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This paper, is an analysis of the dynamics of new models of nonlinear systems in which the state damping 
variables with elastic coefficients, given by functions 𝑐 cos(𝑝𝑥), 𝑐 sin(𝑝𝑥), 𝑐 cos(𝑝�̇�) and 𝑐 sin(𝑝�̇�) are investigated in 
their autonomous and excited states. They exhibit periodic regions of stability and instability in their autonomous 
states and a rich dynamic behavior. The analysis of limit cycles shows the presence of isolated curves around 
the origin (0.0), which explains the presence of periodic solutions (limit cycles). The dynamics obtained allows 
to describe qualitatively the cardiac activity (artificial pacemaker). A chaos analysis shows the appearance of 
regular and chaotic behaviors. These studies allowed us to show the effect of the damping of the state variable and 
the elastic coefficients on the dynamics of these models. The presence of analog functions makes the experimental 
study complex. An implementation based on microcontroller simulation technology has been proposed. The 
microcontroller results are consistent with the numerical results.
1. Introduction

Owing to their broad importance in many fields and their numerous 
engineering applications, nonlinear oscillators have recently attracted 
the attention of a large number of researchers due to their extremely 
rich dynamics (Joshi, 2021; Dashkovskiy and Pavlichkov, 2020; Ahmed 
et al., 2017; Cheng and Zhan, 2020; Kudryashov, 2018; Tang et al., 
2020; Dashkovskiy and Pavlichkov, 2020; Fonkou et al., 2022; Han 
et al., 2019; Ramirez et al., 2020; FitzHugh, 1961; Rahman et al., 
2021a,b,c,d). Their fields of application are between others: seismol-

ogy, communication and neurophysiology (Rahman et al., 2021a,b,c,d; 
Lucero and Schoentgen, 2013; Rowat and Selverston, 1993; Balachan-

dran and Kandiban, 2009). These oscillators exhibit rich dynamics 
among which limit cycle oscillations of sinusoidal and relaxation na-

ture, since one of their important characteristic is their capacity to 
present limit cycle behaviors which is an important criterion in the 
characterization of the artificial pacemaker (Steeb, 1977; Hochstadt 
and Stephan, 1967; D’Heedene, 1996; Steeb and Kunick, 1987; Steeb 
et al., 1983). When subjected to an external periodic excitation, numer-

ical studies and singular point analysis have revealed chaotic behaviors, 
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allowing the analysis of phenomena such as control and cardiac activ-

ity with numerous technological applications. (Steeb and Kunick, 1982; 
Steeb and Kunick, 1983; Forger, 1999; Enrique et al., 2020; Rahman et 
al., 2019; Kai and Tomita, 1979; Rahman et al., 2021a,b,c,d; Van der 
Pol and Van der Mark, 1926; Van der Pol and Van der Mark, 1928; 
Alhasnawi et al., 2021).

The Van der Pol oscillator is one of these systems, it is nonlinear 
and its differential equation is the second order. It is a self-sustained 
oscillator because it maintains its oscillations by itself. Under certain 
conditions, it also exhibits the very rich dynamical behaviors (Van der 
Pol and Van der Mark, 1928; Alhasnawi et al., 2021; Chedjou et al., 
1997; Makouo and Woafo, 2017; Han et al., 2018; Simo and Woafo, 
2012; Bao et al., 2018; Jasim et al., 2020; Han and Bi, 2012; Ma et al., 
2021; Grudzinski and Zebrowski, 2004; Magnitskii and Sidorov, 2004). 
The refs. (Van der Pol and Van der Mark, 1926; Van der Pol and Van 
der Mark, 1928) have shown that the qualitative characteristics of the 
heart action potential are closely related to the dynamic response of the 
classical Van der Pol oscillator (VdP), because it is the starting point for 
modeling heartbeats.
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In the work of Refs. (Steeb and Kunick, 1987; Steeb et al., 1983), the 
authors study the dynamic behavior of anharmonic systems with limit 
cycles in which the potentials are only dependent variables. The models 
used are modifications of the Van der Pol oscillator, the appearance of 
chaotic dynamics and limit cycle dynamics is due solely to the effect of 
potentials and the damping coefficient.

In the present work, an analysis of the dynamics of four new models 
of nonlinear systems under external periodic disturbance is proposed: 
analytical study and experimental simulation by microcontroller. These 
models have state variable damping and elastic coefficients. They are 
described by equations (1) and (2).

However, periodic sine or cosine function of system variable may 
introduce some coexisting attractors based on offset boosting and there-

fore self-reproducing chaotic system may be devised.

Faced with this, the following question was asked: how can sinu-

soidal functions show monotonic solutions of limit cycles and the onset 
of chaotic dynamics under external excitation? To answer this question, 
the present work has been organized as follows: Section 2 presents a 
description of the models used. Section 3 presents an analysis of their 
dynamics in their autonomous states. Section 4 is devoted to the study 
of the systems in the excited state. Section 5 shows the results through 
the practical implementation using an Arduino Uno board. Section 6

ends with the conclusion.

2. Description of the models

Four new nonlinear oscillator models in which the variables have 
been substituted by the terms with state variable damping and elastic 
coefficients given by functions 𝑐 cos(𝑝𝑥), 𝑐 sin(𝑝𝑥), 𝑐 cos(𝑝�̇�) and 𝑐 sin(𝑝�̇�)
are used. Eq. (1) and Eq. (2) present their dynamics

�̈�+
(
𝑎− 𝑓 (𝑥)

)
�̇�+ 𝑏𝑥 = 0 (1)

�̈�+ 𝑎�̇�+
(
𝑏− 𝑓 (�̇�)

)
𝑥 = 0 (2)

With

𝑓 (𝑥) =
||||| 𝑐 cos(𝑝𝑥)𝑐 sin(𝑝𝑥) and 𝑓 (�̇�) =

||||| 𝑐 cos(𝑝�̇�)𝑐 sin(𝑝�̇�)

With 𝑎, 𝑏, 𝑐, and 𝑝, the characteristic parameters of systems. To main-

tain the self-oscillating character of the systems, these coefficients must 
be positive. For an expansion of the functions 𝑓 (𝑥) and 𝑓 (�̇�) up to the 
order two, the so-called Van der Pol equation is obtained, which is im-

portant for triode oscillators necessary for the characterization of the 
heart (Van der Pol and Van der Mark, 1928). Qualitatively, the quan-

tity 𝑎

𝑐
represents the friction, if this one is very (𝑐 >> 𝑎), one obtains 

an autonomous oscillatory character and the fixed point unstable tends 
with the complex eigenvalues of the Jacobean matrix towards a repul-

sive focus. On the other hand, if it is very strong (𝑎 >> 𝑐) the oscillatory 
character is not autonomous and the fixed point stable tends towards 
an attractive focus with the complex eigenvalues of the Jacobean ma-

trix. Thus 𝑎
𝑐

influence on the more or less sinusoidal character of these 
systems.

Quantitatively, the frequency character of the system is linked to the 
quantity 𝑏. Thus, when 𝑏 increases, the frequency of the oscillations in-

creases and their amplitude decreases. On the other hand, the decrease 
in 𝑏 leads to a decrease in the frequency of the oscillations but an in-

crease in their amplitude. Being the natural frequency of the systems, 
𝑏 is chosen so that the systems evolve with a frequency of 𝑓0 = 1 Hz

which is the mean frequency of a healthy heart (Van der Pol and Van 
der Mark, 1926). Where 𝑝 is a constant. Using these very rich dynam-

ics, the artificial pacemaker can be a very important application of these 
models.
2

3. Analysis of dynamics in their autonomous state

3.1. Analysis of stability

Equation (1) can be rewritten as follows:{
�̇� = 𝑦

�̇� = −(𝑎− 𝑓 (𝑥))𝑦− 𝑏𝑥
. (3)

Obtaining the equilibrium points be done by solving the system below:{
�̇� = 0
�̇� = 0 (4)

For 𝑓 (𝑥) = 𝑐 cos(𝑝𝑥) the resulting fixed point is 𝐴1(0, 0). The Ja-

cobean matrix obtained from this point 𝐽1 =
[

0 1
−𝑏 −𝑎+ 𝑎𝑐

]
. By solving 

Det(𝐽1 − 𝜆𝐼) = 0, the resulting characteristic equation is 𝜆2 − (𝑐𝑎 − 𝑎)𝜆 +
𝑏 = 0 and the discriminant is Δ1 = (𝑐𝑎 − 𝑎)2 − 4𝑏.

However, for 𝑓 (𝑥) = 𝑐 sin(𝑝𝑥), the fixed point is given by 𝐴2(0, 0). 

Its Jacobean matrix is 𝐽2 =
[

0 1
−𝑏 −𝑎

]
. The characteristic equation ob-

tained by solving Det(𝐽2 − 𝜆𝐼) = 0, is 𝜆2 + 𝑎𝜆 + 𝑏 = 0 and its discriminant 
Δ1 = 𝑎2 − 4𝑏.

It can be seen that:

∙ For Δ1 > 0 and Δ2 > 0, 𝐴1 unstable and 𝐴2 is stable.

∙ For Δ1 < 0 and Δ2 < 0, if 𝑐 ∈]𝑎; 𝑎 + 2
√
𝑏[, 𝐴1 is unstable. However, 

if 𝑐 ∈] ←; 𝑎[, 𝐴1 is stable. For 𝑎 ∈]0; 2
√
𝑏[, 𝐴2 is stable however if 

𝑎 ∈] ←; 0[, 𝐴2 is unstable.

∙ For Δ1 = 0 and Δ2 = 0, if 𝑎 < 0, 𝐴1 is unstable, if 𝑎 > 0, 𝐴1 is stable. 
However, 𝐴2 is stable.

By considering the Eq. (2), it can still be written by:{
�̇� = 𝑦

�̇� = −𝑎𝑦− (𝑏− 𝑓 (𝑦))𝑥 (5)

From equation (4), we obtain for 𝑓 (�̇�) = 𝑐 cos(𝑝�̇�), the fixed point 

𝐴3(0, 0). Its Jacobean matrix is 𝐽3 =
[

0 1
𝑐 − 𝑏 −𝑎

]
. By solving Det(𝐽3 −

𝜆𝐼) = 0, its characteristic equation gives 𝜆2 + 𝑎𝜆 + 𝑏 − 𝑐 = 0 and its dis-

criminant Δ3 = 𝑎2 + 4(𝑏 − 𝑐).
However, for 𝑓 (�̇�) = 𝑐 sin(𝑝�̇�), the fixed point is 𝐴4(0, 0). The Ja-

cobean matrix is 𝐽4 =
[

0 1
−𝑏 −𝑎

]
. The characteristic equation obtained 

by solving Det(𝐽4 − 𝜆𝐼) = 0 is given by 𝜆2 + 𝑎𝜆 + 𝑏 = 0 and the discrimi-

nant by Δ1 = 𝑎2 − 4𝑏. 𝐼 =
[
0 1
1 0

]
is the identity matrix.

Thus we have:

∙ For Δ3 ≥ 0 and Δ4 ≥ 0, 𝐴3 and 𝐴4 are stable.

∙ For Δ3 < 0 and Δ4 < 0, if 𝑎 ∈]0; 2
√
𝑏− 𝑐[, 𝐴3 is stable. However, if 

𝑎 ∈] ←; 0[, 𝐴3 is unstable. For 𝑎 ∈]0; 2
√
𝑏[, 𝐴4 is stable and unstable 

if 𝑎 ∈] ←; 0[.

Be it Eq. (1) where Eq. (2) we find that when, (𝑐 < 𝑎) the equilibrium 
point is stable and the models converge. On the other hand when (𝑎 < 𝑐), 
the equilibrium point is unstable and the models diverge.

The only critical point being the origin (zero coordinates), a solution 
of period one exists. In the (x, y)-plane, this solution can describe limit 
cycle dynamics

3.2. Analysis of the dynamics of limit cycles

Recent studies on the nature of integral curves have shown the pres-

ence of singular points in systems of differential equations (Chaté, 1994; 
Bendixson, 1901). Generally, they are observed in conservative sys-

tems. However, for some non-conservative systems, closed trajectories 
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Fig. 1. Time series and phase portrait obtained from Eq. (1) with 𝑎 = 0.5, 𝑏 = 39.4384, 𝑝 = 5, 𝑥(0) = 0.01, and 𝑑𝑥∕𝑑𝑡(0) = 0.04.

Fig. 2. Time plots and phase portrait obtained from Eq. (1) with 𝑎 = 0.5, 𝑏 = 39.4384, 𝑝 = 5, 𝑥(0) = 0.01, and 𝑑𝑥∕𝑑𝑡(0) = 0.04.

Fig. 3. Time plots and phase portrait obtained from Eq. (1) with 𝑎 = 0.001, 𝑏 = 39.4384, 𝑐 = 5, 𝑝 = 5, 𝑥(0) = 0.01, and 𝑑𝑥∕𝑑𝑡(0) = 0.04.
or limit cycles could be approached. Eqs. (6) and (7) describe the dy-

namics of a nonlinear system of order 2

𝑑𝑥

𝑑𝑡
=𝑋(𝑥, 𝑦) (6)

And

𝑑𝑦

𝑑𝑡
= 𝑌 (𝑥, 𝑦) (7)

Then a limit cycle is necessarily formed in a domain whose limits 
are respectively the innermost and most external circles of radii 𝑅min
and 𝑅max which touch the contact curve (Hayashi, 1964).

By considering the models (3) and (5), since the origin is an only 
singular point, a family of concentric circles around this origin is con-

sidered, that is to say:

𝑥2 + 𝑦2 = const (8)

In this paragraph, it will be demonstrated that the models described 
by systems (3) and (5) exhibit limit cycle oscillations under origin (0, 
0).

By considering Eq. (1), for 𝑓 (𝑥) = 𝑐 cos(𝑝𝑥), starting from the given 
Eq. (8), we obtain:

𝑑𝑦

𝑑𝑥
= 𝑥

𝑦
(9)

When the polar coordinates given by Eq. (10) are introduced in 
Eq. (9), and apart from 𝑟 = 0, the expressions of the radii 𝑅min and 𝑅max
are presented in Eq. (11):{

𝑥 = 𝑟 cos𝜃
𝑦 = 𝑟 sin𝜃 (10)

⎧⎪⎨⎪
𝑅min =

√
4(𝑏−1)+4(𝑎−𝑐)

𝑐𝑝4

𝑅max =
√

4(𝑏−1)+4(𝑐−𝑎)
𝑐𝑝4

(11)
⎩
3

Still in considering Eq. (1), but this time with 𝑓 (𝑥) = 𝑐 sin(𝑝𝑥), the 
expressions of the radii 𝑅min and 𝑅max are given by:{

𝑅min =
4𝑎
𝑐𝑝2

𝑅max =
𝑏−1
𝑐𝑝2

(12)

When the dynamics of system are described by Eq. (2) with 𝑓 (�̇�) =
𝑐 cos(𝑝�̇�), by substituting Eq. (10) in Eq. (9) and apart from 𝑟 = 0, the 
expressions of the radii 𝑅min and 𝑅max are given by:

⎧⎪⎨⎪⎩
𝑅min =

√
2𝑏−4𝑎−2(1+𝑐)

𝑐𝑝4

𝑅max =
√

2𝑏+4𝑎−2(1+𝑐)
𝑐𝑝4

(13)

Still by taking Eq. (2) with 𝑓 (�̇�) = 𝑐 sin(𝑝�̇�), the expressions of the 
radii 𝑅min and 𝑅max are given by:{

𝑅min =
4𝑎
𝑐𝑝2

𝑅max =
4(𝑏−1)
𝑐𝑝2

(14)

Consequently from expressions given in (11), (12), (13), and (14), a 
ring domain centered at the origin exists and contains all possible limit 
cycles; these boundaries are the radii 𝑅min and 𝑅max. They represent the 
boundaries of the innermost and outermost circles, respectively, that 
touch the contact curve. These expressions show that if a limit cycle 
occurs around the origin, it must necessarily be in a ring domain whose 
center is at the singular point.

In Figs. 1, 2, 3, 4, and 5, the temporal traces and phase portraits have 
been plotted for the initial conditions 𝑥(𝑡 = 0) and 𝑦(𝑡 = 0). This allows 
us to observe that these systems are nonlinear and self-excited and show 
limit cycle behaviors of sinusoidal and relaxation nature. The limit cy-

cles are almost isolated curves so the trajectories converge around the 
origin.

The limit cycles obtained from Eq. (1) (case of 𝑓 (𝑥) = 𝑐 cos(𝑝𝑥)) are 
presented by figure.
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Fig. 4. Time plots and phase portrait obtained from Eq. (2) with 𝑎 = 0.001, 𝑏 = 39.4384, 𝑐 = 5, 𝑝 = 5, 𝑥(0) = 0.01, and 𝑑𝑥∕𝑑𝑡(0) = 0.04.

Fig. 5. Time plots and phase portrait obtained from Eq. (2) with 𝑎 = 0.001, 𝑏 = 39.4384, 𝑐 = 5, 𝑝 = 5, 𝑥(0) = 0.01, and 𝑑𝑥∕𝑑𝑡(0) = 0.04.

Fig. 6. Bifurcation tree and Lyapunov exponent obtained when Eq. (1) is excited (case of 𝑓 (𝑥) = 𝑐 cos(𝑝𝑥)), with 𝜔 = 4.8 rad.s−1 , 𝑎 = 0.5, 𝑏 = 0.25, 𝑐 = 2 and 𝑝 = 5.

Fig. 7. Bifurcation tree and Lyapunov exponent obtained when Eq. (1) is excited (case of 𝑓 (𝑥) = 𝑐 cos(𝑝𝑥)), with 𝜔 = 4.8 rad.s−1 , 𝑎 = 0.5, 𝑏 = 0.25, 𝑐 = 8 and 𝑝 = 5.
For 𝑐 = 2, the temporal trace and phase portrait are given in Fig. 1.

On the other hand, for 𝑐 = 8, we have Fig. 2.

Still by considering Eq. (1) (case of 𝑓 (𝑥) = 𝑐 sin(𝑝𝑥)), the time serie 
and the phase portrait are given in Fig. 3.

By considering the Eq. (2) (case of 𝑓 (�̇�) = 𝑐 cos(𝑝�̇�)), the limit cycles 
are given in Fig. 4.

When we consider Eq. (2) (case of 𝑓 (�̇�) = 𝑐 sin(𝑝�̇�)), the time plot and 
phase portrait are given in Fig. 5.

It can be seen in Figs. 1, 2, 3, 4, and 5 that the models used are non-

linear and self-excited and exhibit limit cycle dynamics of sinusoidal 
and relaxation nature qualitatively comparable with those exhibited by 
artificial pacemakers (Van der Pol and Van der Mark, 1928). In ad-

dition, the sinusoidal oscillations evolve with a frequency of 1 Hz for 
𝑏 = 𝜔2

0 where 𝜔0 = 2𝜋𝑓0 and 𝑓0 = 1 Hz.

4. Analysis of dynamics in their excited state

4.1. Chaos analysis

In the anharmonic systems with limit cycles, it has been shown that 
the variation of their parameters as well as those of the external force 
can lead to chaotic behaviors. The Refs. (Steeb and Kunick, 1987; Steeb 
et al., 1983) have demonstrated the influence of potentials and damped 
4

coefficients on the appearance of chaotic dynamics in nonlinear sys-

tems. In this study, our objective is to see the effect of state variable 
damping and elastic coefficients on the appearance of chaotic dynam-

ics in nonlinear systems under the effect of an external excitation of 
sinusoidal nature 𝐸0 sin(𝜔𝑡). This is done by plotting the bifurcation 
curves each associated with its maximum Lyapunov exponent with the 
amplitude of the external excitation 𝐸0 as parameter. These curves (bi-

furcation and maximum Lyapunov exponent) are presented in Figs. 6, 
7, 8, and 9. On these figures, we observed the presence of chaotic and 
multiperiodic dynamics. However, for small values of the parameter 𝐸0, 
the Lyapunov exponent tends towards 0. This behavior reflects the pres-

ence of quasiperiodic dynamics. A few are shown in Fig. 6. In Fig. 11

it only about the presentation of some phase portraits illustrating the 
chaotic states.

When Eq. (1) is excited (case of 𝑓 (𝑥) = 𝑐 cos(𝑝𝑥)), the bifurcation 
trees and maximal Lyapunov exponents are given in Figs. 6 and 7.

When 𝑐 = 2, the information given by Fig. 6 are: a period-2T orbit 
𝐸0 ≤ 0.2𝑉 is obtained, this behavior disappears and gives way to the 
quasiperiodic behavior for 0.2𝑉 ≤𝐸0 < 3.75𝑉 . A second orbit of period-

13T appears for 3.75𝑉 ≤𝐸0 < 4.0𝑉 , then disappears to give a quasiperi-

odic orbit for 4.0𝑉 ≤ 𝐸0 < 6.0𝑉 . For 6.0𝑉 ≤ 𝐸0 < 6.2𝑉 , a new orbit of 
period-11T is observed, the latter disappears and gives a quasiperiodic 
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Fig. 8. Bifurcation tree and Lyapunov exponent obtained when Eq. (1) is excited (c

Fig. 9. Bifurcation tree and Lyapunov exponent obtained when Eq. (2) is excited (c

Fig. 10. Bifurcation tree and Lyapunov exponent obtained when Eq. (2) is excited (
behavior for 6.2𝑉 ≤ 𝐸0 < 9.0𝑉 . When 𝐸0 ≤ 9.0𝑉 , the orbit of period-1T 
settles.

On the other hand, when 𝑐 = 8, on the Fig. 7, an orbit of period-

1T appears for 0.0𝑉 ≤𝐸0 < 0.25𝑉 then disappears and gives way to the 
quasiperiodic orbit for 0.25𝑉 ≤ 𝐸0 < 1.475𝑉 . For 𝐸0 ∈ [1.475; 1.625[𝑉
the first orbit of period-34T appears. When the value of 𝐸0 goes from 
1.625𝑉 to 2.5𝑉 , a second quasiperiodic orbit appears and disappears, 
giving way to the period-32T orbit for 2.5𝑉 ≤𝐸0 < 2.625𝑉 . For 2.625𝑉 ≤

𝐸0 < 3.0𝑉 , quasiperiodic orbits appear, a second orbit of period-30T ap-

pears for 3.0𝑉 ≤ 𝐸0 < 3.5𝑉 . This orbit disappears and the first chaotic 
behavior appears for 3.5𝑉 ≤ 𝐸0 < 3.776𝑉 . This first chaotic behavior 
is replaced by a second orbit of period-27T when the value of 𝐸0 in-

creases from 3.776𝑉 to 4.385𝑉 . Then a second chaotic orbit appears for 
4.385𝑉 ≤ 𝐸0 < 4.559𝑉 . Subsequently, the alternations between periodic 
and chaotic orbits are observed. For 𝐸0 ∈ [4.559; 5.172[𝑉 an orbit of pe-

riod 25T is observed. When 5.172𝑉 ≤ 𝐸0 < 5.267𝑉 a third chaotic orbit 
is obtained. Then a new orbit of period-23T for 𝐸0 ∈ [5.267; 5.91[𝑉 . For 
5.91𝑉 ≤ 𝐸0 < 5.975𝑉 a fourth chaotic orbit appears. Between 5.975𝑉

and 6.642𝑉 , an orbit of period-21T is also observed. A fifth chaotic or-

bit between 6.642𝑉 and 6.696𝑉 . For 6.696𝑉 ≤𝐸0 < 7.319𝑉 , a new orbit 
of period-19T appears. When 𝐸0 ∈ [7.319; 7.396[𝑉 a sixth chaotic orbit 
appears. Between 7.396𝑉 and 8.07𝑉 an orbit of period-17T appears. 
Between 8.07𝑉 and 8.14𝑉 a seventh chaotic orbit is observed. Between 
8.14𝑉 and 8.769𝑉 an orbit of period-15Tis obtained. For 8.769𝑉 ≤

𝐸0 < 8.865𝑉 an eighth chaotic orbit appears. For 8.865𝑉 ≤ 𝐸0 < 9.46𝑉
an orbit of period-14T appears. Between 9.46𝑉 and 9.53𝑉 , a ninth 
chaotic behavior is obtained. Between 9.53𝑉 and 10.18𝑉 the orbit of 
period-13T appears. For 10.18𝑉 ≤ 𝐸0 < 10.27𝑉 , a tenth chaotic orbit is 
obtained. Between 10.27𝑉 and 10.89𝑉 , an orbit of period-11T appears 
and between 10.89 𝑉 and 11.02𝑉 an eleventh chaotic behavior is ob-

tained. For 11.02𝑉 ≤𝐸0 < 11.61𝑉 , the orbit of period-9T is observed and 
for 11.61𝑉 ≤ 𝐸0 < 11.88𝑉 , a twelfth chaotic behavior. When 𝐸0 varies 
between 11.88𝑉 and 12.4𝑉 , there is the appearance of a period-7T 
5
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ase of 𝑓 (𝑥) = 𝑐 sin(𝑝𝑥)) with 𝜔 = 4.8rad.s−1 , 𝑎 = 0.001, 𝑏 = 50.25, 𝑐 = 5, and 𝑝 = 5.

ase of 𝑓 (�̇�) = 𝑐 cos(𝑝�̇�)) with 𝜔 = 4.8rad.s−1 , 𝑎 = 0.001, 𝑏 = 50.25, 𝑐 = 5, and 𝑝 = 5.

case of 𝑓 (�̇�) = 𝑐 sin(𝑝�̇�)) with 𝜔 = 4.8rad.s−1 , 𝑎 = 0.001, 𝑏 = 50.25, 𝑐 = 5, and 𝑝 = 5.

Equation (1) excited Chaotic Dynamics

𝑓 (𝑥) = 𝑐 cos(𝑝𝑥); 𝐸0 = 4.37𝑉

𝑓 (𝑥) = 𝑐 sin(𝑝𝑥); 𝐸0 = 0.23𝑉

Equation (2) excited Chaotic Dynamics

𝑓 (�̇�) = 𝑐 cos(𝑝�̇�); 𝐸0 = 34.2𝑉

𝑓 (�̇�) = 𝑐 sin(𝑝�̇�); 𝐸0 = 29.6𝑉

Fig. 11. Chaotic phase portraits for 𝑥(0) = 0.01 and 𝑑𝑥∕𝑑𝑡(0) = 0.04.
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Fig. 12. Device mounted on Proteus allowing the observation of the signal on its oscilloscope.
Fig. 13. Experimental device allowing the visualization of the signal.

orbit. However, between 12.4𝑉 and 13.35𝑉 , the quasiperiodic orbit 
reappears. From 𝐸0 = 13.35𝑉 , only the orbit of period 1T evolves.

When we excite Eq. (1) (case of 𝑓 (𝑥) = 𝑐 sin(𝑝𝑥)), we have in Fig. 8

the bifurcation tree and its associated maximal Lyapunov exponent.

For this case, a chaotic orbit is obtained for 0.0𝑉 ≤ 𝐸0 < 10.0𝑉 , 
it then disappears and gives way to the period-3T orbit for 10.0𝑉 ≤

𝐸0 < 28.5𝑉 . For 𝐸0 ∈ [28.5; 36.5[𝑉 a new chaotic orbit appears. When 
the value of 𝐸0 goes from 36.5𝑉 to 50𝑉 , a second orbit of period-

2T appears, then disappears, giving way to a new chaotic orbit for 
50.0𝑉 ≤ 𝐸0 < 53.5𝑉 . For 53.5𝑉 ≤ 𝐸0 < 62.0𝑉 , A new appearance of the 
period-3T orbit. A third chaotic orbit appears for 62.0𝑉 ≤ 𝐸0 < 64.5𝑉 . 
This orbit disappears and the first quasiperiodic orbit appears for 
64.5𝑉 ≤ 𝐸0 < 72.5𝑉 . Then, we observe a succession between chaotic 
and quasiperiodic orbits for 72.5𝑉 ≤ 𝐸0 < 79.0𝑉 . Then reappearance of 
the period-2T orbit for 79.0𝑉 ≤𝐸0 < 83.0𝑉 . When 83.0𝑉 ≤𝐸0 < 100.0𝑉 , 
a new succession between chaotic and quasiperiodic orbits appears.

The bifurcation curves and maximal Lyapunov exponent are given 
respectively in Fig. 9 for 𝑓 (�̇�) = 𝑐 cos(𝑝�̇�) and Fig. 10 for 𝑓 (�̇�) = 𝑐 sin(𝑝�̇�).

For these cases (Fig. 9 and Fig. 10), an alternation between chaotic 
orbits and periodic orbits is observed.

To illustrate the chaotic behaviors presented by the bifurcation 
curves and Lyapunov exponents of Figs. 7, 8, 9, and 10, some phase 
portraits are given in Fig. 11.
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5. Simulation based on microcontroller technology

Microcontroller simulation is one of the simplest because it is per-

formed using a computer in which suitable simulation software is in-

stalled. Recent work has shown that it can be used to do electronics 
using just a programming language (Fonkou et al., 2021a,b,c). Experi-

mentally, it is less cumbersome and requires significant period savings 
for component wiring, a higher degree of integration, and lower power 
consumption.

A microcontroller is an integrated circuit that gathers the essential 
elements of a computer. Recent work has shown that microcontrollers 
can be used to simulate nonlinear differential equations (Fonkou et 
al., 2021a,b,c) by producing simple and complex electrical signals. 
Compared to conventional electronic systems based on separate com-

ponents, they can reduce the size of the components, as well as the 
cost of the products. In this work, we will use an Arduino microcon-

troller from the ATMEGA family (Arduino Card). Its structure is shown 
in Fig. 12.

To produce the electrical signal described by Eq. (1) and Eq. (2), 
these equations are discretized. Subsequently, a simple digital code us-

ing appropriate software (here the Arduino 1.8.9) is written and loaded 
into the microcontroller. The signal obtained from Proteus software 
with its own oscilloscope is shown in Fig. 12.

To produce this signal experimentally from a real oscilloscope, the 
practical configuration presented in Fig. 13 is used. It consists of a com-

puter for inserting the digital code into the microcontroller and the 
oscilloscope for viewing the signal delivered by the latter. The real elec-

trical signals obtained are given in Fig. 14, Fig. 15, and Fig. 16.

For 𝑓 (𝑥) = 𝑐 cos(𝑝𝑥), we have Fig. 14.

For 𝑓 (𝑥) = 𝑐 sin(𝑝𝑥), we obtain in figure.

These curves (Fig. 14 and Fig. 15) are in agreement with those ob-

tained respectively in the Fig. 2 and Fig. 3.

On the other hand, when we use the Eq. (2), the dynamics are given 
by figure.

The curves presented in the figures above (Fig. 16a and Fig. 16b) 
show a good agreement with those obtained numerically (Fig. 4 and 
Fig. 5).
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Fig. 14. Experimental results obtained from Eq. (1), with 𝑎 = 0.5, 𝑏 = 0.25, 𝑐 = 2, 𝑝 = 5 (Fig. 14a) and 𝑎 = 0.5, 𝑏 = 0.25, 𝑐 = 8, 𝑝 = 5 (Fig. 14b) for 𝑥(0) = 0.01 and 
𝑑𝑥∕𝑑𝑡(0) = 0.04.
Fig. 15. Experimental results obtained from Eq. (1), with 𝑎 = 0.001, 𝑏 = 50.25, 
𝑐 = 5, 𝑝 = 5, 𝑥(0) = 0.01, and 𝑑𝑥∕𝑑𝑡(0) = 0.04.

For the non-autonomous case, an experimental investigation similar 
to the autonomous case was carried out using the Runge Kutta algo-

rithm of order 4. Two Arduino Uno boards are used practically. The first 
board is used to produce the electrical excitation signal 𝐸0 sin(𝜔𝑡). The 
Arduino code used to produce this signal and the complete flowchart 
used to program this signal are given in Table 1.

The second card is used for programming the self-excited oscillator. 
The Arduino code and the complete flowchart used to program this 
oscillator are presented in Table 2.

To obtain the result, the 𝐸0 sin(𝜔𝑡) signal produced by the first Ar-

duino board is inserted into an input port of the second Arduino board 
to excite the self-excited oscillator (Eq. (1) or Eq. (2)) programmed in 
this second card, using an appropriate line of code.

The device cabled on Proteus is shown on Fig. 17 and its practical 
device is presented in Fig. 18. As shown in Figs. 19 and 20, only chaotic 
states have been presented.

The chaotic dynamics obtained for 𝑓 (𝑥) = 𝑐 cos(𝑝𝑥) and 𝑓 (𝑥) =
𝑐 sin(𝑝𝑥) are presented in Fig. 19. These curves show a good agreement 
between the experimental results and the results obtained numerically.

For 𝑓 (�̇�) = 𝑐 cos(𝑝�̇�) and 𝑓 (�̇�) = 𝑐 sin(𝑝�̇�) the chaotic dynamics ob-

tained experimentally are presented in Fig. 20, and a good agreement 
between the experimental results and those obtained numerically is ob-

served.
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Table 1. The Arduino code and the complete flowchart for programming the 
𝐸0 sin(𝜔𝑡) signal

The Arduno code used to produce 
the signal 𝐸0 sin(𝜔𝑡)

The complete flowchart used to program 
the signal 𝐸0 sin(𝜔𝑡)

// constants

float ts=(float)0.00016;

float E0=(float)4.37;

float w=(float)4.8;

float t =(float)0.0;

// vriables

float E0, ts;

void setup () {

pinMode (0, OUTPUT);

pinMode (1, OUTPUT);

pinMode (2, OUTPUT);

pinMode (3, OUTPUT);

pinMode (4, OUTPUT);

pinMode (5, OUTPUT);

pinMode (6, OUTPUT);

pinMode (7, OUTPUT); }

void loop() {

t=t+ts;

E=E0*sin(w*t);

PORTD =(E-20)*45.5;

t = t; }

6. Conclusion

This work was devoted to the study of four new models of nonlinear 
systems with state variables damping and elastic coefficients defined by 
functions 𝑐 cos(𝑝𝑥), 𝑐 sin(𝑝𝑥), 𝑐 cos(𝑝�̇�), and 𝑐 sin(𝑝�̇�). The study of limit 
cycles has shown that these systems, to some degree of approximation, 
can describe the electrical activity of the heart. The study of their dy-

namics in their autonomous and non-autonomous states has shown that 
the values of the coefficients influence the nature of the stability/in-

stability of these systems. The production of real electrical signals by 
discretizing differential equations and writing digital codes in the mi-

crocontroller show that the latter can be used for the design of nonlinear 
oscillator models. In doing so, it appeared that when these nonlinear 
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Fig. 16. Experimental results obtained from Eq. (2) (Fig. 16a: case of 𝑓 (�̇�) = 𝑐 cos(𝑝�̇�)) and (Fig. 16b: case of 𝑓 (�̇�) = 𝑐 sin(𝑝�̇�)) with 𝑎 = 0.001, 𝑏 = 50.25, 𝑐 = 5, 𝑝 = 5, 
𝑥(0) = 0.01, and 𝑑𝑥∕𝑑𝑡(0) = 0.04.
systems are subjected to external and periodic sinusoidal excitation, 
they presented periodic, quasiperiodic, and chaotic behaviors. Since 
these models are essentially autonomous oscillators, they continue to 
deliver a signal if the action of 𝐸(𝑡) ceases.
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Fig. 17. Microcontroller device representing our exciter signal coupled contains Eq. (1) or Eq. (2).

Fig. 18. Experimental device allowing the visualization of the signal.
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Parameters Numerical results Experimental results

𝑓 (𝑥) = 𝑐 cos(𝑝𝑥)
and 𝐸0 = 4.37𝑉

𝑓 (𝑥) = 𝑐 sin(𝑝𝑥)
and 𝐸0 = 0.23𝑉

Fig. 19. Chaotic dynamics obtained numerically and by microcontroller, with 𝑥(0) = 0.01 and 𝑑𝑥∕𝑑𝑡(0) = 0.04.

Parameters Numerical results Experimental results
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and 𝐸0 = 34.2𝑉

𝑓 (�̇�) = 𝑐 sin(𝑝�̇�)
and 𝐸0 = 29.6𝑉

Fig. 20. Chaotic dynamics obtained numerically and by microcontroller, with 𝑥(0) = 0.01 and 𝑑𝑥∕𝑑𝑡(0) = 0.04.
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Table 2. The Arduino code and the complete flowchart for programming the 
self-excited oscillator.

The Arduino code The complete flowchart

//constants

float h=(float)0.1;

float a=(float)0.5;

float b=(float)0.25;

float c=(float)8.;

float p=(float)5.0;

//initial conditions

float x1 =(float)0.01;

float y1 =(float)0.04;

float t1 =(float)0.0;

// vriables

double atan( double t1);

double sin( double t1);

double cos( double t1);

float x,x2,y2,t,d;

float y,z,r,tt1,xx1;

float L1,L2,L3,L4;

float M1,M2,M3,M4;

void setup( ) {
pinMode (0, OUTPUT);

pinMode (1, OUTPUT);

pinMode (2, OUTPUT);

pinMode (3, OUTPUT);

pinMode (4, OUTPUT);

pinMode (5, OUTPUT);

pinMode (6, OUTPUT);

pinMode (7, OUTPUT);

pinMode (A0, INPUT); }
void loop() {
L1=y1;

M1=-(a-c*cos(p*x1))*y1-b*x1;

z=x1+(h/2)*L1;

r=y1+(h/2)*M1;

t=t1+(h/2);

L2=r;

M2=-(a-c*cos(p*z))*r-b*z;

z=x1+(h/2)*L2;

r=y1+(h/2)*M2;

t=t1+(h/2);

L3=r;

M3=-(a-c*cos(p*z))*r-b*z;

z=x1+h*L3;

r=y1+h*M3;

t=t1+h;

L4=r;

M4=-(a-c*cos(p*z))*r-b*z;

x1=x1+(h/6)*(L1+2*L2+2*L3+L4);

y1=y1+(h/6)*(M1+2*M2+2*M3+M4);

t1=t1+h;

PORTD=(x1+20)*55.5;

x1 = x1;

y1 = y1;

t1 = t1; }

Tang, Y., Wu, X., Shi, P., Qian, F., 2020. Input-to-state stability for nonlinear systems with 
stochastic impulses. Automatica 113, 108766.

Van der Pol, B., Van der Mark, J., 1926. On “relaxation-oscillations”. Philos. Mag. J. Sci. 
Ser. 7 2 (11), 978–992.

Van der Pol, B., Van der Mark, J., 1928. The heartbeat considered as a relaxation oscilla-
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