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Face processing is regularly found to be impaired in schizophrenia (SZ), thus suggest-
ing that social malfunctioning might be caused by dysfunctional face processing. Most 
studies focused on emotional face processes, whereas non-emotional face processing 
received less attention. While current reports on abnormal face processing in SZ are 
mixed, examinations of non-emotional face processing compared to adequate control 
stimuli may clarify whether SZ is characterized by a face-processing deficit. Patients 
with SZ (n = 28) and healthy controls (n = 30) engaged in an fMRI scan where images 
of non-emotional faces and houses were presented. A simple inverted-picture detec-
tion task warranted the participants’ attention. Region of interest (ROI) analyses were 
conducted on face-sensitive regions including the fusiform face area, the occipital face 
area, and the superior temporal sulcus. Scene-sensitivity was assessed in the para-
hippocampal place area (PPA) and served as control condition. Patients did not show 
aberrant face-related neural processes in face-sensitive regions. This finding was also 
evident when analyses were done on individually defined ROIs or on in-house-localizer 
ROIs. Patients revealed a decreased specificity toward house stimuli as reflected in 
decreased neural response toward houses in the PPA. Again, this result was supported 
by supplementary analyses. Neural activation toward neutral faces was not found to be 
impaired in SZ, therefore speaking against an overall face-processing deficit. Aberrant 
activation in scene-sensitive PPA is also found in assessments of memory processes 
in SZ. It is up to future studies to show how impairments in PPA relate to functional 
outcome in SZ.
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inTrODUcTiOn

Schizophrenia (SZ) is a complex psychiatric disease characterized by positive and negative symptoms, 
cognitive deficits, and a severe impairment of social cognitive functions (1–5). A possible explana-
tion for aberrant social abilities may be general impairments in the processing of facial information 
(6, 7). SZ patients show difficulties during a variety of face tasks revealing aberrant face detection 
abilities as well as slowed response times (8–11). SZ is also related to aberrant eye movements and 
fixations during face perception (12), but less during the processing of other stimulus categories (13).

Faces are a unique class of visual objects which are processed in a specialized set of cortical 
areas. The fusiform face area, which is located at the lateral side of the mid-fusiform gyrus, is one 
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of the most prominent regions associated with face processing 
[FFA (14)]. Additional face-responsive regions in the extrastriate 
cortex are located in the inferior occipital gyrus (OFA) and the 
superior temporal sulcus (STS), which are related to early face 
processing and the perception of gaze and emotions, respectively 
(6).

Critically, Quintana et al. (15) found no evidence for right FFA 
activation during face processing in SZ patients, whereas activa-
tion in the same region was evident in healthy controls. Another 
study (16) found that FFA activation in healthy participants was 
higher when faces were successfully recognized, whereas neural 
activation in patients was similar for all face types.

The finding of abnormal neural activation in the FFA in SZ is 
confirmed in a number of neuroimaging assessments (17–20), 
and structural investigations reveal remarkable gray matter 
reductions in the fusiform gyrus in patients (21–23). Critically, 
findings in this field are inconsistent, since several studies do not 
replicate abnormal FFA activation in SZ (24, 25).

A closer examination of the experimental designs used in 
the assessment of face processing in SZ shows that previously 
used setups strongly vary in task demands, which in turn might 
explain discrepant findings. Some studies used recognition 
tasks, which rely on working memory processes that are known 
to be impaired in SZ (26). Accordingly, such tasks might reflect 
memory impairments rather than face processing deficits per se 
(8, 16, 27). Additionally, emotional stimuli are frequently used, 
even in tasks designed to assess aspects of non-emotional face 
processing like gender or age decisions (25, 28, 29). This is 
insofar relevant, as emotional faces reveal quantitatively different 
response as compared to neutral faces. Eye movement studies 
suggest that SZ patients show abnormal eye movements during 
emotional face perception and even avoidance of certain facial 
features (30, 31). On the neuronal level, emotional faces revealed 
increased neural response in face-sensitive cortical areas and the 
limbic system (32). Other studies revealed that SZ patients show 
hyperactivation during non-emotional face perception, whereas 
emotional faces were associated with hypoactivation (33). This 
hypoactivation strongly resembled neural activation of patients 
during a Theory of Mind task assessed in the same study (34). 
Several current face-processing studies presented emotional 
stimuli, thus prompting the question whether the identified 
impairments represent true face-processing deficits or reflect 
confounding effects of impaired social cognition. In addition, as 
recently pointed out by Maher et al. (35), face perception includes 
not only face-specific processing but also more general perceptual 
processes. Therefore, to distinguish between pure face-specific 
processing impairments and general processing impairments, 
the assessment of cortical activation during control stimuli other 
than faces is inevitable (25). Maher et al. (35) could show that 
face-processing deficits in SZ might not only become evident 
via diminished FFA activation as a whole but may rather be 
characterized by a diminished contrast between face and other 
object stimuli in this region. Also, investigations on processing 
impairments of higher-order visual areas are restricted to face-
selective areas and literature on other category-specific regions 
[e.g., extrastriate body area, parahippocampal place area (PPA)] 
is sparse.

The PPA, for example, is specialized for the processing of 
visual information about scenes and spatial navigation (36, 37). 
Studies assessing PPA activation make use of the region’s specific 
response toward scenes (38) and buildings (39). The investiga-
tion of other category-specific regions like the PPA in the frame 
of SZ research is insofar relevant, as the finding of similarly 
impaired specialization in other higher-order visual areas would 
draw a completely different picture; Decreased specialization for 
stimulus classes beside faces would indicate that there is a rather 
general malfunction in higher visual cortex.

In the current study, we acquired the blood oxygen level-
dependent (BOLD) response of SZ patients and healthy control 
participants during the processing of non-emotional faces. 
To evade confounding effects of memory impairments, par-
ticipants had to detect inverted target stimuli. Thus, successful 
task performance did not require memory processes. Pictures 
of houses were used as control stimuli in order to quantify the 
magnitude of face sensitivity in the FFA and house-sensitivity 
of the PPA. Our assumptions were twofold: given that there is 
a distinct face-processing deficit in face-selective regions in SZ, 
we should find altered neural response in SZ patients in the FFA 
during face processing. This effect might as well be reflected in 
a quantitative difference in the face vs. house contrast between 
groups (35). Second, if stimulus-sensitivity is exclusively 
impaired during face processing, we should not be able to identify 
deficient house-specific activation in the house-sensitive PPA. If 
we identify aberrant response toward house stimuli, this would 
challenge the assumption of a deficit in visual processing that is 
restricted to facial stimuli. We investigate neural response in four 
predefined regions of interest (ROIs), namely, bilateral FFA and 
bilateral PPA. Investigations on additional face-sensitive regions 
like occipital face area and STS are provided. To account for the 
drawback of using healthy-participant group ROIs on patients, 
we did additional analyses on individually defined ROIs of peak 
activation for face and house stimuli.

MaTerials anD MeThODs

Participants
Participants in the patient group were 28 male adults, who had 
received a formal ICD-10 diagnosis (which was checked before 
study participation by certified psychiatrists) in the schizophrenia 
spectrum group (F20) or the schizoaffective disorders spectrum 
group (F25). All patients were recruited from the outpatient and 
inpatient units of the Department of Psychiatry, Psychotherapy 
and Psychosomatics. All patients received antipsychotic medica-
tion (mean chlorpromazine equivalent  =  302.8). Patients were 
clinically stable with relatively mild symptoms at the time of 
fMRI assessment [PANSS (40)]. Only male patients and control 
participants were examined since patients were recruited from 
a Department (see above), which, at that time, predominantly 
housed male patients and it would not have been possible to 
recruit a sample balanced for male:female ratio. Healthy control 
participants were 31 male adults. Efforts were made to recruit a 
healthy male control group that matched the SZ group in demo-
graphics and education. Thus, advertisements for HCs specified 
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TaBle 1 | Demographic data and clinical rating of schizophrenic patients and 
controls.

group n age  
(years)

illness duration 
(years)b

sciPa Panss+ Panss−

Patient 28 25.85  
(4.9)

3.9  
(4.7)

69.67  
(11.63)

14.12  
(5.8)

15.56  
(6.8)

Control 31 25.43  
(4.3)

84.71  
(7.4)

SD in parentheses; n, number of participants.
aSignificant t-test (p < 0.05).
bIllness onset is defined as timepoint of first professional help seeking.
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that we were particularly interested in participants who finished 
high school, but did not necessarily attend or complete college. 
Exclusion criteria for both, patients and healthy controls, were 
psychiatric disorders other than SZ or schizoaffective disorders, 
fMRI incompatibility, current or past neurological insults like 
head trauma, and current substance abuse.

Controls were screened for mental and physical health (via 
a standardized anamnesis procedure) and were excluded if they 
reported a current or history of mental or neurological disorder or 
a family history of psychiatric disorders. Absence of mental dis-
orders in controls was further checked by the Mini-International 
Neuropsychiatric Interview (41), performed by a trained psychia-
trist or psychologist. To examine potential subclinical symptoms 
of SZ spectrum disorders, all controls completed the German ver-
sion of the Schizotypal Personality Questionnaire (42). None of 
the controls scored more than 1.5 SD above the mean of reported 
norms in healthy subjects on that measure (42).

All participants were screened for cognitive impairments 
[SCIP (43)]. This scale is well suited for the assessment of cogni-
tive impairments in psychiatric ill patients (44) and includes list 
learning, consonant trigrams, oral fluency, delayed list learning, 
and a visuomotor assignment task. Subjects were remunerated 
for participation and all participants provided written informed 
consent in accordance with the Declaration of Helsinki.

All methods conform to the Code of Ethics of the World 
Medical Association (Declaration of Helsinki). The institutional 
guidelines of the University of Salzburg (Statutes of the University 
of Salzburg—see https://online.uni-salzburg.at/plus_online/
wbMitteilungsblaetter.display?pNr=98160) state in § 163 (1) 
that ethical approval is necessary for research on human subjects 
if it affects the physical or psychological integrity, the right for 
privacy or other important rights, or interests of the subjects or 
their dependents. In § 163 (2), it is stated that it is the responsi-
bility of the PI to decide, whether (1) applies to a study or not. 
Data was processed in anonymized/deidentified form. Upon 
arrival at the lab, participants were assigned a subject ID (v001, 
v002, etc.), which was used throughout the study. Considering 
the patient sample, the study was part of a longitudinal study 
including behavioral and MRI acquisitions in affective and 
psychotic disorders approved by the local ethics committee 
(Ethikkommission für das Bundesland Salzburg). Demographic 
data and clinical rating are listed in Table  1. Education levels, 
handedness, and medication doses are provided in Tables S2 and 
S3 in Supplementary Material.

stimuli and Design
All house stimuli and several face stimuli were downloaded 
from the public domain of the World Wide Web. Additional 
face stimuli were taken from a standardized corpus downloaded 
from https://www.macbrain.org.1 All house and face stimuli were 
grayscale 1,024 × 768 pixel images, face and house stimuli were 
matched in size, luminance and contrast [SD of luminance see 
in Ref. (45)] to the pictures of the corpus. Note that there is an 
ongoing discussion on the contribution of other low-level image 
properties to category-selective response [e.g., Ref. (46, 47)] and 
future studies are needed to explore whether and to which extent 
differences in these low-level properties contribute to abnormal 
brain responses in higher visual cortex in SZ. All face stimuli 
showed a neutral emotional expression.

Stimuli were presented centrally on a black background on 
a MRI compatible LCD monitor and seen by participants via a 
mirror mounted on the head coil. Two consecutive scan sessions 
were conducted. In total, the participants attended 180 upright 
face and 180 upright house stimuli. Stimulus order was pseudo-
randomized. Each stimulus was presented for 750 ms and stimuli 
were separated by a blank screen for a jittered time interval of 
1,500–3,500 ms. To maintain their attention, participants had to 
indicate (via right thumb button press), when pictures were pre-
sented upside down. The experiment included 20 inverted house 
and 20 inverted face target trials. Target pictures were distributed 
randomly across the experiment and were modeled as factors of 
no interest in fMRI analyses. Behavioral results are described in 
the Supplementary Material.

image acquisition and Data analysis
Functional imaging data were acquired with a Siemens Magnetom 
Trio 3  T scanner (Siemens AG, Erlangen, Germany) using a 
32-channel head coil. Functional images sensitive to BOLD 
contrast were acquired with a T2*-weighted gradient echo EPI 
sequence (TR 2,250 ms, TE 30 ms, matrix 64 mm × 64 mm, FOV 
192 mm, flip angle 70°). Thirty-six slices with a slice thickness 
of 3 mm and a slice gap of 0.3 mm were acquired within the TR. 
Scanning proceeded in two sessions with 321 scans per session. Six 
dummy scans were acquired at the beginning of each functional 
run before stimulus presentation started. Additionally, a gradient 
echo field map (TR 488 ms, TE 1 = 4.49 ms, TE 2 = 6.95 ms) 
and a high-resolution (1 mm × 1 mm × 1 mm) structural scan 
with a T1-weighted MPRAGE sequence were acquired from each 
participant.

For preprocessing and statistical analysis, SPM12 software,2 
running in a MATLAB R2013a environment (Mathworks 
Inc., Natick, MA, USA), and additional functions from AFNI3 
were used. Functional images were realigned, de-spiked (with 
the AFNI 3ddespike function), unwarped, and corrected for 

1 Development of the MacBrain Face Stimulus Set was overseen by Nim Tottenham 
and supported by the John D. and Catherine T. MacArthur Foundation Research 
Network on Early Experience and Brain Development. Please contact Nim 
Tottenham at tott0006@tc.umn.edu for more information concerning the stimu-
lus set.
2 http://www.fil.ion.ucl.ac.uk/spm/.
3 https://afni.nimh.nih.gov/.
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geometric distortions using the fieldmap of each participant and 
slice time corrected. The high resolution structural T1-weighted 
image of each participant was processed and normalized with the 
CAT12 toolbox4 using default settings, each structural image was 
segmented into gray matter, white matter and CSF and denoised, 
then each image was warped into MNI space by registering it to 
the DARTEL template provided by the CAT12 toolbox via the 
high-dimensional DARTEL (48) registration algorithm. Based on 
these steps, a skull stripped version of each image in native space 
was created.

To normalize functional images into MNI space, the func-
tional images were coregistered to the skull stripped structural 
image and the parameters from the DARTEL registration were 
used to warp the functional images, which were resampled to 
3 mm × 3 mm × 3 mm voxels and smoothed with a 6 mm FWHM 
Gaussian kernel.

Statistical analysis was performed with a general linear model 
(GLM) two-staged mixed effects model. In the subject-specific 
first level model, each condition was modeled by convolving stick 
functions at its onsets with SPM12’s canonical hemodynamic 
response function [target trials and start and end messages were 
modeled as separate events of no interest, the model also included 
the six motion parameters and six noise regressors, reflecting 
physiological noise components obtained from FIACH (49) as 
regressors of no interest]. Parameter estimates for each condi-
tion were calculated via these first-level GLMs, using a temporal 
high-pass filter (cutoff 128 s) to remove low-frequency drifts and 
modeling temporal autocorrelation across scans with an AR (1) 
process (50).

For voxel-based group analyses, contrast images for effects of 
interest were calculated at the first level and rescaled to increase 
statistical sensitivity and decrease interindividual variability by 
the Vascular auto-rescaling of fMRI (VasA fMRI) technique (51). 
These rescaled contrast images were used in second level analyses 
for a 2 (stimulus type: faces and houses) × 2 (group: SZ and con-
trols) ANOVA implemented via one-way ANOVAs at the second 
level for the main effects of stimulus, group, and the interaction. 
All results from whole brain analyses are reported at a voxel-level 
threshold of p  <  0.001 (uncorrected) with a FWE cluster-level 
correction of p < 0.05.

rOi analyses
For the ROI analyses, we extracted contrast estimates from the 
faces > baseline and houses > baseline first-level rescaled contrast 
image of each participant averaging across all voxels within the 
left FFA (x = −36; y = −49; z = −17; ext = 22), right FFA (x = 36; 
y = −49; z = −17; ext = 68), left PPA (x = −27; y = −64; z = −11; 
ext = 433), and right PPA (x = 30; y = −52; z = −8; ext = 409) 
ROIs. ROIs were based on the maximum-probability maps from 
the freely available probabilistic Brain Activity Atlas [BAA (52, 
53)]. For the FFA ROIs, we combined the anterior and posterior 
FFA ROIs from the BAA into combined FFA ROIs (one for each 
hemisphere). Details are described in the Supplementary Material. 
Subsequent analyses were done using IBM SPSS Statistics 20®. The 

4 http://dbm.neuro.uni-jena.de/cat.

results of the group ROIS are presented in the Section “Results.” 
We conducted 2 × 2 factorial ANOVAs with the factors stimulus 
type (face/house) and group (patients/controls). For the sake of 
comparison, we did additional analyses on individually defined 
ROIS which are described in the Supplementary Material. Box-
plots were design with an R-based web tool described in the study 
by Spitzer et al. (54).

For our analyses on in-house ROIs, FFA and PPA cluster were 
defined on an in-house fMRI data-set. FMRI scans were obtained 
from 40 healthy participants viewing visually presented face 
and house stimuli. Data were acquired with the same Siemens 
Magnetom Trio 3 T scanner.

resUlTs

rOi analyses
Both FFA ROIs of the BAA revealed significantly higher acti-
vation for face compared to house stimuli [Fs(1,57)  >  47.45, 
ps  <  0.001]. This main effect for stimulus was independent of 
group since no stimulus-by-group interaction could be observed 
[Fs(1,57) < 2.42, ps > 0.12]. A main effect of group was margin-
ally significant in the left anterior–posterior FFA [F(1,57) = 3.9, 
p = 0.051]. Here, SZ patients revealed overall decreased neural 
response compared to healthy controls. Additional analyses show 
that effects did not systematically vary with hemisphere (see 
Supplementary Material).

Left and right PPA ROI of the BAA showed significantly higher 
activation for house compared to face stimuli [Fs(1,57) >  301, 
ps  <  0.001]. Patients revealed decreased overall activation 
in bilateral PPA [Fs(1,57)  >  4.69, ps  <  0.034]. Notably, these 
main effect were qualified by a significant stimulus-by-group 
interaction in left and right PPA [Fs(1,57) > 14.4, ps < 0.001]. 
Post hoc t-tests revealed significantly lower neural response of SZ 
patients (compared to controls) toward house stimuli (ts > 3.25, 
ps < 0.002) but similar neural response for face stimuli (ts < 1.17, 
ps > 0.24) in both PPA clusters.

Taken together, SZ patients showed altered house-specific acti-
vation in house-sensitive PPA, whereas no significant alterations 
were identified for face stimuli (results are illustrated in Figure 1). 
To account for the possibility that the PPA might be differently 
positioned in SZ and that therefore our group PPA ROIs might 
mislocate the actual PPA in patients, we did additional analyses 
where we searched for house-sensitive and face-sensitive clusters 
in each participant individually. In an alternative approach, 
we used PPA and FFA ROIs from an in-house localizer task to 
validate our findings.

Remarkably, the critical finding remained the same irrespec-
tive of ROI positioning method used: patients showed decreased 
house-specific activation in left and right PPA, whereas there 
was no observable difference in face-related activation between 
groups in both PPA and FFA ROIs. Additional analyses on other 
face-sensitive regions like occipital face area (OFA) and STS 
also revealed no evidence for aberrant face sensitivity in our 
patient sample. All F values, a detailed description, and figures 
of these additional analyses are available in the Supplementary  
Material.
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FigUre 1 | Tukey box-plots depict beta estimates extracted from left and right FFA and parahippocampal place area (PPA) group regions of interest from the Brain 
Activity Atlas. Bold horizontal lines indicate the group median, bold crosses show the group mean. End of whiskers indicate the first and third quartile. Abbreviations: 
C, control participants; P, schizophrenic patients; Fa, face stimuli; Ho, house stimuli; Fa-Ho shows differential scores calculated by subtracting mean subject beta 
estimates for house stimuli from mean subject beta estimates for face stimuli in Faces > Houses contrast cluster. Ho-Fa shows differential scores calculated by 
subtracting mean subject beta estimates for face stimuli from mean subject beta estimates for house stimuli in Houses > Faces contrast cluster.
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Additionally, we assessed whether face- and house selectivity 
in the FFA and PPA, respectively, varied systematically with clini-
cal, cognitive, or social functioning measures collected within the 
frame of this study. House-sensitivity was found to vary with posi-
tive and negative symptoms, that is, decreased house-sensitivity 
was related to stronger positive and negative symptoms. However, 
these analyses were not hypothesis driven and must be seen as 
additional exploratory analyses. Their findings are reported in 
Table S4 in Supplementary Material.

Whole Brain analysis
As can be seen from Figure 2, main effects of stimulus (across 
both groups) were found in a number of brain regions. Higher 
activation for faces compared to houses (shown in warm colors) 
were found in a number of regions commonly involved in face 
processing, including a right and a left fusiform cluster, cor-
responding to the FFA, but also in an extended medial parietal 
cluster, in a medial frontal cluster and in extended clusters in 
bilateral temporoparietal cortex (extending from the angular 
gyrus to middle temporal and STS regions) and in the right 
amygdala (see Table 2).

House stimuli led to higher activation in a left and a right 
extended medial occipitotemporal and occipital cluster, including 
parahippocampal, lingual, medial occipito-parietal, and posterior 
middle and superior occipital regions, closely corresponding to 
previously identified scene-selective regions [PPA, retrosplenial 

cortex, and transverse occipital sulcus (TOS)]. Two smaller 
clusters with higher activation for houses than faces were found 
in the right supramarginal gyrus and in the right anterior insula.

Statistically significant interactions between group and 
stimulus (see Table 1) were found in a left and in a right parahip-
pocampal cluster (extending into anterior lingual and medial 
occipitotemporal gyri) closely corresponding to the PPA and in 
a left and a right occipital cluster, including middle and superior 
occipital regions, close to the previously described scene-selective 
TOS regions. As can be seen from the signal change plots for these 
four clusters in Figure 3, in each of these clusters patients with SZ 
showed decreased selectivity for houses vs. faces compared to the 
control group, mainly due to decreased activation for houses in 
patients, whereas face stimuli evoked nearly the same activation 
in these house-selective regions in both groups. For comparison, 
signal change plots for those clusters showing a main effect of 
stimulus, but not stimulus-by-group interaction (see Figure  3) 
show that face-selective regions respond with a similar profile and 
magnitude in both groups. No clusters with a significant main 
effect of group were identified at the chosen threshold.

DiscUssiOn

Past studies on face processing in SZ revealed mixed results with 
some supporting a face-processing deficit in SZ, whereas others 
do not (6, 7). In the current study, we presented non-emotional 
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TaBle 2 | Significant cluster of the whole brain analysis.

Mni coordinates Volume 
(voxels)

region x y z F

stimulus main effect
Face > House
Medial parietal 3 −58 43 493 74.71
Right temporoparietal 57 −61 16 653 68.65
Right fusiform 39 −52 −17 32 66.00
Right amygdala 18 −7 −17 30 63.94
Left temporoparietal −54 −64 15 294 46.27
Medial frontal 3 56 −14 91 40.81
Right anterior middle temporal 57 −4 −20 49 30.51
Left fusiform −36 −49 −17 6 18.20
House > Face
Right medial occipitotemporal and posterior occipital 1,709

Lingual 24 −43 −11 – 405.61
Middle occipital 33 −82 10 – 249.86
Parahippocampal 27 −31 −20 – 233.89

Left medial occipitotemporal and posterior occipital 1,440
Lingual −21 −46 −11 – 321.79
Middle occipital −30 −85 19 – 289.72
Occipital fusiform −27 −61 −11 – 227.51

Right supramarginal 48 −34 49 97 33.16
Right anterior insula 30 32 1 72 24.86

stimulus*group interaction
Right parahippocampal 27 −34 −20 110 33.83
Left parahippocampal −24 −40 11 63 29.84
Left middle/superior occipital −30 −82 25 37 19.83
Right middle/superior occipital 39 −82 19 57 18.05

Data were extracted at a voxel-level threshold of p < 0.001 (uncorrected) and a cluster-
level threshold (FWE) of p < 0.05.

FigUre 2 | Activation clusters revealed by the whole brain analyses. Regions that elicited increased activation for houses compared to faces (irrespective of group) 
are illustrated in blue. Regions that elicited increased activation for faces compared to houses (irrespective of group) are shown in yellow. Red spots mark clusters 
where stimulus effects (faces vs. houses) were modulated by group (i.e., interaction). All clusters were extracted at a threshold of p < 0.001 [uncorrected, with a 
FWE cluster-level correction (p < 0.05)].
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identifies face-sensitive cortical areas like FFA, OFA, and STS in 
numerous studies [(55) for a review, see Ref. (56)]. Furthermore, 
these regions reveal solid face-specific activation even during 
passive viewing (56).

To our knowledge, this is the first study to compare the 
extent of stimulus specialization in the FFA (and OFA/STS, see 
Supplementary Material) to stimulus specialization in another 
area of the ventral visual stream, namely the PPA (36). Strikingly, 
we were not able to replicate deficient face-processing deficits 
but rather support findings of normal face-specific activation in 
SZ (24, 25). Patients’ neural response toward face stimuli in the 
FFA did not differ from healthy controls. To illustrate, both, faces 
contrasted against baseline activation (empty screen) and faces 
contrasted against houses (thus showing the amount of truly 
face-sensitive activation) was comparable between patients with 
SZ and healthy controls. Together with other studies, this find-
ing challenges the notion of deficient face processing in SZ—at 
least for non-emotional stimuli. To account for the possibility 
that patients’, FFA was mislocated by our use of a group ROI, 
we did additional analyses in individually defined FFA. Peak 
coordinates of the groups were similar (57) and never more than 
3 mm apart (see Table S1 in Supplementary Material), therefore 
indicating a similar location of the FFA in both groups. Results 
of the individual FFA ROIs were in accordance with our group 
ROIS since, again, no face-deficit could be observed. OFA and 
STS, two face-sensitive regions (32, 58) largely neglected in 
previous face-processing research in SZ, also did not reveal 
any evidence for aberrant face-related processes. Notably, there 
actually was a stimulus-by-group interaction in left OFA, but 
this was caused by decreased house-related neural activation in 
patients. Other ROI analyses based on an in-house functional 
localizer, again, could not identify face-related deficits in 
patients.

As we mentioned in the Section “Introduction,” the existing 
studies on face processing vary with respect to task, memory 
load and clinical factors and the attempt to integrate our findings 

faces and control house stimuli during a simple target detec-
tion task which did not rely on working memory. Participants 
responded to inverted face and house stimuli and overall hit rate 
was adequate for both groups (>74%). Although inverse face 
detection might require less processing depth as compared to, for 
example, face recognition or gender judgments, this task robustly 

http://www.frontiersin.org/Psychiatry/
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in the available pool of studies (and drawing conclusions from 
our findings) must be done with great caution. To illustrate, we 
used a task that requires relatively low working memory load and 

revealed no abnormalities in schizophrenic face processing. This 
is in line with current research by Anilkumar et al. (24), whose 
task required minimal memory processes and who also attested 
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FigUre 3 | Beta estimates extracted from significant cluster of the whole brain analysis. Data were extracted at a threshold of p < 0.001 [uncorrected, with a FWE 
cluster-level correction (p < 0.05)]. For Tukey box-plot descriptions, see caption of Figure 1.
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normal face-related neural response in the FFA. Critically, other 
studies (again with low memory load) do show abnormal FFA 
activation in SZ (15, 29). Therefore, it seems like working memory 
load alone is not a reliable predictor of FFA abnormalities. With 
respect to the clinical characteristics of the schizophrenic sample, 
our patients have an illness duration of approximately 3.9 years, 
and are, on average, 26 years old. Together with previous find-
ings on first-episode patients (24), one could assume that due 
to the relatively short illness duration and the young age, our 
participants’ neural activation is more healthy-like compared to 
elder patients with a longer illness duration [for example, Ref. 
(29)]. However, young participant groups are also examined in 
studies that actually show aberrant face processing (16) and there 
are studies on elder patients who do not reveal processing abnor-
malities (25). As evident from the participants’ description, our 
sample exclusively consisted of male patients. Although there is 
evidence that social cognition in healthy participants varies with 
sex (59), we are not aware of studies showing that overall FFA (or 
PPA) activation varies with sex. Predominantly male samples are 
involved in most studies on face perception in SZ (15, 16, 18, 29) 
which facilitates a comparison between our and previous studies. 
An exemplary exception is the study by Anilkumar et  al. (24), 
assessing seven male and six female medication-free patients. 
Interestingly, they did not show abnormal facial processing in 
the patient sample, which is in line with our findings. Either 

way, future studies are needed to evaluate on possible differences 
between male and female samples with respect to neuronal 
face processing, since, strictly spoken, the current findings are 
restricted to male patients. Another often discussed factor is par-
ticipants’ medication. In our sample, antipsychotic medication 
was not related to neural activation in FFA and PPA (rs < 0.06, 
ps > 0.7) and behavioral face perception seems not to improve 
with antipsychotic medication (60). However, larger-scale studies 
on this topic are sparse. A majority of patients assessed in pub-
lished studies is on antipsychotic medication [e.g., Ref. (15, 18, 
25)], whereas some are not (24). However, visual inspection does 
not reveal an obvious relation between medication and neural 
face processing. Furthermore, the unsystematic way in which 
medication is reported makes it difficult to compare medication 
levels across studies. It will be the mammoth task of future studies 
to systematically meta-analyze single studies and to identify the 
factors that lead to (ab)normal FFA activation in SZ samples.

In stark contrast to the essentially normal activation for faces, 
we identified aberrant house-related activation in patients in 
the PPA (and more generally decreased specialization for house 
stimuli in scene-selective visual regions in the voxel-based 
analysis). Here, patients showed decreased house preference as 
evident in a decreased house vs. face differentiation. Notably, 
this effect was not caused by a deviant neural response toward 
faces, since face-related activation in PPA did not differ between 

http://www.frontiersin.org/Psychiatry/
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patients and controls. Rather, patients showed decreased neural 
response to house stimuli in bilateral PPA. Again, we tested 
whether this effect arose from a mislocation of the PPA by our 
group ROIs. Individually selected PPA cluster did not differ in 
peak coordinates between groups (differences < 2 mm; see Table 
S1 in Supplementary Material). However, patients’ PPA cluster 
were significantly smaller compared to those identified in healthy 
controls, which is in line with the decreased scene-selectivity in 
patients in visual regions (see Figure 2).

The findings of our individually defined ROIs (and additional 
analyses computed on in-house PPA ROIs) revealed a robust pat-
tern that supported our initial finding of decreased house-related 
activation in PPA in schizophrenic patients. To date, this is the 
first study revealing a specialization deficit in category-selective 
ventral visual cortex beyond the commonly assessed FFA. 
Notably, patients did not lack house-specialization, rather, the 
sensitivity of the PPA for house stimuli over other stimulus types 
was strongly reduced.

At first sight, aberrant visual specialization in a higher visual 
region of the ventral stream might be associated with deficient 
visual processing in early areas (61). If decreased, scene selectivity 
was caused by disturbed early visual processing, we might expect 
that also face-selectivity is impaired in schizophrenic patients 
and that we find group differences for all visual stimuli already 
in early visual regions. However, none of these assumptions were 
confirmed in the present study. Therefore, early visual deficits can 
hardly account for the pattern of deficient activation identified 
in our study—although low-level visual processing deficits are 
clearly present in SZ as documented in numerous previous studies 
(62–64). It is also possible that there are specific low-level visual 
features, which characterize scene stimuli vs. face stimuli and 
which in turn might explain parts of the scene-selective vs. face-
selective activations in ventral visual cortex (65). Interestingly, 
eye-tracking studies found that SZ patients reveal aberrant visual 
scan paths during both, face as well as scene processing: besides 
overall decreased scanpath length, patients show less fixations 
(but longer fixation durations) and longer saccade amplitude 
(66). Further studies will be needed to show how abnormal 
visual scanpath relates to aberrant neural response in category-
sensitive regions (e.g., via simultaneous eye-tracking and fMRI 
examinations) and whether such abnormalities can be explained 
by low-level visual features.

Aberrant parahippocampal activation was also identified in 
studies on SZ assessing declarative memory processes for visual 
stimuli (67, 68). Schizophrenic patients and healthy siblings 
engaged in an encoding and subsequent retrieval block depicting 
complex scenes. Both groups revealed diminished scene-specific 
activation that varied systematically with visual memory scores 
(68). Furthermore, schizophrenic patients are found to have 
impairments in correctly navigating through virtual landscapes 
(69, 70), an ability which relies on PPA processes (71). Ledoux 
et al. (72) even proposed that gray matter volume in this cortical 
area is positively related to successful navigation in SZ and control 
participants. Dysconnectivity between cortical regions might be 
a plausible explanation for distributed deficits in occipital cortex 
identified in SZ (73). Note that, although we did not find aberrant 

activation besides the PPA and scene-selective ventral visual 
cortex, we do not claim that schizophrenic patients exclusively 
suffer from PPA deficits. Rather, we aim to point out that deficits 
in visual processing in SZ go beyond FFA abnormalities. To 
illustrate, Surguladze et al. (74) revealed increased PPA activation 
in SZ patients while processing neutral faces. Abnormal neural 
response in this area was positively associated with reality distor-
tion in the patient sample. Comparably, we could show that PPA 
activation abnormalities increased with increasing positive and 
negative symptoms.

Other interesting findings come from assessments on old 
adults who, similar to our SZ sample, show less differentiated 
neural response toward face and place stimuli (75, 76). Besides 
others, one theory here is that dedifferentiation might be caused 
by altered global connectivity, which is frequently found in old 
adults (77). It remains up to future studies to show how impaired 
category-sensitivity might be related to aberrant connectivity in 
SZ as well as in other (clinical) samples.

One should also note that our study has several limitations. The 
sample size, although larger compared to most previous studies on 
fusiform face area activation in SZ, is still relatively small and our 
findings should be confirmed by larger studies. Such future stud-
ies should also include patients without antipsychotic medication, 
as in our study, all patients received antipsychotic medications 
and we cannot exclude that the presently found abnormalities in 
scene-selective brain activations are influenced by medication 
(but note that previous studies found parahippocampal activation 
abnormalities during memory encoding also in non-medicated 
relatives of schizophrenic patients) (67, 68).

eThics sTaTeMenT

All participants provided written informed consent in accord-
ance with the Declaration of Helsinki. All methods conform to 
the Code of Ethics of the World Medical Association (Declaration 
of Helsinki). The institutional guidelines of the University of 
Salzburg (Statutes of the University of Salzburg—see https://
online.uni-salzburg.at/plus_online/wbMitteilungsblaetter.
display?pNr=98160) state in § 163 (1) that ethical approval is 
necessary for research on human subjects if it affects the physical 
or psychological integrity, the right for privacy or other important 
rights or interests of the subjects or their dependents. In § 163 (2), 
it is stated that it is the responsibility of the PI to decide, whether 
(1) applies to a study or not. Data was processed in anonymized/
deidentified form. Upon arrival at the lab, participants were 
assigned a subject ID (v001, v002, etc.) which was used through-
out the study. Considering the patient sample, the study was part 
of a longitudinal study including behavioral and MRI acquisitions 
in affective and psychotic disorders approved by the local ethics 
committee (Ethikkommission für das Bundesland Salzburg).

aUThOr cOnTriBUTiOns

MK and WA designed the study. MT wrote the protocol. LK, 
MK, and MT managed the literature searches and analyses. RS-S 
managed and determined the psychiatric assessments. RS-S, 
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