zn2+

sites without affecting the crystal structure of ZnO. It is clearly noticed that there is a slight
shift in peak position towards higher angle in all samples. The shifting in peak position
might be due to the shrinkage in ZnO crystal lattice by the incorporation of Cu2+/Sm3+

ions [27,34]. This shifting can also be attributed to the difference in ionic radii of Zn2+

(0.74 Å), Cu2+ (0.73 Å) and Sm3+ (0.96 Å). Due to the difference in ionic radii, it is expected
that the length of the c-axis will be shorter when Cu/Sm atoms are replaced into Zn sites
in the crystal lattice [35,36]. In order to explore the influence of Cu concentration and
precursor of Sm on the crystallinity of ZnO nanorod arrays, the intensity of (002) peak
was observed. For this purpose, crystal size (D), compressive strain (ε), d-spacing (d) and
dislocation density (δ) were calculated for ZnO (002) peak using Equations (1)–(4) and
tabulated in Table 2 [37]:

Crystallite size (D) =
kλ

βcos θ
(1)

Compressive strain (ε) =
βcos θ

4
(2)

d − spacing (d) =
nλ

2sin θ
(3)

Dislocation density (δ) =
1

D2 (4)
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where D is crystallite size, k is constant (its value is 0.9), λ wavelength of X-ray (typically
1.5418 Å for Cu Kα) and β represents full width at half maximum (FWHM). As reported in
the previous literature, the nominal content of Cu/Sm has a significant effect on the ZnO
crystal [19,23–26]. In this work, the precursor of Sm is too small to alter the morphology as
is clear from the XRD of sample S1. It means that the broadening in width and weakening
in the intensity of the peak is due to the substitution of Cu/Sm ions. As the doping
concentration of Cu increases from 0.5 wt% to 1.5 wt%, the intensity of (002) peak drops
gradually regardless of the Sm precursor as shown in Figure 2. The decrease in (002) peak
is more pronounced than the other four (011), (012), (013) and (004) peaks. When the
intensity of (002) peak decreases, FWHM increases, as the resulting grain size decreases.
This indicates that the drop in (002) diffraction peak is due to the replacement of Cu2+/Sm3+

ions in Zn2+ ions, which restrains the crystal growth of ZnO [38]. Therefore, doping of
Cu2+/Sm3+ may act as an inhibitor for the growth of ZnO along the (002) plane [39]. The
same inhibitory trend in crystal growth was also enumerated in other transition and rare
earth ions doped ZnO thin films. This decrease in peak position strongly depends on the
presence of the lattice distortion, strain and defects induced by the slight substitution of
Cu2+/Sm3+ [40]. The compressive strain is produced during the substitution of Cu/Sm
impurities into ZnO lattice and increases with dopant concentration. The decrease in
crystallite size and improvement in strain presents defects in the ZnO lattice. It is evident
that there is more compressive strain in the samples (S2, S3 and S4) at higher doping
level [38]. Dislocation density (δ) is a measure of the number of defects appeared in Cu2+/
Sm3+ ions doped ZnO. Dislocation density defines length of dislocated lines per unit
volume of the crystal and calculated using Equation (4). Dislocation density increases with
the increase in Cu concentration and Sm precursor. The substitution of Cu2+ (0.73 Å) and
Sm3+ (0.96 Å) with Zn2+ ions (0.74 Å) increased defects in the ZnO host lattice. The crystal
defects produced in ZnO by doping with Cu/Sm can be calculated from microstrain (ε) and
dislocation density (δ) that increased with the increase in Cu concentration and precursor
of Sm. The substitution of Cu/Sm impurities produces cationic vacancies in the ZnO host
lattice, and these cationic vacancies decreased the average crystallite size and increased
dislocation density, as is clear from Table 2.
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Table 2. Calculated parameters from XRD graph of ZnO (002) peak and band gap energy values.

Samples FWHM (β) Crystallite Size
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3.2. Surface Morphology of Nanorod Arrays

Figure 3 depicts the surface morphologies of Cu- and Sm-doped ZnO nanorod array
films. SEM micrograph Figure 3 (Samples S1 to S4) shows nanorod arrays with different
diameters and density because the diameter and density of nanorod arrays depends on
Cu concentration and Sm precursor. One can see that when the concentration of Cu was
0.0 wt% and Sm 1 wt%, the as-grown nanorod arrays (sample S1) were randomly oriented
with varying rod sizes of mean diameter 46 nm. However, when the precursor of Sm was
1 wt% and the concentration of Cu increased from 0.5 wt% to 1.0 wt%, nanorod arrays and
grader type morphology (samples S2 and S3) obtained with collapsing head and different
rod sizes. The mean diameter of samples S2 and S3 was 68 nm and 113 nm, respectively,
and the morphology shows little rough surface. When the concentration of Cu increased
to 1.5 wt%, dense and well-defined nanorod arrays grow perpendicular to the surface of
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the substrate with uniform morphology and size and an average diameter of 136 nm. The
density of nanorod arrays almost remains the same, leading to a large surface area for more
dye anchoring and light harvesting. Tyona and Dom et al. [34,41] have explained that the
escalation in Cu/Sm content not only increases the carrier concentration, but also increases
the mobility in the conduction band of ZnO. The increment in carrier concentration and
mobility reduces the crystallographic defects and increases the crystalline quality of the
ZnO film, as can be seen from sample S4. This novel morphology is appropriate for DSSC
applications. Furthermore, pH value and the nucleation sites of growth solution have a
great impact on the diameter and density of nanorod arrays. Babikier et al. [38] proposed
that, during the growth of ZnO nanorod arrays, Cu/Sm impurities can increase the density
of nucleation sites that boost the growth rate. As the growth rate increases, coalescence
between the nanorods takes place, which leads to the formation of longer nanorod arrays
with uniform diameter (sample S4), as shown in Figure 4. On further increasing the dopants’
concentration, nanorod arrays start overlapping with each other and the morphology
obtained with less surface area which decreases the device performance. The photoelectrons
take more time to reach the substrate surface because of the hopping mechanism and the
cell shows lower efficiency.
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3.3. Optical Measurement of Nanorod Arrays

Figure 5 illustrates the optical absorbance spectra of Cu- and Sm-doped ZnO nanorod
arrays films after the sensitization of N719 dye. It is observed that absorption in the visible
wavelength range of the light spectrum increases with the increase in the Cu concentration
and Sm precursor. As the concentration of dopants increases, morphology of uniform size
nanorod arrays is obtained with high porosity and large surface area (sample S4). The
enhancement in absorption is attributed to the transfer of charge between the conduction or
valence band of ZnO and the 4f level of Sm3+ ions. The absorption peak of 0.5 wt% of Cu-
and 1 wt% of Sm-doped ZnO nanorod arrays is found about 521 nm in the visible region of
the light spectrum. At the same time, for other doping levels 1.0 wt% and 1.5 wt% of Cu
and 1 wt% of Sm, the intensity of absorption peaks was increased. As the concentration of
dopants increases, an enhancement in the absorption is observed, and the absorption band
moves towards the green emission. Fons, Wahl and their coworkers have explained that as
Cu belongs to IB group elements and can act as an accepter in ZnO [42–44]. They think that
Cu-related defects are of great importance and are the main cause for the green emission
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instead of the intrinsic defects such as oxygen vacancies. In addition, this increment in
absorption is also associated with the formation of localized states in the ZnO band gap
and confirmed that ZnO nanorod arrays have been modified with Cu/Sm dopants. The
band gap energies of the as deposited nanorod arrays were calculated before anchoring
N719 dye using Tacu plot relation as shown in Equation (5) [37]:

(αhv)2 = A
(
hv − Eg

)
(5)

where α, hν, A and Eg are the absorption co-efficient, photon energy, constant and band gap
energy, respectively. Figure 6 delineates the plot between the photon energy hν and the
absorption coefficient, (αhv)2, and the calculated values are given in Table 2. The estimated
values of band gap energy are observed to decrease from 3.25 eV to 3.19 eV as we increase
the dopant concentration from 0.0 wt% to 1.5 wt%. The reduction in band gap energy
of semiconductors is worth noticing by doping with transition metals or rare earths. By
doping transition/rare earth metals, new energy levels formed in the band gap, which
decreases the band gap Eg of ZnO [45]. The formation of new energy levels near the
conduction band is due to the donor impurities and near the valence band is due to the
acceptor impurities. When the amount of dopant elements is increased, then the density
of their states is also increased and forms a continuum of states just like in the bands, as
a result Eg is decreased. Band gap energy and compressive strain vs. Cu concentration
of ZnO nanorod arrays for different samples are presented in Figure 7. The absorption
coefficient of ZnO nanorod arrays shows a tail for sub band gap photon energies. This tail
is called Urbach tail and is closely related to the disorder in the film network. The Urbach
tail is expressed as [37]:

α = αoexp
(

hν

Eu

)
(6)

where αo is a constant and Eu is Urbach energy which characterizes the slope of the
exponential edge. The above equation delineates the optical transition between occupied
state in the valence band tail to unoccupied state of the conduction band edge. The values
of Eu can be calculated from the inverse of the slope of lnα versus (hν). Urbach energy
values change inversely with optical band gap, i.e., with the increase in Cu concentration
and Sm precursor the Urbach tail increases from 85 to 100 meV as shown in Figure 8.
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3.4. I-V Measurements of Cu-Doped ZnO-Sm Films

Figure 9 depicts the current-voltage response of DSSCs fabricated with different
samples (S1 to S4) of Cu- and Sm-doped ZnO nanorod arrays photoanodes. Completed
cells were illuminated by 1 sun AM 1.5 G, and all the currents and voltages (Isc, Voc, Imax,
Vmax) are measured and listed in Table 3. The efficiency (η) and fill factor (FF) are calculated
from Equations (7) and (8) [46]:

η (%) =
Pmax

Irad × A
× 100 (7)

FF (%) =
Vmax × Imax

Voc × Isc
× 100 (8)

where Pmax, Irad and A are the maximum power output, the input light and the working
area of the cell, respectively. The measurements show that the cell fabricated with 0.5 wt%
of Cu- and Sm-doped ZnO nanorod arrays have superior open circuit voltage (Voc) = 0.681
V and efficiency (η) = 2.47% than the cell fabricated with 0.0 wt% of Cu- and Sm-doped
ZnO nanorod arrays, (Voc) = 0.550 V and η = 1.74%. The significant enhancement in Voc
and η is because of the presence of Cu/Sm, which impeded the recombination rate of
electrons and increased the transport of electrons. There is an improvement of 27% in
efficiency. It has been reported that some rare earth ion modifications can passivate the
surface states of the ZnO electrode. For instance, modification with Sm, Gd and Nd ions
particularly boosted the open-circuit photovoltage and fill factor of ZnO-based solar cells
and decreased short-circuit current [47–49], which is in accordance with our results. The
further improvement in Jsc = 26% and η = 55%, has been observed in DSSCs fabricated with
1.0 wt% of Cu and 1 wt% of Sm-doped ZnO nanorod arrays. The maximum photocurrent
density and efficiency has been recorded for the DSSC fabricated with 1.5 wt% of Cu- and
1 wt% of Sm-doped ZnO nanorod arrays (i.e., Jsc = 42% and η = 60%, respectively), as
indicated in Table 3. The enhancement in cell parameters can be explained as follows:
when ZnO is doped with rare earth Sm3+ ions, an up/down conversion process takes place,
in which ultraviolet and near infrared radiations are shifted to the visible light region. In
this way, two or more low energy photons can be absorbed by ZnO, which in turn results
in the form of emission of high energy photons present in the core absorption region of
the N719 dye [50]. As reported in the previous literature, N719 dye has strong absorption
at about 550 nm [51]. This broadening of light absorption region is the key factor to boost
power conversion efficiency of DSSCs. Moreover, doping of rare earth ions in ZnO also
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acts as a blocking layer that hinders charge recombination among iodide/triiodide I−/I−3
electrolyte and photoelectrode and enhance the injection of excited electrons [52]. Another
way to increase the performance of DSSCs based on 0.5 wt%, 1.0 wt% and 1.5 wt% of
Cu- and Sm-doped ZnO nanorod arrays by decreasing the backward transfer of electrons.
Doping of Cu in ZnO also creates a blocking layer which prevents the backward transfer of
electron, and the electron easily moves towards the molecules of oxidized dye or liquid
electrolyte [30]. In general, doping of ZnO with coupled metals Cu and Sm modifies the
flat-band potential auspiciously to enable more efficient injection of charge carriers at the
interface of ZnO and dye, thereby enhancing the overall performance of DSSCs [29–33].
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Table 3. I-V measurement of Cu- and Sm-doped ZnO nanorod arrays DSSCs.

Cell Parameters
Samples

S1 S2 S3 S4

Jsc (mA/cm2) 6.32 ± 0.046 5.84 ± 0.017 7.87 ± 0.021 9.99 ± 0.011

Voc (V) 0.550 ± 0.002 0.681 ± 0.005 0.692 ± 0.004 0.725 ± 0.003

FF 0.43 ± 0.003 0.51 ± 0.006 0.67 ± 0.003 0.63 ± 0.004

η (%) 1.74 ± 0.001 2.47 ± 0.012 3.30 ± 0.002 4.14 ± 0.001

4. Conclusions

The present study demonstrates the synthesis of Cu-and Sm doped ZnO nanorod
arrays with a fixed concentration of Sm (1 wt%) and different concentrations of Cu (0.0, 0.5,
1.0 and 1.5 wt%). The effect of Cu concentration and Sm precursor on structural, optical,
morphological and photovoltaic properties have been studied. XRD pattern showed that
the nanorod arrays were crystalline in nature and have hexagonal wurtzite structure. In
UV-Vis analysis, the absorbance increases with the increase in Cu/Sm content and band
gap decreases from 3.25 eV to 3.19 eV. I-V characteristics of DSSCs revealed that the cell
fabricated with 1.5 wt% of Cu-and 1 wt% of Sm doped ZnO nanorod array photoanodes
have maximum efficiency of 4.14%, which is about 60% higher when compared to their
other counterparts. The enhancement in the efficiency of dye-sensitized solar cells is
attributed to the doping of ZnO with coupled metals Cu and Sm, which modifies the
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flat-band potential auspiciously to enable more efficient injection of charge carriers at the
interface of ZnO and dye, thereby enhancing the overall performance of DSSCs. This
work strongly supports the coupled use of transition and rare earth metals for further
development of photovoltaic device applications.
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