RESEARCH Open Access

Check for updates

Gamma-aminobutyric acid (GABA) releases seed dormancy by orchestrating abscisic acid and gibberellin metabolism and signaling

Xiaoting Wang^{1,2}, Na Zong², Xuan Wang², Junpeng Niu², Xiao Zhang¹, Kai Shu^{3*}, Guodong Wang^{2*} and Wei Hui^{2*}

Abstract

Background Seed dormancy release, regulated by abscisic acid (ABA) and gibberellin (GA), is essential for plant development and yield. Gamma-aminobutyric acid (GABA) is known to mediate plant stress responses; however, its role in seed dormancy release remains elusive.

Results Here, we reported that seed dormancy release was impaired in *GAD2*-deficient seeds lacking GABA biosynthesis while enhanced in *GABA-T*-deficient seeds with impaired GABA catabolism, indicating a positive regulatory role of GABA in seed dormancy release. Further, ABA antagonized GABA-facilitated seed dormancy release, and GABA failed to alleviate seed dormancy in the GA-deficient mutant *ga1-t*. Analysis of mutants defective in ABA and GA biosynthesis revealed that seed dormancy release, characterized as decreased ABA content and increased GA₃ content, was suppressed in *gad2* while enhanced in *gaba-t1-1* mutant. Mechanistically, GABA promoted GA₃ biosynthesis by upregulating *GA20ox1* expression, while inhibited ABA biosynthesis by downregulating *NCED6* and upregulating *CYP707A2* transcription. GABA also amplified GA signaling and suppressed ABA signaling by downregulating genes expression of *DELLAs* and *ABI3*. Further, GABA-mediated seed dormancy alleviation was confirmed in seeds of pear, apple, and cherry, highlighting its broad applicability across diverse plant species.

Conclusion Our findings not only advance our understanding on the mechanism of GABA-mediated seed dormancy release via coordinated regulation of abscisic acid and gibberellin pathways, but also highlight the potential of GABA as a natural alternative to synthetic chemicals for promoting sustainable and environmentally friendly agricultural practices.

Keywords ABA, GA, GABA-T, GAD, Gamma-aminobutyric acid, Seed dormancy

*Correspondence:
Kai Shu
kshu@nwpu.edu.cn
Guodong Wang
guodong_wang@snnu.edu.cn
Wei Hui
huihui@snnu.edu.cn

¹Xi'an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, No. 17 Cuihua South Road, Xi'an 710061, China ²College of Life Sciences, Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China of Ministry of Education, Shaanxi Normal University, Xi'an 710119, China ³Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710129, China

© The Author(s) 2025. **Open Access** This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Wang *et al. BMC Plant Biology* (2025) 25:676 Page 2 of 16

Background

Seed dormancy represents a pivotal adaptive trait evolved by seed plants to endure seasonal fluctuations and adverse environmental conditions [1-3]. Defined as the inability of viable seeds to germinate under favorable conditions, seed dormancy necessitates dormancy release for successful germination [4]. The precise regulation of dormancy release is critical for ensuring uniform seed germination, which directly affects crop growth and yield. Environmental cues such as light, temperature, and reactive oxygen species, as well as phytohormones, play key roles in governing seed dormancy [5–7]. Among these factors, abscisic acid (ABA) and gibberellins (GA) are the principal hormones modulating seed dormancy [8–10]. It is generally accepted that the balance between ABA and GA determines seed dormancy status: a high ratio promotes dormancy, whereas a low ratio facilitates seed germination [11].

ABA plays a critical physiological role in promoting seed dormancy [12]. Oxidative cleavage of 9-cis-epoxycarotenoids (NCEDs) are key enzymes involving in ABA biosynthesis, and regulation of NCEDs gene transcription modulates the ABA synthesis rate in plants [13]. In Arabidopsis, the NCED gene family includes NCED2, NCED3, NCED5, NCED6, and NCED9 [14]. Several NCED genes exhibit seed-specific expression, enabling stage-specific control of ABA synthesis and, consequently, precise regulation of dormancy and germination [15, 16]. Moreover, NCED3 transcription is regulated by multiple transcription factors, which in turn control the synthesis of ABA [17, 18]. Upon completion of its function, ABA is degraded by CYP707As (Cytochrome P450, family 707, subfamily A) [19]. Seeds of cyp707a1 and cyp707a2 mutants accumulate elevated ABA levels, resulting in enhanced dormancy [20]. Upon binding to its receptors, ABA forms a complex that activates SNF1related protein kinases 2, which in turn phosphorylates downstream transcription factors, such as ABA-INSEN-SITIVE 3 (ABI3), ABI4, and ABI5, thereby initiating ABA signaling pathway [21-23]. During seed maturation, ABI3 regulates ABA synthesis through feedback mechanism to respond to ABA signaling [24]. Genetic analysis indicates that ABI3 loss-of-function leads to reduced ABA levels and premature germination [25]. Notably, ABI4 binds to CCAC or CACCG cis-acting elements to directly repress CYP707A1 and CYP707A2 expression, thus reinforcing dormancy [26]. Under stress conditions, ABA-activated ABI5 interacts with various proteins to regulate ABA signal transduction and thereby modulate dormancy and germination [27-30].

In contrast to ABA, GA acts antagonistically by promoting dormancy release and facilitating germination. Ent-ent-copalyl diphosphate synthase, encoded by *GA1*, is a key enzyme for GA biosynthesis [31]. Due to GA

deficiency, ga1-t mutants fail to germinate without exogenous GA treatment [32]. GA biosynthesis also requires GA20-oxidase (GA20ox) and GA3-oxidase (GA3ox) enzymes [33]. In tomato, mutations in GA20ox1 and GA20ox2 result in decreased gibberellin (GA) content, which further deepens seed dormancy [34]. Low GA levels lead to the stabilization of DELLA proteins, which not only inhibit GA signaling by modulating downstream targets but also suppress the transcription of GA20ox2, GA3ox1, and GID1, thereby maintaining dormancy [35]. GA signaling initiates when GA binds to the GIBBEREL-LIN INSENSITIVE DWARF 1 (GID1) receptor, forming the GA-GID1-DELLA complex [36]. Then the complex interacts with the SCFSLY1/GID2 E3 ubiquitin ligase to degrade DELLA proteins, thereby activating downstream GA-responsive genes expression [37–39]. Five DELLA proteins have been identified in Arabidopsis, including GA-INSENSITIVE (GAI), REPRESSOR OF ga1-3 (RGA), RGA-LIKE 1 (RGL1), RGL2, and RGL3 [40]. Notably, RGL2 forms a complex with ABI4, functioning as a transcription factor complex that mediates ABA/GA antagonism and finely regulates the transition from dormancy to germination [41].

Gamma-aminobutyric acid (GABA), a four-carbon non-proteinogenic amino acid, is widely present in microorganisms, animals, and plants, functioning as a key intermediate in nitrogen metabolism and amino acid biosynthesis [42]. In plants, GABA is primarily synthesized via two major pathways: the GABA shunt and polyamine degradation, with the GABA shunt being the predominant route [43]. In the GABA shunt pathway, glutamate undergoes decarboxylation catalyzed by glutamate decarboxylase (GAD) to form GABA in the cytoplasm, which is then transported to the mitochondria. In the mitochondria, GABA is subsequently converted to succinic acid semialdehyde by GABA-transaminase (GABA-T), which is then catalyzed by succinic semialdehy dehydrogenase(SSADH) to form succinic acid that enters the tricarboxylic acid cycle. Thus, GAD facilitates GABA synthesis, while GABA-T catalyzes its degradation [44]. For instance, gad2 mutants exhibit significantly reduced GABA levels in shoots and leaves [45, 46]. Another pathway for GABA biosynthesis involves polyamine degradation. In this pathway, polyamines like putrescine (Put), spermine (Spd), and spermidine (Spm) are metabolized to produce GABA [44]. Put is oxidized to 4-aminobutyraldehyde (GABald) by diamine oxidase (DAO), while Spd and Spm are oxidized to GABald by polyamine oxidase (PAO). GABald is then converted to GABA by betaine aldehyde dehydrogenase [44]. Additionally, 3-mercaptopropionic acid (3-MP), an inhibitor of GABA biosynthesis, effectively blocks GABA production [47].

Wang *et al. BMC Plant Biology* (2025) 25:676 Page 3 of 16

Growing evidence supports the essential role of γ-aminobutyric acid (GABA) in seed germination. In giant embryo rice, germination is associated with upregulation of OsGAD and downregulation of OsGABA-T3, resulting in elevated GABA levels [48]. Exogenous application of GABA has also been shown to promote germination in barley [49]. Additionally, GABA levels steadily increase during germination in both oats and wheat [50, 51]. While these findings indicate a positive role for GABA in germination, the underlying mechanism in seed dormancy regulation remains largely unknown. It is known that the establishment and maintenance of seed dormancy depend on the balance between ABA and GA [52-54]. Although germination and dormancy represent interconnected yet distinct physiological processes, further investigation is warranted to determine whether GABA participates in dormancy release through modulation of ABA-GA homeostasis.

In this study, we provide evidence that GABA promotes GA₃ biosynthesis by upregulating GA20ox1 expression and inhibits ABA biosynthesis by downregulating NCED6 transcription, while concurrently upregulating CYP707A2 to increases GA₃/ABA ratio. Moreover, downregulation of GAI, RGA, RGL1, RGL2, RGL3, and ABI3 genes by GABA enhances GA signaling while suppresses ABA signaling, thus alleviating seed dormancy. Notably, the dormancy-alleviating effect of GABA has also been validated in the seeds of several fruit tree species, including 'Duli' (Pyrus betulifolia Bunge.), mahlab cherry (*Prunus mahaleb* L.), and 'Hongmanao' apple (Malus domestica Borkh.). Our study not only advances our understanding on the mechanism of GABA-mediated seed dormancy release but also underscores the potential of GABA as a natural alternative to chemical reagents, contributing to sustainable and environmentally friendly agricultural practices.

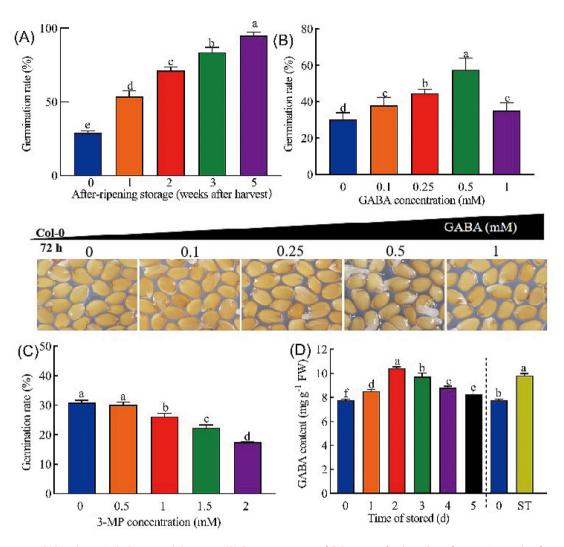
Results

Exogenous GABA treatment relieves seed dormancy

After 4 weeks of storage, the Col-0 seeds germinated completely (Fig. 1A), confirming the normal vitality of these seeds. To investigate the effect of GABA on seed dormancy release, freshly harvested Arabidopsis wild-type (WT) Col-0 seeds were incubated at 22°C for 3 days on 1/2 MS medium supplemented with varying concentrations of GABA. Compared with untreated seeds, GABA-treated seeds exhibited alleviated seed dormancy, as indicated by increased germination rates in a concentration-dependent manner. Although all tested concentrations promoted seed germination, a germination rate of 50% was indicative of dormancy release. At 0.5 mM GABA, the germination rate reached 57.35%, identifying this as the optimal effective concentration (Fig. 1B).

These results demonstrate that exogenous GABA effectively alleviates seed dormancy.

To further assess the role of GABA in seed dormancy release, WT seeds were cultured on 1/2 MS medium containing varying concentrations of 3-MP, a GABA biosynthesis inhibitor [47]. Germination rates were significantly reduced under 1.0, 1.5, and 2.0 mM 3-MP treatments in a concentration-dependent manner, with germination rates of 26.13%, 22.34% and 17.53% respectively (Fig. 1C). These findings suggest that inhibition of GABA biosynthesis by 3-MP enhances seed dormancy by lowering GABA levels.


Arabidopsis seeds exhibit physiological dormancy post-maturity, which can be alleviated through post-ripening or low-temperature stratification treatments [2]. We next investigated the dynamic changes in endogenous GABA levels during dormancy release in WT seeds subjected to various post-harvest durations and low-temperature treatments. As the post-harvest duration prolongs, the GABA content gradually increased after harvest, peaking at 2 days; Moreover, low-temperature stratification treatment also significantly elevated the GABA content (Fig. 1D). These findings indicated that dormant seeds initially possess low GABA levels, which increase as dormancy release, further underscoring that increased GABA level during seed ripening plays a pivotal role in releasing seed dormancy.

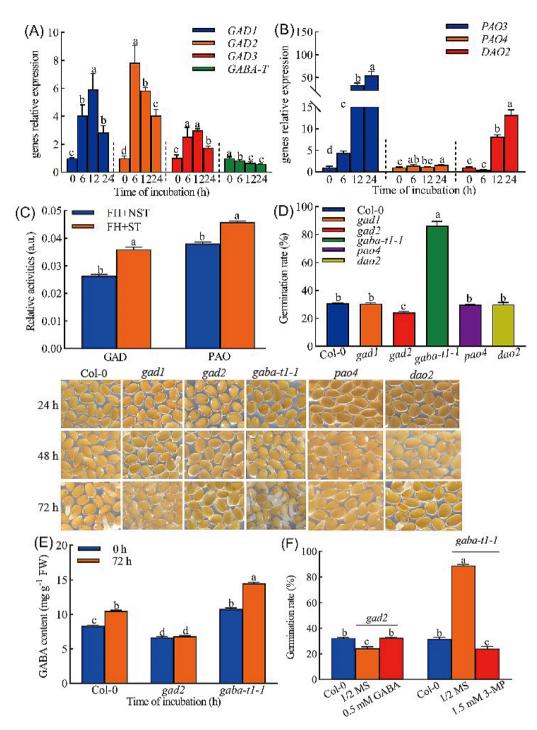
GABA-mediated seed dormancy release requires GABA biosynthesis primarily from GABA shunt pathway

Given the pivotal roles of GAD, GABA-T, and SSADH for GABA metabolism in the GABA shunt pathway [55, 56], GAD1-5, GABA-T, and SSADH expression profiles were examined during seed dormancy release. GAD1, GAD2, and GAD3, key genes for GABA biosynthesis, were significantly upregulated, whereas GABA-T, responsible for GABA degradation, was notably downregulated (Fig. 2A and Supplementary Fig. 1A). As an alternative route, the polyamine degradation pathway also contributes to GABA production, with DAO and PAO serving as key enzymes [44]. During seed dormancy release, transcript levels of DAO2, PAO3, and PAO4 were significantly upregulated (Fig. 2B, Supplementary Fig. 1A). We further assessed GAD and PAO enzyme activities in seeds undergoing dormancy release induced by low temperature. The enzyme activities of DAO and PAO significantly enhanced after 6 h of stratification (Fig. 2C), implying that the heightened activities of GAD and PAO enzymes might primarily account for the elevation in GABA content. In total, our results suggested that GAD1-3, GABA-T, PAO3, PAO4, and DAO2 played crucial roles in GABA accumulation during seed dormancy release.

To further validate the significance of *GAD1*, *GAD2*, and *GABA-T*, we next investigated their roles in seed

Wang *et al. BMC Plant Biology* (2025) 25:676 Page 4 of 16

Fig. 1 Exogenous GABA relieves Arabidopsis seed dormancy. **(A)** Germination rates of Col-0 grown for three days after 0, 1, 2, 4 weeks of post-ripening. **(B)** The effects of, 0.1 mM, 0.25 mM, 0.5 mM, and 1 mM GABA on the germination rate of freshly harvested (dormant) Col-0 seeds grown for three days as compared with the control (0 mM GABA). **(C)** Dormancy release of freshly harvested Col-0 seeds by 0.1 mM, 0.5 mM, 1 mM, 1.5 mM, and 2 mM 3-MP as compared with the control (0 mM 3-MP). **(D)** GABA contents of freshly harvested Col-0 seeds after 0, 1, 2, 3, 4 or 5 days of stratification for 2 days at 4 $^{\circ}$ C (ST). All data represent the mean ±SE of three biological replicates (>50 seeds per replicate). Similar results were obtained among all seed batches. Different letters indicate statistically significant differences between the data (p < 0.05)


dormancy release using several loss-of-function mutants. After 4 weeks of storage, mutant seeds of gad1, gad2, gaba-t1-1, pao4, and dao2 germinated completely (Supplementary Fig. 1B), confirming seed viability. Following 3 days of imbibition, WT seeds exhibited a germination rate of 30.79%, whereas gad1 and gad2 mutants exhibited slightly reduced rates of 30.53% and 24.30%, respectively. In contrast, germination rate of gaba-t1-1 seeds displayed a significantly higher germination rate of 86.15% (Fig. 2D). However, pao4 and dao2 mutants did not show substantial differences in germination compared to WT (Fig. 2D). These findings suggested a correlation between GABA levels and seed dormancy release. To verify this association, GABA content was measured in gaba-t1-1 and gad2 seeds during dormancy. In gad2 mutants,

GABA content was 2.35-fold lower than in WT seeds after 72 h of imbibition (Fig. 2E). Additionally, exogenous GABA restored the germination rate of *gad2* seeds to WT levels (Fig. 2F). Conversely, *gaba-t1-1* mutants accumulated more GABA, an effect that was reversed by 3-MP (Fig. 2F). These results indicated that GAD deficiency reduces GABA levels, resulting in deeper seed dormancy, while loss of *GABA-T* impeded GABA degradation, resulting in weak dormancy.

GABA alleviates seed dormancy by repressing ABA biosynthesis and signaling

ABA plays a crucial role in promoting seed dormancy and inhibiting seed germination. To investigate ABA involvement in GABA-induced seed dormancy release,

Wang *et al. BMC Plant Biology* (2025) 25:676 Page 5 of 16

Fig. 2 GABA-mediated seed dormancy release requires GABA biosynthesis. qRT-PCR analyses of seed transcript abundances for key genes in (**A**) GABA shunt pathway and (**B**) polyamine degradation pathway for GABA biosynthesis in Col-0 seeds. Freshly harvested Col-0 seeds were grown on filter paper soaked in H_2O for 0, 6, 12, or 24 h. (**C**) Enzyme activities of GAD and PAO in FH+NST and FH+ST seeds. (**D**) Germination responses of freshly harvested *gad1*, *gad2*, *gaba-t1-1*, *pao4*, and *dao2* mutant seeds compared with Col-0. (**E**) GABA contents of freshly harvested Col-0, *gad2*, and *gaba-t1-1* seeds after 24 h of imbibition. (**F**) Germination rates of freshly harvested Col-0, *gad2*, and *gaba-t1-1* seeds treated with 0.5 mM GABA, or 1.5 mM 3-MP grown for three days, respectively. Relative gene expressions are presented as values relative to *ACTIN2* at 0 h. All data represent the mean \pm SE of three biological replicates (> 50 seeds per replicate). Similar results were obtained from three different seed lots. For all panels, different letters indicate significant differences between the data (p < 0.05) using one-way ANOVA with Dunnett's test

Wang *et al. BMC Plant Biology* (2025) 25:676 Page 6 of 16

we analyzed the germination rate of dormant WT seeds treated with a combination of ABA and GABA against treated with ABA alone. The germination rate of the ABA + GABA-treated seeds were significantly higher than those treated with ABA alone, suggesting that GABA mitigated ABA-mediated seed dormancy (Fig. 3A). We further examined the expression of genes involved in ABA biosynthesis (NCED2, NCED3, NCED5, NCED6, and NCED9), ABA signaling (ABI3, ABI4, and ABI5), and ABA degradation (CYP707A1 and CYP707A2) during GABA-induced seed dormancy release. Specifically, NCED5, NCED6, and ABI3 were significantly downregulated under GABA treatment and markedly upregulated under 3-MP treatment, while CYP707A2 exhibited contrasting expression patterns (Fig. 3B, Supplementary Fig. 1C). Our results suggested that GABA might alleviate seed dormancy by inhibiting ABA biosynthesis and signaling, while enhancing ABA degradation.

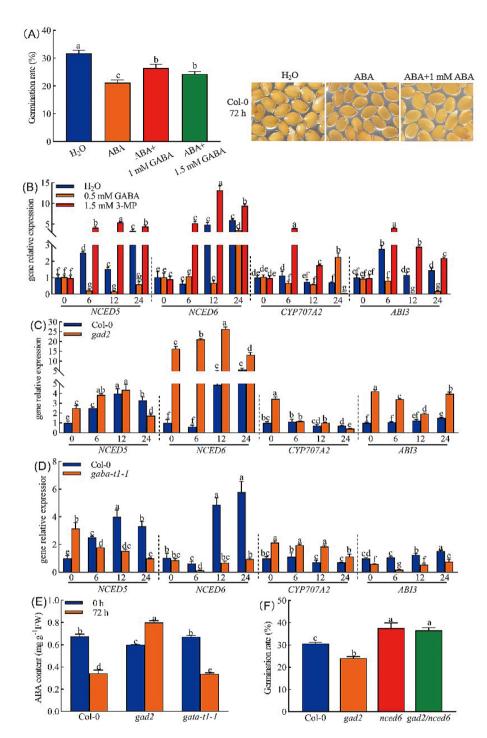
Other than exogenous application of GABA, we further genetically examined the impact of endogenous GABA on ABA biosynthesis and signaling using gad2 and gaba*t1-1* mutants. Notably, the expression levels of *NCED5*, NCED6, and ABI3 were significantly upregulated in gad2 mutants and downregulated in gaba-t1-1 mutants, exhibiting contrasting trends compared to CYP707A2 expression (Fig. 3C, D). In addition, ABA contents in gad2 and gaba-t1-1 mutant seeds were approximately 1.32 times and 0.80 times that of Col-0 after 24-h imbibition, respectively. Meanwhile, ABA levels in gad2 and gabat1-1 imbibed seeds were 1.65 times and 0.45 times that of dry seeds, respectively (Fig. 3E). Given the upregulation of NCED6 expression in the gad2 mutant (Fig. 3C), it suggested that GABA was likely to alleviate seed dormancy by reducing ABA accumulation. To test this hypothesis, we thus generated the gad2/nced6 double mutant and the vitality of seeds was confirmed (Supplementary Fig. 1B). As expected, the germination rate increased in nced6 seeds but decreased in gad2 seeds compared to Col-0, while the germination rate of the gad2/nced6 double mutant was closer to nced6, significantly higher than that of gad2 and Col-0 (Fig. 3F), indicating that GABA pathway was upstream of ABA pathway and might alleviate seed dormancy by negatively regulating NCED6 expression. Taken together, these results illustrated that GABA overcame seed dormancy by regulating ABA metabolism and signaling.

GABA relieves seed dormancy by enhancing GA biosynthesis and increasing GA/ABA ratio

GA serves as a key signal for seed dormancy release, and the degree of dormancy is closely linked to the balance of GA and ABA [19]. To investigate the interplay between GA and GABA, we treated dormant WT seeds with a combined treatment of GABA and the gibberellin

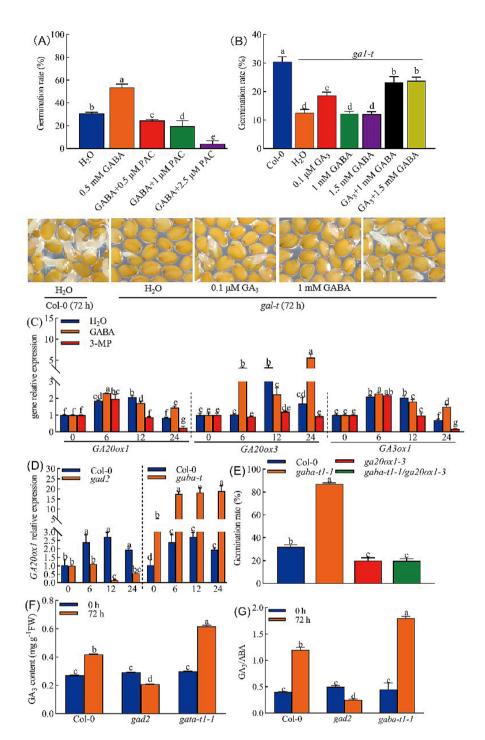
synthesis inhibitor paclobutrazol (PAC) [57]. We found that PAC inhibited GABA-induced dormancy release in a concentration-dependent manner (Fig. 4A), suggesting that a potential dependence of GABA's effects on GA. To validate this hypothesis, we next examined the impact of GA₃, GABA, and GA₃+GABA on the *ga1-t* mutant, which blocks GA synthesis and inactivates downstream signaling pathways [26]. GABA treatment had no effect on dormancy release in *ga1-t* seeds. However, the germination rate of *ga1-t* seeds treated with combined GABA and GA₃ was significantly higher than that of GA₃ alone (Fig. 4B), suggesting that GABA function depended on GA and might potentially amplify GA signaling during seed dormancy release.

Given that the effect of GABA in relieving seed dormancy depended on GA, it was plausible that GABA could modulate GA synthesis. To elucidate whether GABA impacted GA synthesis, we scrutinized the expression of GA biosynthetic genes in seeds with 3-MP or GABA treatment. GABA significantly promoted expression levels of GA20ox1, GA20ox3, and GA3ox1, while 3-MP notably repressed their expression (Fig. 4C). In addition, *GA20ox1* expression in *gad2* mutants exhibited down-regulation at 12-h and 24-h imbibition, significantly lower than that in WT seeds (Fig. 4D). Conversely, GA20ox1 expression was up-regulated in the gaba-t1-1 mutant during imbibition, markedly higher than that of WT seeds (Fig. 4D). To confirm the involvement of GA20ox1, we generated the gaba-t1-1/ga20ox1-3 double mutant. Its germination rate was markedly lower than gaba-t1-1, similar to ga20ox1-3, and below WT levels (Fig. 4E), supporting a role for GA20ox1 in GABAinduced dormancy release.


To analyze the regulatory effect of GABA on GA synthesis, GA_3 content was determined in dormant seeds of gad2 and gaba-t1-1 mutants. After 72-h imbibition, we observed a reduced GA_3 response in gad2 mutants and an elevated response in gaba-t1-1 mutants (Fig. 4F), suggesting that the GA content regulated by endogenous GABA might serve as a pivotal factor in seed dormancy release.

Considering that seed dormancy release depends on the balance of GA and ABA [19], we further investigated the GA₃/ABA ratio. The GA₃/ABA ratio in *gad2* and *gaba-t1-1* mutant seeds was 0.21 times and 1.83 times that of Col-0 after 72-h imbibition, respectively (Fig. 4G). These results clearly indicated that GABA potentially regulated seed dormancy release by adjusting the GA to ABA ratio.

GABA negatively regulates *DELLAs* expression during seed dormancy release


The DELLA proteins GAI, RGA, RGL1, RGL2, and RGL3 are key repressors in the GA signaling pathway and are

Wang *et al. BMC Plant Biology* (2025) 25:676 Page 7 of 16

Fig. 3 GABA alleviates seed dormancy by regulating ABA metabolism and signaling. **(A)** Germination percentage of freshly harvested Col-0 seeds grown for three days in the presence of 0.1 μ M ABA, or with 1.0 or 1.5 mM GABA compared with control (H₂O) (**B**) Reverse transcription quantitative polymerase chain reaction (qRT-PCR) quantification of *NCED5*, *NCED6*, *CYP707A2*, and *ABI3* in Col-0 seeds. Freshly harvested Col-0 seeds were grown on filter paper soaked in H₂O, 0.5 mM GABA, or 1.5 mM 3-MP for 0, 6, 12, or 24 h. (**C, D**) Reverse transcription quantitative polymerase chain reaction quantification of *NCED5*, *NCED6*, *CYP707A2*, and *ABI3* mRNA levels in Col-0, *gad2*, and *gaba-t1-1* seeds. Freshly harvested seeds were grown on filter paper soaked in H₂O for 0, 6, 12, and 24 h. Seeds used were a pool of three biological replicates and average values and SEs for three replicates relative to *ACTIN2* levels are shown. (**E**) ABA content in *gad2* and *gaba-t1-1* seeds after 72 h of imbibition. (**F**) Germination rate of freshly harvested wild-type Col-0 and single and double mutants grown for three days. All data represent the mean ± SE of three biological replicates (> 50 seeds per replicate). Gene expression was normalized to ACTIN2. Different letters indicate significant differences (p < 0.05)

Wang *et al. BMC Plant Biology* (2025) 25:676 Page 8 of 16

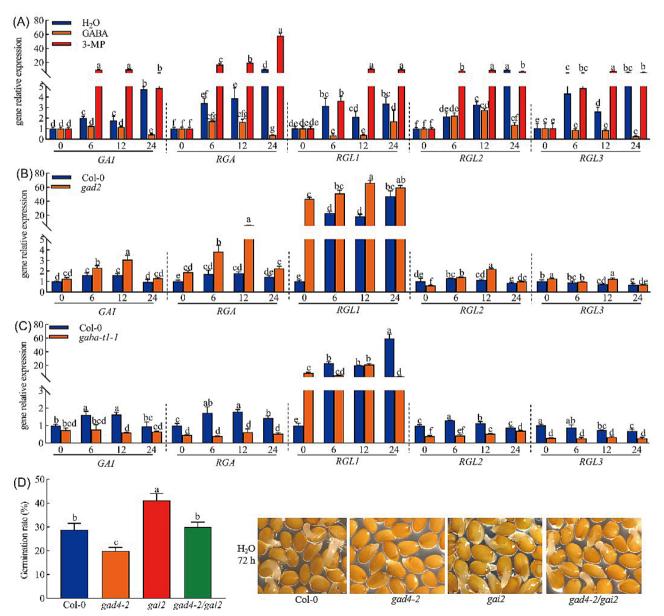


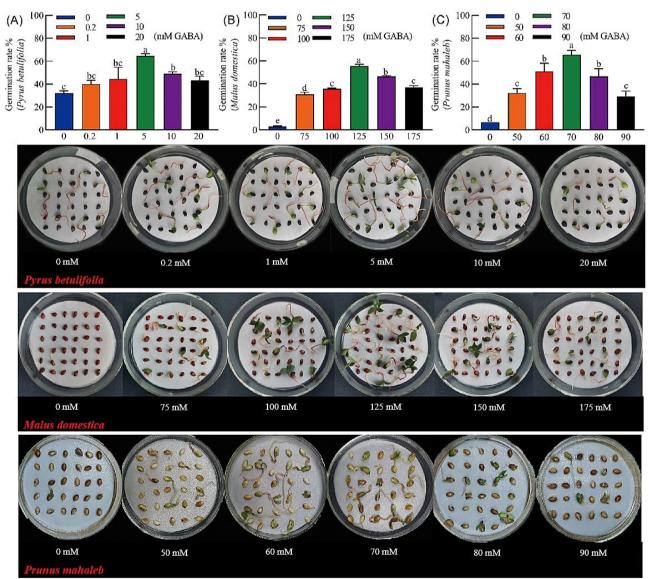
Fig. 4 GABA relieves seed dormancy by regulating GA synthesis. (**A**) Germination assays of Col-0 seeds imbibed in water containing the indicated concentrations of GA or GABA + PAC. (**B**) Germination rates of *gal-t* seeds under H₂O, 0.1 μM GA₃, (1, 1.5) mM GABA, or 0.1 μM GA₃ + (1, 1.5) mM GABA treatments grown for three days compared with Col-0. (**C**) qRT-PCR of *GA20ox1*, *GA20ox3*, and *GA3ox1* in freshly harvested Col-0 seeds grown on filter paper soaked in H₂O, 0.5 mM GABA, or 1.5 mM 3-MP for 0, 6, 12, and 24 h. (**D**) Expression of *GA20ox1* in Col-0, *gad2*, and *gaba-t1-1* seeds. Seeds used were a pool of three biological replicates and average values and SEs for three replicates relative to *ACTIN2* levels are shown. (**E**) Germination assays with seeds freshly harvested from Col-0, *gaba-t1-1*, *ga20ox1-3*, or *gaba-t1-1/ga20ox1-3* lines. (**F**) GA₃ content in Col-0, *gad2* and *gaba-t1-1* seeds after 72 h of imbibition. (**G**) The GA₃/ABA ratio in Col-0, *gad2* and *gaba-t1-1* seeds. All data represent the mean ± SE of three biological replicates (> 50 seeds per replicate). Gene expression was normalized to ACTIN2. Different letters indicate significant differences (p < 0.05) determined by one-way ANOVA with Dunnett's test

Wang *et al. BMC Plant Biology* (2025) 25:676 Page 9 of 16

actively expressed during seed germination [58, 59]. To examine the impact of GABA on DELLA expression, we analyzed transcript levels of *GAI*, *RGA*, *RGL1*, *RGL2*, and *RGL3* in seeds treated with GABA or the GABA biosynthesis inhibitor 3-MP. GABA treatment significantly downregulated all five DELLA genes, while 3-MP treatment upregulated their expression (Fig. 5A). Consistently, DELLA gene expression was markedly increased in the *gad2* mutant and reduced in the *gaba-t1-1* mutant (Fig. 5B, C).

To genetically validate that GABA modulates GA signaling by reducing *DELLA* gene expression, we generated the *gad4-2/gai2* double mutant. The germination rate of *gad4-2/gai2* seeds was markedly higher than that of *gad4-2* seeds but lower than that of *gai2* seeds during imbibition (Fig. 5D). After 72-h imbibition, the germination rates were 19.94% for *gad4-2* and 41.15% for *gai2*, while the *gad4-2/gai2* double mutant exhibited a germination rate of 29.9%, closely resembling the germination rate of WT seeds 28.79% (Fig. 5D). These results suggested that the enhanced dormancy observed in the GABA-deficient

Fig. 5 GABA negatively regulates DELLAs in the GA signaling pathway during seed dormancy release. (**A**) Expression of *GAI*, *RGA*, *RGL1*, *RGL2*, and *RGL3* in Col-0 seeds. Freshly harvested seeds were treated with 0.5 mM GABA, or 1.5 mM 3-MP compared with the control (H_2O). (**B**, **C**) Expression of *GAI*, *RGA*, *RGL1*, *RGL2*, and *RGL3* in Col-0, *gad2*, and *gaba-t1-1* seeds. Freshly harvested seeds were grown on filter paper soaked in water for 0, 6, 12, or 24 h. (**D**) Germination rates of freshly harvested Col-0, *gad4-2*, *gai2*, and *gad4-2*/*gai2* seeds grown for three days. All data represent the mean \pm SE of three biological replicates (> 50 seeds per replicate). Different letters indicate significant differences (p < 0.05) determined by one-way ANOVA with Dunnett's test


Wang et al. BMC Plant Biology (2025) 25:676 Page 10 of 16

gad4-2 mutant can be partially rescued by the gai2 mutation, supporting a model in which GABA alleviates dormancy by negatively regulating DELLA expression within the GA signaling pathway.

Exogenous GABA promotes seed dormancy release in several fruit tree species

To evaluate the broader utility of GABA in promoting dormancy release, we tested its effects on dormant seeds from three fruit tree species: pear, apple, and cherry. After 10 weeks of storage, all seed lots showed full germination capacity (Supplementary Fig. 1D), confirming

their viability. 'Duli' (*Pyrus betulifolia* Bunge), an important pear rootstock and greening tree, features seeds with weak dormancy. In *Pyrus betulifolia* seeds, germination rates under different GABA concentrations were higher than untreated seeds, which had a generation rate of 32.2%. Notably, 5 mmol/L GABA resulted in the most substantial difference, yielding a germination rate of 64.4% (Fig. 6A). The 'Hongmanao' apple (*Malus domestica* Borkh.), a pollination variety for apples, possesses seeds with deep dormancy. In *Malus domestica* cv Hongmanao seeds, a concentration of 125 mmol/L GABA exerted the most pronounced impact, resulting

Fig. 6 Exogenous GABA promotes seed dormancy release in *Pyrus betulifolia, Malus domestica*, and *Prunus mahaleb* L. **(A)** Germination rate of freshly harvested *Pyrus betulifolia* seeds grown for 13 days in the presence of 0 mM, 0.2 mM, 1 mM, 5 mM, 10 mM, or 20 mM GABA. **(B)** Germination rates of freshly harvested *Malus domestica* seeds grown for 13 days after stratification with 0 mM, 75 mM, 100 mM, 125 mM, 150 mM, or 175 mM GABA. **(C)** Germination rates of freshly harvested *Prunus mahaleb* L. seeds grown for 13 days in the presence of 0 mM, 50 mM, 60 mM, 70 mM, 80 mM, or 90 mM GABA. All data represent the mean ± SE of three biological replicates (> 50 seeds per replicate). Different letters indicate significant differences (*p* < 0.05) determined by one-way ANOVA with Dunnett's test

Wang et al. BMC Plant Biology (2025) 25:676 Page 11 of 16

in a germination rate of 62.04%, compared to untreated seeds with a generation rate of 3.7% (Fig. 6B). The mahlab cherry (*Prunus mahaleb* L.), a primary rootstock for sweet cherries, harbors seeds with exceptionally deep dormancy, rendering it an ideal material for validating the efficacy of GABA in seed dormancy release. The control seeds exhibited only 6.67% germination rate, while 70 mmol/L GABA elevated the germination rate to 65.56%. These results demonstrate that GABA significantly promotes seed dormancy release across diverse species, particularly in seeds that have not undergone post-harvest after-ripening.

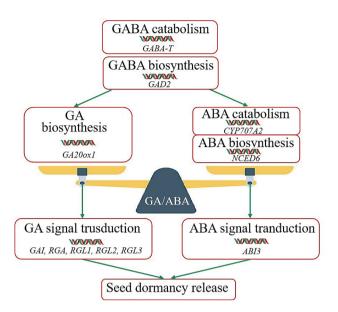
Discussion

GABA functions as a key regulator of seed dormancy release through the GABA shunt metabolic pathway

GABA is widely present in plant tissues and organs, playing various roles in plant growth and development as well as stress adaptation. Although GABA has been reported in seed germination [49-51], whether GABA relieves seed dormancy is unclear. Here, we show that exogenous GABA effectively relieved Arabidopsis seed dormancy, and endogenous GABA accumulation was observed during seed dormancy release induced by low temperature stratification (Fig. 1). These findings establish a clear link between GABA accumulation and dormancy alleviation, emphasizing GABA's role as a signaling molecule in this process. Given the substantial elevation of GABA levels during dormancy release, we investigated the metabolic origins of this increase. Our data reveal a marked reduction in germination in the gad2 mutant, in contrast to a significantly enhanced germination rate in the gabat1-1 mutant. Although pao4 mutants did not exhibit a pronounced difference in germination rate (Fig. 2D), the potential functional redundancy among PAO family members may account for this observation [60-62]. Collectively, these findings underscore the critical role of the GABA shunt pathway in mediating GABA accumulation and promoting seed dormancy release.

GABA regulates seed dormancy release by precisely modulating ABA and GA metabolism and signaling pathways

The establishment and maintenance of physiological dormancy rely on the balance between ABA and GA [52–54]. Previous studies have demonstrated that loss of *NCED6* or *NCED9* significantly reduces ABA content and seed dormancy, while *NCED6* overexpression increases ABA content and enhances seed dormancy [63–65]. In this context, we show that GABA reduces ABA content by downregulating *NCED6* expression (Fig. 3). Additionally, we find that GABA enhances ABA metabolism through upregulating *CYP707A2* expression and inhibits ABA signal transduction by downregulating *ABI3* expression


(Fig. 3). Notably, the ABA receptor complex, primarily composed of PYR/PYL proteins, PP2C phosphatases, and SnRK2 kinases, undergoes conformational changes upon ABA binding to initiate signaling cascades [66]. There may be a potential crosstalk between GABA signaling and core ABA receptor components. As such, GABA reduces ABA level and signaling to counteract the seed dormancy. In addition, we show that GABA promotes GA accumulation by upregulating GA20ox1 (Fig. 4), a key rate-limiting enzyme in the GA synthesis pathway [57]. Thus, regarding hormonal regulation, GABA is able to increase GA content while decreasing ABA content. Consistent with this, GA₃/ABA ratio decreases in the gad2 mutant but increases in the gaba-t1-1 mutant (Fig. 3G), further indicating that GABA facilitates seed dormancy release by modulating the relative levels of GA₃ and ABA. Notably, GABA appears to release seed dormancy by amplifying GA signal, as evidenced by the significantly higher germination rate of ga1-t seeds under GABA+GA₃ treatment compared to GA alone (Fig. 4B). Concomitantly, our results also indicate that GABA regulates GA signaling pathway (Fig. 5), thus effectively promoting seed dormancy release.

While our findings position ABA and GA signaling pathways downstream of GABA, hormonal networks often employ feedback loops to maintain homeostasis. Therefore, it is essential to examine the expression dynamics and enzyme activities of GABA metabolism under ABA and GA treatments, as well as GABA accumulation patterns in ABA and GA biosynthesis and signaling mutants. Such investigations will determine whether the GABA-ABA/GA relationship forms a bidirectional regulatory module, potentially uncovering new layers of control in seed dormancy. In addition, studies show that DOG1 enhances ABA signaling by inhibiting AHG1/AHG3 phosphatases while simultaneously modulating GA metabolic genes in a temperature-dependent manner. The dog1 mutants exhibit decreased ABA and increased GA levels [67, 68], mirroring the hormonal profile observed in GABA-treated seeds. This parallel suggests that GABA may interface with dormancy networks through modulation of the DOG1 pathway.

GABA serves as a universal and eco-friendly dormancybreaking agent with significant agricultural applications

Low temperature stratification is the most commonly used approach in agricultural production to relieve the physiological dormancy of embryos, particularly in seeds that have developed dormancy due to germination-inhibiting substances. However, this method is time-consuming, and seeds are prone to mold and rot during the stratification process, causing production delays and economic losses. The Rosaceae family, which includes economically important fruit trees such as pears, apples,

Wang et al. BMC Plant Biology (2025) 25:676 Page 12 of 16

Fig. 7 Model of GABA-mediated seed dormancy release through orchestrating ABA and gibberellin metabolism and signaling. Upregulation of *GAD2* expression and suppression of *GABA-T* expression leads to increased GABA levels. Subsequently, accumulated GABA induces *GA200x1* while inhibits *NCED6* and *CYP707A2* expression to adjust GA₃/ABA ratio. GABA amplified GA signaling and inhibited ABA signaling by downregulating genes expression of *GAI*, *RGA*, *RGL1*, *RGL2*, *RGL3*, and *ABI3*, ultimately leading to the alleviation of seed dormancy

and cherries, plays a crucial role in global fruit production. Notably, we further confirm the efficacy of GABA in significantly relieving seed dormancy in 'Duli' pear (Pyrus betulifolia Bunge), mahlab cherry (Prunus mahaleb L.), and 'Hongmanao' apple (Malus domestica Borkh.) (Fig. 6). Our findings offer tangible solutions to longstanding agricultural challenges. By demonstrating GABA's efficacy across three economically important Rosaceae species, we provide new strategies for managing seed dormancy in perennial crops. Compared to traditional stratification methods, the performance of GABA treatment, in terms of efficiency, reliability, and seed health, positions it as a game-changing technology for the fruit tree industry. From an implementation perspective, GABA's natural occurrence and safety profile make it particularly attractive for sustainable agriculture. Its effectiveness in overcoming physiological dormancy caused by germination inhibitors suggests potential applications in other difficult-to-germinate species. These findings open exciting possibilities for developing GABA-based seed priming protocols that could transform nursery practices and shorten breeding cycles, ultimately contributing to global food security.

Conclusions

Our study supports a regulatory model in which GABA relieves seed dormancy through orchestrating the balance between ABA and GAs. Specifically, GABA

accumulation is initiated by the upregulation of *GAD2* expression and the suppression of *GABA-T* expression, leading to increased GABA levels. The resultant higher content of GABA induces *GA20ox1* while inhibiting *NCED6* and *CYP707A2* expression, thereby adjusting the GA₃/ABA ratio. Furthermore, GABA enhances the GA signaling pathway and suppresses the ABA signaling pathway by downregulating the expression of key genes, ultimately leading to the alleviation of seed dormancy (Fig. 7).

Materials and methods

Plant materials and growth conditions

Arabidopsis ecotype Col-0 was used as the wild type in this study. The T-DNA insertion lines of *gad1* (SALK_111024C), *pao4* (SALK_133599C), *gaba-t1-1* (SALK_007661C), *gai2* (SALK_089146C), and *gad4-2* (SALK_033307C) were obtained from the Arabidopsis Biological Resource Center. The *gad2* (SALK_067677C), *dao2* (SALK_205223C), *ga20ox1-3* (SALK_016701C), and *nced6* (SALK_209085C) were obtained from the AraShare. The *ga1-t* mutant was described previously [32]. The double mutants *gad2/nced6*, *gaba-t1-1/ga20ox1-3*, and *gad4-2/gai2* were generated by genetic crossing in this study. Primers used for genotyping are listed in Supplementary Table S1.

Arabidopsis seeds were surface sterilized with 10% sodium hypochlorite solution and washed ten times with sterilized ultrapure water. Then sterile seeds were sown onto Petri dishes containing 1/2 strength Murashige & Skoog (MS) medium buffered with 2 mM MES, pH 5.7, 1% (w/v) sucrose, and 0.7% (w/v) agar. KOH was used to adjust the pH of the MS media before autoclaving. GABA and 3-MP were dissolved in sterilized ultrapure water and ABA, GA or PAC were dissolved in ethanol to form stock solutions, and then diluted to working concentrations as needed to add to the autoclaved MS. After 3 days at 4 °C, plates were placed in a growth chamber under a 16-h light/18-h dark cycle (22 °C/ 20 °C) with 60% humidity with 100 μmol m⁻² s⁻¹ light intensity.

Freshly harvested seeds were collected from every plant when the youngest siliques started to brown and were immediately used for germination experiments within three days to maintain dormancy. Seed dormancy levels were evaluated by measuring germination rates under suitable conditions [69]. Photos were taken under a stereomicroscope every 12 h to record germination rate. The breakthrough of the embryonic root through seed coat was defined as germination. Treatments were repeated at least three times and at least fifty seeds for each biological replicate were used.

Wang et al. BMC Plant Biology (2025) 25:676 Page 13 of 16

RNA extraction and gRT-PCR analysis

Total RNA was extracted from seeds using the HiPure Plant RNA Mini Kit (Magen, China) according to the manufacturer's instructions. RNA samples treated with DNase I to remove residual genomic DNA were used as templates for reverse transcription using the HiScript°IIReverse Transcriptase (Vazyme, China). The qRT-PCR was performed using ChamQ $^{\text{TM}}$ SYBR qPCR Master Mix (Vazyme, China) on an CFX96 real-time system (Bio-Rad Laboratories, USA). The relative expression quantification of each gene was analyzed using the $2^{-\Delta\Delta Ct}$ method with ACTIN2 as an internal reference [70, 71]. The primer sequences for qRT-PCR are listed in Supplementary Table S2.

The GABA content measurement

High Performance Liquid Chromatography (HPLC) was used to determine GABA concentration as previously reported [46]. Briefly, GABA was extracted using 10 mM sodium acetate, and then the samples were derivatized with the AccQ Tag Ultra Derivatization Kit (Waters). Chromatographic analysis of GABA was performed by Venusil XBP C18 column (5 μ m, 4.6 × 250 mm) using gradient protocol for amino acids analysis.

The PAO activity assay

As reported previously [72], seeds (0.5 g) were sampled and immediately fully ground in liquid nitrogen in 1.0 mL of 0.1 M sodium phosphate (pH 6.5). The homogenates were centrifuged at 15,000 g and 4 °C for 15 min. Supernatants were transferred to new tubes and were ready for the PAO activity assay. The reaction solution (1 mL) containing 0.2 mL of a crude enzyme extract, 0.2 M sodium phosphate buffer (pH 6.5), 0.06 mg horseradish peroxidase, and 2 mM spermidine was incubated at 30 °C for 30 min. Then a spectrophotometer was used to measure the PAO activity at 515 nm. The enzyme activities were presented as international units (1 unit is the amount of enzyme that catalyzes the oxidation of 1 μ mol substrate per min).

The GAD activity assay

Following a previous report [73], seed samples (each weighs 0.05 g) were frozen in liquid nitrogen. The 500 μL buffer containing 70 mM phosphate buffer (pH 5.8), 0.2 mM pyridoxal 5′-phosphate, and 2 mM EDTA was added to each sample. Crude enzyme solutions were obtained by collecting the supernatant (4000 r/min, 30 min, 4 °C). Mixing 100 μL of crude enzyme solution with 50 μL of 50 mM Glu- ^{15}N solution at 40 °C for 30 min initiates the reaction, and then incubate at 90 °C for 10 min to stop the enzymatic reaction. Supernatant was collected by centrifugation (4 °C, 10,000 rpm, and 10 min). 100 μL of the supernatant was used to separate lipid components

in addition to 300 μ L of methanol and 20 μ L of internal standard (20 mM d4-DL-alanine solution in 50% MeO-Haq). Protein was removed by using ultrapure water and chloroform and 100 μ L of product diluted 5-fold was dispensed into a vial with a 250 μ L insert and analyzed. Chromatographic separation was conducted using a crownpak CR-I (+) column (3.0 mm i.d., 150 mm, 5 mm; Daicel CPI, Japan). The relative GAD activity was determined by calculating the area of the GABA-¹⁵N peak divided by the area of the d_4 -DL-alanine peak.

The GA content measurement

The GA content was measured as previously reported with modifications [74]. Approximately 0.5 g of seeds were fully ground in liquid N_2 , mixing with 80 mL of methanol (chromatographically pure) to extract with ultrasound for 20 min, then dilute to 100 mL with methanol. 50 mL mixture was performed rotary evaporation (dissolved in 10 mL of water at 40 $^{\circ}\mathrm{C}$) to extract with 50 mL of ethyl acetate (chromatographically pure). The ethyl acetate layer was used to perform rotary evaporation (dissolved in 1 mL of methanol at 40 $^{\circ}\mathrm{C}$). The solution passed through a 0.45-µm filter membrane was analyzed using HPLC-MS/MS with a Venusil XBP C18 column (5 µm, 4.6 × 250 mm). Different GA₃ standard solutions (0.1, 0.2, 0.5, 2, 5, 20, 50, and 200 ng/mL) were prepared using methanol (0.1% formic acid) as the solvent.

The ABA content measurement

The ABA measurement was performed as described [75]. Sample of 0.2 g was added to 500 μ L of ABA extraction buffer (volume ratio of methanol, isopropanol, and acetic acid at 20:79:1) and was then ground to homogenate. The homogenate was swirled for 5 min and centrifuged at 12,000 rpm for 20 min at 4 °C. The supernatant was carefully transferred to a clean tube and filtered through a 0.22 μ M filter membrane. A HPLC-MS/MS equipped with a Venusil XBP C18 column (4.6 mm×250 mm×5 μ m) with a column temperature set to 30 °C was used to analyze ABA abundance. Nanopure water and acetonitrile with 0.05% acetic acid were used as solvents. Samples were eluted with a linear 15-min gradient from 10 to 90% acetonitrile.

Statistical analysis

All data were analyzed using SPSS 16.0. Differences among treatments were evaluated by one-way ANOVA followed by post hoc multiple comparison tests. Student's t-test was used for pairwise comparisons. A p-value of < 0.05 was considered statistically significant.

Abbreviations

ABA Abscisic acid GA Gibberellin

GAD Glutamate decarboxylase

Wang et al. BMC Plant Biology (2025) 25:676 Page 14 of 16

GABA-T GABA-transaminase
GABA y-aminobutyric acid
PAC Paclobutrazol
PAO Polyamine oxidase
3-MP 3-mercaptopropionic acid

Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1186/s12870-025-06707-3.

Supplementary Material 1

Acknowledgements

Authors are grateful to the teachers and students who were part of this study.

Author contributions

NZ, XW, and XT-W: Formal Analysis; XT-W, and GD-W: Funding Acquisition; NZ, XW and JP-N: Investigation; WH, NZ and XW: Methodology; WH, and XT-W: Project Administration; WH, XT-W, GD-W, and KS: Resources; WH, XT-W, GD-W, and KS: Supervision; NZ, XW, JP-N and XZ: Validation; NZ, XW, XT-W, JP-N and XZ: Visualization; XT-W: Original Draft Preparation; GD-W, XT-W, WH, and KS: Review & Editing. All authors reviewed the manuscript.

Funding

This work was supported partially by the National Natural Science Foundation of China (32370850), Natural Science Foundation of Shaanxi (2020JC-29 and 2023-JCZD-09), and Fundamental Research Funds for the Central Universities (GK202402003) to GD-W; Natural Science Research Plan of Shaanxi Province (No. 2025JC-YBMS-239), Shaanxi Academy of Science Research Funding Project (No. 2024k-19) and Xi'an Innovation Capacity Foundation Strengthening Plan-Agricultural Technology Research and Development Project (No. 21NYYF0045) to XT-W; Project of the Science and Technology Program of Shaanxi Academy of Science (No. 2024k-32) to XZ.

Data availability

All data related to this manuscript can be found within this paper and its supplementary data. The data that support the findings of this study are available from the corresponding author upon reasonable request.

Declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Received: 24 March 2025 / Accepted: 13 May 2025 Published online: 21 May 2025

References

- Nonogaki H. Seed dormancy and germination-emerging mechanisms and new hypotheses. Front Plant Sci. 2014;5(233):233–46. https://doi.org/10.3389/ fpls.2014.00233.
- Chahtane H, Kim W, Lopez-Molina L. Primary seed dormancy: a temporally multilayered riddle waiting to be unlocked. J Exp Bot. 2017;68(4):857–69. http s://doi.org/10.1093/jxb/erw377.
- Née G, Xiang Y, Soppe WJ. The release of dormancy, a wake-up call for seeds to germinate. Curr Opin Plant Biol. 2017;35:8–14. https://doi.org/10.1016/j.pbi .2016.09.002.

- Penfield S. Seed dormancy and germination. Curr Biol. 2017;27:874–8. https://doi.org/10.1016/j.cub.2017.05.050.
- Shu K, Meng YJ, Shuai HW, Liu WG, Du JB, Liu J, Yang WY. Dormancy and germination: how does the crop seed decide? Plant Biology (Stuttg). 2015;17(6):1104–12. https://doi.org/10.1111/plb.12356.
- Jiang Z, Xu G, Jing Y, Tang W, Lin R. Phytochrome B and REVEILLE1/2-mediated signalling controls seed dormancy and germination in Arabidopsis. Nat Commun. 2016;7:12377–86. https://doi.org/10.1038/ncomms12377.
- Bailly C. The signalling role of ROS in the regulation of seed germination and dormancy. Biochem J. 2019;476(20):3019–32. https://doi.org/10.1042/BCJ201 00150
- Kucera B, Cohn MA, Leubner-Metzger G. Plant hormone interactions during seed dormancy release and germination. Seed Sci Res. 2005;15(4):281–307. h ttps://doi.org/10.1079/SSR2005218.
- Finkelstein R, Reeves W, Ariizumi T, Steber C. Molecular aspects of seed dormancy. Annu Rev Plant Biol. 2008;59:387–415. https://doi.org/10.1146/an nurev.arplant.59.032607.092740.
- Shu K, Liu XD, Xie Q, He ZH. Two faces of one seed: hormonal regulation of dormancy and germination. Mol Plant. 2016;9(1):34–45. https://doi.org/10.10 16/i.molp.2015.08.010.
- Liu X, Hou X(. Antagonistic regulation of ABA and GA in metabolism and signaling pathways. Front Plant Sci. 2018;9:251. https://doi.org/10.3389/fpls.2 018.00251.
- Sano N, Marion-Poll A. ABA metabolism and homeostasis in seed dormancy and germination. Int J Mol Sci. 2021;22(10):5069. https://doi.org/10.3390/ijms 22105069.
- Dong T, Park Y, Hwang I. Abscisic acid: biosynthesis, inactivation, homoeostasis and signalling. Essays Biochem. 2015;58:29–48. https://doi.org/10.1042/bse0580029.
- Chen K, Li GJ, Bressan RA, Song CP, Zhu JK, Zhao Y. Abscisic acid dynamics, signaling, and functions in plants. J Integr Plant Biol. 2020;62(1):25–54. https://doi.org/10.1111/jipb.12899.
- Frey A, Effroy D, Lefebvre V, Seo M, Perreau F, Berger A, Sechet J, To A, North HM, Marion-Poll A. Epoxycarotenoid cleavage by NCED5 fine-tunes ABA accumulation and affects seed dormancy and drought tolerance with other NCED family members. Plant J. 2012;70(3):501–12. https://doi.org/10.1111/j.1 365-313X 2011 04887 x
- Lefebvre V, North H, Frey A, Sotta B, Seo M, Okamoto M, Nambara E, Marion-Poll A. Functional analysis of Arabidopsis NCED6 and NCED9 genes indicates that ABA synthesized in the endosperm is involved in the induction of seed dormancy. Plant J. 2006;45(3):309–19. https://doi.org/10.1111/j.1365-313X.2005.02622 x
- Jiang Y, Liang G, Yu D. Activated expression of WRKY57 confers drought tolerance in Arabidopsis. Mol Plant. 2012;5(6):1375–88. https://doi.org/10.1093/m p/sss080.
- Jensen MK, Lindemose S, de Masi F, Reimer JJ, Nielsen M, Perera V, Workman CT, Turck F, Grant MR, Mundy J, Petersen M, Skriver K. ATAF1 transcription factor directly regulates abscisic acid biosynthetic gene NCED3 in Arabidopsis thaliana. FEBS Open Bio. 2013;3:321–7. https://doi.org/10.1016/j.fob.2013.07.0
- Chen H, Ruan J, Chu P, Fu W, Liang Z, Li Y, Tong J, Xiao L, Liu J, Li C, Huang S. AtPER1 enhances primary seed dormancy and reduces seed germination by suppressing the ABA catabolism and GA biosynthesis in Arabidopsis seeds. Plant J. 2020;101(2):310–23. https://doi.org/10.1111/tpj.14542.
- 20. Saito S, Hirai N, Matsumoto C, Ohigashi H, Ohta D, Sakata K, Mizutani M. Arabidopsis CYP707As encode (+) -abscisic acid 8'-hydroxylase, a key enzyme in the oxidative catabolism of abscisic acid. Plant Physiol. 2004;134(4):1439–49. https://doi.org/10.1104/pp.103.037614.
- Nakashima K, Fujita Y, Kanamori N, Katagiri T, Umezawa T, Kidokoro S, Maruyama K, Yoshida T, Ishiyama K, Kobayashi M, Shinozaki K, Yamaguchi-Shinozaki K. Three Arabidopsis SnRK2 protein kinases, SRK2D/SnRK2.2, SRK2E/ SnRK2.6/OST1 and SRK2I/SnRK2.3, involved in ABA signaling are essential for the control of seed development and dormancy. Plant Cell Physiol. 2009;50(7):1345–63. https://doi.org/10.1093/pcp/pcp083.
- Lynch T, Erickson BJ, Finkelstein RR. Direct interactions of ABA-insensitive (ABI)
 -clade protein phosphatase (PP) 2Cs with calcium-dependent protein kinases
 and ABA response element-binding bZIPs May contribute to turning off ABA
 response. Plant Mol Biol. 2012;80(6):647–58. https://doi.org/10.1007/s11103-0
 12-9973-3.
- Feng CZ, Chen Y, Wang C, Kong YH, Wu WH, Chen YF. Arabidopsis RAV1 transcription factor, phosphorylated by SnRK2 kinases, regulates the development. Plant J. 2014;80(4):654–68. https://doi.org/10.1111/tpj.12670.

- Ding ZJ, Yan JY, Li GX, Wu ZC, Zhang SQ, Zheng SJ. WRKY 41 controls Arabidopsis seed dormancy via direct regulation of ABI3 transcript levels not downstream of ABA. Plant J. 2014;79(5):810–23. https://doi.org/10.1111/tpj.12597
- Liu F, Zhang H, Ding L, Soppe WJ, Xiang Y. Reversal of RDO5 1, a homolog of rice seed dormancy4, interacts with bHLH57 and controls ABA biosynthesis and seed dormancy in Arabidopsis. Plant Cell. 2020;32(6):1933–48. https://doi.org/10.1105/tpc.20.00026.
- Shu K, Zhang H, Wang S, Chen M, Wu Y, Tang S, Liu C, Feng Y, Cao X, Xie Q. ABI4 regulates primary seed dormancy by regulating the biogenesis of abscisic acid and gibberellins in Arabidopsis. PLoS Genet. 2013;9(6):e1003577. https://doi.org/10.1371/journal.pgen.1003577.
- Yang C, Li X, Chen S, Liu C, Yang L, Li K, Liao J, Zheng X, Li H, Li Y. ABI5-FLZ13 module transcriptionally represses growth-related genes to delay seed germination in response to ABA. Plant Commun. 2023;4(6):100636. https://doi.org/10.1016/j.xplc.2023.100636.
- Yang M, Han X, Yang J, Jiang Y, Hu Y. The Arabidopsis circadian clock protein PRR5 interacts with and stimulates ABI5 to modulate abscisic acid signaling during seed germination. Plant Cell. 2012;33(9):3022–41. https://doi.org/10.1 093/plcell/koab168.
- Nie K, Zhao H, Wang X, Niu Y, Zhou H, Zheng Y. The MIEL1-ABI5/MYB30 regulatory module fine tunes abscisic acid signaling during seed germination. J Integr Plant Biol. 2022;64(4):930–41. https://doi.org/10.1111/jipb.13234.
- Guo P, Chong L, Wu F, Hsu CC, Li C, Zhu JK, Zhu Y. Mediator tail module subunits MED16 and MED25 differentially regulate abscisic acid signaling in Arabidopsis. J Integr Plant Biol. 2021;63(4):802–15. https://doi.org/10.1111/jip b 13062
- Sun TP, Goodman HM, Ausubel FM. Cloning the Arabidopsis Ga1 locus by genomic Subtraction. Plant Cell. 1992;4:119–28. https://doi.org/10.1105/tpc.4 2 119
- Sun TP, Kamiya Y. The Arabidopsis Ga1 locus encodes the cyclase ent-kaurene synthetase-a of Gibberellin biosynthesis. Plant Cell. 1994;6:1509–18. https://doi.org/10.1105/tpc.6.10.1509.
- Sakamoto T, Miura K, Itoh H, et al. An overview of Gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiol. 2004;134(4):1642–53. https://doi.org/10.1104/pp.103.033696.
- Shohat H, Eliaz NI, Weiss D. Gibberellin in tomato: metabolism, signaling and role in drought responses. Mol Hortic. 2021;1(1):15. https://doi.org/10.1186/s 43897-021-00019-4.
- Griffiths J, Murase K, Rieu I, Zentella R, Zhang ZL, Powers SJ, Gong F, Phillips AL, Hedden P, Sun TP. Genetic characterization and functional analysis of the GID1 Gibberellin receptors in Arabidopsis. Plant Cell. 2006;18(12):3399–414. h ttps://doi.org/10.1105/tpc.106.047415.
- 36. Sun TP. The molecular mechanism and evolution of the GA-GID1-DELLA signaling module in plants. Curr Biol. 2011;21(9):338–45. https://doi.org/10.10 16/j.cub.2011.02.036.
- McGinnis KM, Thomas SG, Soule JD, Strader LC, Zale JM, Sun TP, Steber CM.
 The Arabidopsis SLEEPY1 gene encodes a putative F-box subunit of an SCF E3 ubiquitin ligase. Plant Cell. 2003;15(5):1120–30. https://doi.org/10.1105/tpc.0 10827.
- Sasaki A, Itoh H, Gomi K, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Jeong DH, An G, Kitano H, Ashikari M, Matsuoka M. Accumulation of phosphorylated repressor for Gibberellin signaling in an F-box mutant. Science. 2003;299(5614):1896–8. https://doi.org/10.1126/science.1081077.
- Murase K, Hirano Y, Sun TP, Hakoshima T. Gibberellin-induced DELLA recognition by the Gibberellin receptor GID1. Nature. 2008;456(7221):459–63. https://doi.org/10.1038/nature07519.
- Bao S, Hua C, Shen L, Yu H. New insights into Gibberellin signaling in regulating flowering in Arabidopsis. J Integr Plant Biol. 2020;62(1):118–31. https://doi. org/10.1111/jipb.12892.
- 41. Liu X, Hu P, Huang M, Tang Y, Li Y, Li L, Hou X. The NF-YC-RGL2 module integrates GA and ABA signalling to regulate seed germination in Arabidopsis. Nat Commun. 2016;7:12768. https://doi.org/10.1038/ncomms12768.
- 42. Li L, Dou N, Zhang H, Wu C. The versatile GABA in plants. Plant Signal Behav. 2021;16(3):1862565. https://doi.org/10.1080/15592324.2020.1862565.
- Hu Y, Huang X, Xiao Q, Wu X, Tian Q, Ma W, Shoaib N, Liu Y, Zhao H, Feng Z, Yu G. Advances in plant GABA research: biological functions, synthesis mechanisms and regulatory pathways. Plants (Basel). 2024;13(20):2891. https://doi.org/10.3390/plants13202891.
- 44. Shelp BJ, Bozzo GG, Trobacher CP, Zarei A, Deyman KL, Brikis CJ. Hypothesis/ review: contribution of Putrescine to 4-aminobutyrate (GABA) production in

- response to abiotic stress. Plant Sci. 2012;193–194:130–5. https://doi.org/10.1 016/i.plantsci.2012.06.001.
- Mekonnen DW, Flügge UI, Ludewig F. Gamma-aminobutyric acid depletion affects stomata closure and drought tolerance of *Arabidopsis thaliana*. Plant Sci. 2016;245:25–34. https://doi.org/10.1016/j.plantsci.2016.01.005.
- Xu B, Long Y, Feng X, et al. GABA signalling modulates stomatal opening to enhance plant water use efficiency and drought resilience. Nat Commun. 2021;12(1):1952. https://doi.org/10.1038/s41467-021-21694-3.
- Liang J, Guo F, Cao S, Zhao K, Zhao K, Wang H, Shao X, Wei Y, Zhang C, Zheng Y, Xu F. y-aminobutyric acid (GABA) alleviated oxidative damage and programmed cell death in fresh-cut pumpkins. Plant Physiol Biochem. 2022;180:9–16. https://doi.org/10.1016/j.plaphy.2022.03.029.
- Zhao GC, Xie MX, Wang YC, Li JY. Molecular mechanisms underlying γ-aminobutyric acid (GABA) accumulation in giant Rmbryo rice seeds. J Agric Food Chem. 2017;65(24):4883–9. https://doi.org/10.1021/acs.jafc.7b00013.
- Sheng Y, Xiao H, Guo C, Wu H, Wang X. Effects of exogenous gammaaminobutyric acid on α-amylase activity in the aleurone of barley seeds. Plant Physiol Biochem. 2018;127:39–46. https://doi.org/10.1016/j.plaphy.2018.02.03
- Xu JG, Hu QP, Duan JL, Tian CR. Dynamic changes in gamma-aminobutyric acid and glutamate decarboxylase activity in Oats (*Avena nuda* L.) during steeping and germination. J Agric Food Chem. 2010;58(17):9759–63. https://doi.org/10.1021/jf101268a.
- Kim MJ, Kwak HS, Kim SS. Effects of germination on protein, γ-Aminobutyric acid, phenolic acids, and antioxidant capacity in wheat. Molecules. 2018;23(9):2244–56. https://doi.org/10.3390/molecules23092244.
- Skubacz A, Daszkowska-Golec A. Seed dormancy: the complex process regulated by abscisic acid, gibberellins, and other phytohormones that makes seed germination work. In: El-Esawi MA, editor. Phytohormones– signaling mechanisms and crosstalk in plant development and stress responses. London, UK: E-Publishing Inc; 2017. pp. 77–100.
- Tuan PA, Kumar R, Rehal PK, Toora PK, Ayele BT. Molecular mechanisms underlying abscisic acid/gibberellin balance in the control of seed dormancy and germination in cereals. Front Plant Sci. 2018;9:668. https://doi.org/10.338 9/fpls.2018.00668.
- Vishal B, Kumar PP. Regulation of seed germination and abiotic stresses by gibberellins and abscisic acid. Front Plant Sci. 2018;9:838. https://doi.org/10.3 389/fpls.2018.00838.
- Bouché N, Fait A, Bouchez D, Møller SG, Fromm H. Mitochondrial succinicsemialdehyde dehydrogenase of the gamma-aminobutyrate shunt is required to restrict levels of reactive oxygen intermediates in plants. Proc Natl Acad Sci USA. 2003;100(11):6843–8. https://doi.org/10.1073/pnas.103753210 0
- Palanivelu R, Brass L, Edlund AF, Preuss D. Pollen tube growth and guidance is regulated by *POP2*, an Arabidopsis gene that controls GABA levels. Cell. 2003;114(1):47–59. https://doi.org/10.1016/s0092-8674(03)00479-3.
- Cao H, Han Y, Li J, Ding M, Li Y, Li X, Chen F, Soppe WJ, Liu Y. Arabidopsis thaliana SEED DORMANCY 4-LIKE regulates dormancy and germination by mediating the Gibberellin pathway. J Exp Bot. 2020;71(3):919–33. https://doi. org/10.1093/jxb/erz471.
- Tyler L, Thomas SG, Hu J, Dill A, Alonso JM, Ecker JR, Sun TP. Della proteins and gibberellin-regulated seed germination and floral development in Arabidopsis. Plant Physiol. 2004;135(2):1008–19. https://doi.org/10.1104/pp.104.03957
- Daviere JM, Achard P. Gibberellin signaling in plants. Development. 2013;140(6):1147–51. https://doi.org/10.1242/dev.087650.
- Kamada-Nobusada T, Hayashi M, Fukazawa M, Sakakibara H, Nishimura M. A putative peroxisomal polyamine oxidase, AtPAO4, is involved in polyamine catabolism in *Arabidopsis thaliana*. Plant Cell Physiol. 2008;49(9):1272–82. http s://doi.org/10.1093/pcp/pcn114.
- Moschou PN, Sanmartin M, Andriopoulou AH, Rojo E, Sanchez-Serrano JJ, Roubelakis-Angelakis KA. Bridging the gap between plant and mammalian polyamine catabolism: a novel peroxisomal polyamine oxidase responsible for a full back-conversion pathway in Arabidopsis. Plant Physiol. 2008;147(4):1845–57. https://doi.org/10.1104/pp.108.123802.
- Takahashi Y, Cong R, Sagor GH, Niitsu M, Berberich T, Kusano T. Characterization of five polyamine oxidase isoforms in *Arabidopsis thaliana*. Plant Cell Rep. 2010;29(9):955–65. https://doi.org/10.1007/s00299-010-0881-1.
- Lefebvre V, North H, Frey A, Sotta B, Seo M, Okamoto M, Nambara E, Marion-Poll A. Functional analysis of Arabidopsis NCED6 and NCED9 genes indicates that ABA synthesized in the endosperm is involved in the induction of seed

Wang et al. BMC Plant Biology (2025) 25:676 Page 16 of 16

- dormancy. Plant J. 2006;45(3):309–19. https://doi.org/10.1111/j.1365-313X.2005.02622.x.
- Footitt S, Douterelo-Soler I, Clay H, Finch-Savage WE. Dormancy cycling in Arabidopsis seeds is controlled by seasonally distinct hormone-signaling pathways. Proc Natl Acad Sci USA. 2011;108(50):20236–41. https://doi.org/10. 1073/pnas.1116325108.
- Martínez-Andújar C, Ordiz MI, Huang Z, Nonogaki M, Beachy RN, Nonogaki H. Induction of 9-cis-epoxycarotenoid dioxygenase in *Arabidopsis thaliana* seeds enhances seed dormancy. Proc Natl Acad Sci USA. 2011;108(41):17225– 339. https://doi.org/10.1073/pnas.1112151108.
- Varshney V, Majee M. JA shakes hands with ABA to delay seed germination. Trends Plant Sci. 2021;26(8):764–6. https://doi.org/10.1016/j.tplants.2021.05.0 02.
- Carrillo-Barral N, Rodríguez-Gacio MDC, Matilla AJ. Delay of Germination-1 (DOG1): A key to Understanding seed. Dormancy Plants (Basel). 2020;9(4):480. https://doi.org/10.3390/plants9040480.
- 68. Li Q, Chen X, Zhang S, Shan S, Xiang Y. DELAY OF GERMINATION 1, the master regulator of seed dormancy, integrates the regulatory network of phytohormones at the transcriptional level to control seed dormancy. Curr Issues Mol Biol. 2022;44(12):6205–17. https://doi.org/10.3390/cimb44120423.
- Soppe WJJ, Bentsink L. Seed dormancy back on track; its definition and regulation by DOG1. New Phytol. 2020;228:816–9. https://doi.org/10.1111/np h.16592.
- Holdsworth MJ, Bentsink L, Soppe WJJ. Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. New Phytol. 2008;179(1):33–54. https://doi.org/10.1111/j.1469-8137.2008.02437.x.

- Finch-Savage B. Seeds: Physiology of development, germination and dormancy (3rd edition), In: Bewley, J.D., Bradford, K.J., Hilhorst H.W.M., Nonogaki, H, editors, Seed Science Research. E-Publishing Inc., New York

 Heidelberg

 Dordrecht

 London; 2013. pp. 392.
- Cona A, Cenci F, Cervelli M, Federico R, Mariottini P, Moreno S, Angelini R. Polyamine oxidase, a hydrogen peroxide-producing enzyme, is up-regulated by light and down-regulated by auxin in the outer tissues of the maize mesocotyl. Plant Physiol. 2003;131(2):803–13. https://doi.org/10.1104/pp.011379.
- Ikuta S, Fukusaki E, Shimma S. Visualization of glutamate decarboxylase activity in barley seeds under salinity stress using mass microscope. Metabolites. 2022;12(12):1262. https://doi.org/10.3390/metabo12121262.
- 74. Tang J, Tian X, Mei E, He M, Gao J, Yu J, Xu M, Liu J, Song L, Li X, Wang Z, Guan Q, Zhao Z, Wang C, Bu Q. WRKY53 negatively regulates rice cold tolerance at the booting stage by fine-tuning anther Gibberellin levels. Plant Cell. 2022;34(11):4495–515. https://doi.org/10.1093/plcell/koac253.
- Liu C, Wang H, Zhang X, Ma F, Guo T, Li C. Activation of the ABA signal pathway mediated by GABA improves the drought resistance of Apple seedlings. Int J Mol Sci. 2021;22(23):12676. https://doi.org/10.3390/ijms222312676.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.