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Abstract

Different brain components can evolve in a coordinated fashion or they can show divergent 

evolutionary trajectories according to a mosaic pattern of variation. Understanding the relationship 

between these brain evolutionary patterns, which are not mutually exclusive, can be informed by 

the examination of intraspecific variation. Our study evaluates patterns of brain anatomical 

covariation in chimpanzees and humans to infer their influence on brain evolution in the hominin 

clade. We show that chimpanzee and human brains have a modular structure that may have 

facilitated mosaic evolution from their last common ancestor. Spatially adjacent regions covary 

with one another to the strongest degree and separated regions are more independent from each 

other, which might be related to a predominance of local association connectivity. Despite the 

undoubted importance of developmental and functional factors in determining brain morphology, 

we find that these constraints are subordinate to the primary effect of local spatial interactions.

Introduction

Macroevolutionary studies of neuroanatomy tend to show coordinated variation of different 

brain structures that are related to developmental constraints1. Particular selective pressures, 

however, have been shown to exert effects on specific regions that result in a mosaic-like 

pattern of evolution, with different structures showing divergent evolutionary trajectories2–5. 

Brain evolutionary changes will tend to be concerted when different structures are highly 

integrated due to pleiotropy, genetic linkage or epigenetic processes6, which can constraint 

patterns of brain reorganization. Alternatively, mosaic evolution will be more likely when 

different brain regions are relatively independent from one another, thus giving rise to 
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distinct modules. Modular architectures are expected to facilitate evolution because different 

traits can respond to selection in diverging ways7. Although this relative interdependence of 

different brain components has a macroevolutionary result, it also has a microevolutionary 

origin and thus requires an intraspecific context to be addressed.

Cranial and craniofacial integration and modularity have been extensively investigated in 

studies of human evolutionary anatomy6,8–10. Most of these studies, however, lack a critical 

comparison of the extent to which craniofacial variation is influenced by brain variation. 

Unlike studies of cranial evolution that can include hominin fossil species, because brain 

tissue does not fossilize, inferences about hominin brain evolution must rely on the 

comparison of extant species, i.e. chimpanzees and humans. Comparative analyses of extant 

species can help to identify aspects of brain organization that were present before the 

divergence of the hominin-panin lineages and those that have diverged across panin and 

hominin evolution, supplementing information that can be gleaned from endocranial 

evolution11–17.

The field of neuroscience has tended to analyze patterns of covariation, which are relevant to 

the study of brain networks, from a different perspective and using a different set of 

methodological tools18 than those used in anthropology and evolutionary biology. Elements 

within the same network are expected to show coordinated variation, whereas different 

networks are likely to represent different modules. Studies of structural and functional brain 

networks are common in the neuroimaging literature19,20 but, in many cases, they overlook 

evolutionary history. Additionally, the methodological advance of neuroimaging approaches 

in which many network analyses are based has progressed more rapidly than the capacity to 

infer biologically relevant patterns from these techniques21. For this reason, it is especially 

important to study brain variation in the context of general evolutionary theory, using the 

same theoretical framework and methodological tools employed in the analysis of other 

structures and organisms.

Geometric morphometric techniques provide a suitable methodological framework to 

evaluate these questions by combining some of the strengths of evolutionary biology and 

neuroscience approaches. These methods offer a suitable way to evaluate correlated 

variation among brain regions and provide a different perspective than that offered by 

scaling analyses of the size of neural structures1–5. Geometric morphometric methods allow 

for a multivariate assessment of covariance structure in which the spatial relationships 

between anatomically homologous locations are maintained across the different steps of the 

analysis22. In this way, not only the size of the different structures defined by homologous 

landmarks can be incorporated into the analysis of covariation, but also their position and 

orientation within the whole brain and with respect to each other. This allows for a much 

more complete analysis of covariation patterns, as, once overall size-related modifications 

are accounted for, different structures can show correlated variation that is not directly 

reflected in size increases or decreases.

In this study, we used a 3D geometric morphometric framework to analyze and compare 

intraspecific patterns of covariation between brain regions based on in vivo magnetic 

resonance imaging (MRI) scans of chimpanzee and human brains. We used both a 
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hypothesis-free and a hypothesis-based approach, in which we compared three competing 

models based on different biological assumptions regarding the factors driving anatomical 

covariation: evolutionary and developmental factors, structural factors, or functional factors. 

Our results show that chimpanzee and human brains are characterized by a very weak level 

of integration. The structural model is the only one that shows significant modularity and, 

within this model, correlated variation is especially low between spatially separated regions. 

The observed modular organization, which is based predominantly on spatial proximity, 

may allow for relatively independent variation of non-adjacent regions, thus facilitating 

mosaic evolution. We suggest this architecture to have permitted the sequential acquisition 

along hominin evolution of traits that are typical of modern human brains.

Results

Hypothesis-free assessment of integration

The distribution of variance across the different principal components (PCs) of shape 

variables corresponding to all landmarks (Fig. 1, Table 1) was used to obtain a general 

assessment of the degree of integration of chimpanzee and human brains before evaluating 

biological models of modularity (Fig. 2, Supplementary Table 1). This distribution 

demonstrates that no single PC accounts for a substantial proportion of variance in the 

samples (Fig. 3). On the contrary, different PCs account for low and similar proportions of 

variance both for chimpanzees and humans, with the first PC accounting for no more than 

15% of variance. This points to a weakly integrated structure overall in both species.

The difference between the proportion of variance explained by the first and second 

principal components is slightly higher in humans than in chimpanzees, thus pointing to a 

slightly higher degree of integration in humans. These differences, however, are moderate 

between both species, as revealed by covariance matrix correlations between chimpanzees 

and humans of 0.68 (matrix permutation test with landmark permutation: P<0.001, which 

leads to a rejection of the null hypothesis of dissimilarity). This value demonstrates that 

covariance matrices are significantly similar in both species. Theoretical and comparative 

neuroanatomical studies suggest that allometric effects of increased brain size may lead to a 

higher degree of modularity in the neocortex of large brains since communication is more 

efficient across small areas of the cortex than between distant areas23. In this context, it is 

notable that human brains show a slightly higher level of integration than chimpanzees. 

Although it is tempting to speculate about a more distributed organization of brain networks 

in humans, differences between chimpanzees and humans implied in these results are minor 

and it is not clear that the distribution of variance we observe for the whole brain in this 

analysis can be interpreted to reflect the organization of functional networks, as it is 

described in the following section.

Evaluation of modularity and comparison between models

Given the previous results indicating weak integration in chimpanzee and human brains, 

which is a necessary but not sufficient prerequisite for a modular structure, we evaluated 

three competing models of modularity that are based on different biological assumptions 

concerning the causes of anatomical parcellation (Fig. 2, Supplementary Table 1). Each of 
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these models was evaluated at a large scale (i.e., using only two different modules) and at a 

fine scale (i.e., using a larger number of modules corresponding to fine-grained systems). 1. 

An EvoDevo model evaluated covariation between brain structures with different 

developmental origins and evolutionary trajectories. 2. A structural model analyzed 

modularity based on spatial proximity under the assumption that anatomically adjacent 

regions covary to a stronger degree than regions separated by long distances. 3. A functional 

model evaluated modularity among different functional areas under the assumption that 

anatomical variation might reflect underlying functional connectivity. This model evaluated 

covariation between regions functionally involved in language processing and production in 

humans and regions without that functional involvement24 (large-scale model), or between 

modules that were defined based on resting-state functional connectivity25 (fine-scale 

model).

Only the structural model showed significantly higher modularity than random partitions of 

the sample for chimpanzees and humans, and for the large-scale and fine-scale models (Fig. 

4, Table 2). Several studies have demonstrated that modularity is usually influenced by 

developmental origin26, which, in this case, corresponds to embryological segmentation of 

brain regions. In our analyses, evolutionary and developmental factors, however, seem to 

play a minor role in driving patterns of covariation within each species when compared with 

spatial proximity (Table 2). Similarly, functional networks do not show a major role in 

determining patterns of correlated variation in comparison with structural factors. Most 

cerebral shape changes evaluated in our study describe variation in the relative position of 

sulci and gyri that, in the end, are related to the expansion or reduction of certain regions. A 

few studies have tried to connect brain macro- and microstructure in humans27,28, 

chimpanzees29 and other primates30, but more conclusive associations await larger sample 

sizes and a multivariate approach to understanding intraspecific variation. Sulcal variation 

has been demonstrated to be a reasonable predictor of cytoarchitecture for primary and 

secondary regions such as visual, somatosensory and motor areas28, but it appears to be less 

reliable to identify higher order cognitive areas in both chimpanzees and humans28,31. In any 

case, sulcal and gyral variation has an indirect relevance as a macromorphological 

manifestation of functionally key microstructural changes.

Among the large-scale structural models that we tested, only a model separating anterior 

from posterior landmarks shows significant modularity for both species (Table 3). Models 

separating medial from lateral landmarks, and superior from inferior landmarks do not show 

significant levels of modularity. A spatial distance-based model of modularity is a default 

expectation for most biological systems32, but anterior-posterior partitions of landmarks 

show much clearer parcellation than other partitions (Table 3). Other features of anatomical 

variation have been demonstrated to show a rostro-caudal gradient in primate (including 

human) brains33, a morphological continuum that is likely related to gene expression 

gradients34. Similarly, numbers of neurons in the neocortex show a rostro-caudal gradient in 

humans27 and nonhuman primates35. This rostro-caudal partition is partially related to 

developmental factors such as the timing of neurogenesis, as demonstrated by the separation 

in our EvoDevo model of a frontal, temporo-parietal and occipital regions, a parcellation 

that is consistent with evolutionary and developmental regionalization of the neocortex36. 
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However, more local factors appear to drive anatomical covariation, as the EvoDevo model 

does not show significant modularity in either species.

Organization of structural modules

When covariation between the different modules demarcated in the fine-scale structural 

model is evaluated through pairwise comparisons, it can be observed that modules are not 

completely independent from each other in spite of the significant degree of modularity 

observed for this partition of landmarks (Supplementary Tables 2 and 3). On the contrary, 

all the modules covary significantly with each other with a strength that is influenced by 

spatial proximity. This is represented in graphical models, where significant edges with high 

bootstrap support are mostly those grouping spatially adjacent modules (Fig. 5). Graphical 

models show the separation of anterior versus posterior areas in both species. In humans, the 

anterior and posterior parts of the brain are more clearly regionalized than in chimpanzees. 

The anterior complex in humans includes the orbitofrontal and precentral modules, and the 

posterior one includes both parietal submodules. In chimpanzees, the posterior complex 

appears to be more clearly spatially defined than the anterior one. The posterior complex 

includes the occipital and parietal superior modules, whereas the anterior complex includes 

both frontal modules, but also the subcortical medial and parietal inferior modules. These 

association patterns might indicate an inverse relationship between distance and strength of 

covariation. However, although this trend exists in both species, it is not significant 

(Supplementary Fig. 1).

It is important to note that our results are based only on patterns of correlated variation in the 

position of the anatomically homologous landmarks that we have examined. However, 

potential concerns about different scaling methods of other commonly evaluated variables 

(such as volumetric measures), which can have a strong impact on results, are taken into 

account in our geometric morphometric approach, as landmark configurations (and, hence, 

brain morphologies represented by them) are scaled at the initial steps of the analysis. In 

fact, our results have some similarities with the ones obtained when using variables that are 

more typically evaluated in neuroscience, such as regional volume, surface area or cortical 

thickness (Supplementary Methods and Supplementary Table 4). It has to be noted, 

nonetheless, that results based on these different variables are not expected to match because 

they have different genetic, developmental, and evolutionary underpinnings37. As the 

landmark-based model, the volume-, area-, and thickness-based models show a 

predominance of significant edges between modules that are physically adjacent (Fig. 5 and 

Supplementary Fig. 2). The volume-based model shows the clearest similarity to the 

landmark-based model, especially in the low number of significant partial correlations and 

in the separation of an anterior and a more posterior complex. Surface area- and cortical 

thickness-based models, however, do not show a clear parcellation of anterior and posterior 

regions.

Discussion

Intraspecific analyses of correlated variation provide a fundamental way to evaluate the 

problem of concerted versus mosaic evolution of the brain because macroevolutionary 
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patterns of covariation are grounded in the variation that is observed within species. 

Intraspecific studies can help elucidate whether different regions of the brain are more or 

less prone to evolve in a coordinated or independent way. Our observation of modular 

variation in chimpanzee and human brains is in line with reports of independent variation 

and regulation between brain components based on quantitative genetic analyses of mice38. 

Our results, however, shift the focus from relative independence of developmentally distinct 

regions to relative independence of spatially separated regions. This distance-dependent 

modular organization might be a particularity of great ape and human brains due to their 

large size and high morphological complexity as compared with other mammalian brains. 

The spatial relationships among ontogenetically related structures, which would be initially 

expected to show the highest relative independence, ultimately become altered due to the 

high morphological and connectional complexity of the large and gyrified brains of 

chimpanzees and humans. For example, prefrontal and occipital regions of the cerebral 

cortex are spatially separated along the rostro-caudal axis even though they share a common 

developmental origin from the dorsal telencephalon. Our results show that the frontal 

cortical region covaries most with other frontal regions, and that the occipital neocortical 

areas covary with the posterior region of the cerebellum, which is derived from the 

rhombencephalon, in spite of their different developmental and evolutionary trajectories. A 

similar lack of cortical-subcortical independent modularity has been described using a 

similar methodological approach in midsagital sections of human brains, where a model of 

spatially contiguous parietal landmarks has been suggested to show the highest 

independence from the rest of the brain39.

These results highlight the important influence of basic local spatial interactions in 

constraining brain morphological variation. These interactions can include biophysical 

properties of axonal connections, which are likely to cause correlated changes in the areas 

that they connect40, regardless of whether they are cortico-cortical or cortico-subcortical 

connections. Landmarks included within each structural module in our study are mostly 

those located on adjacent sulci and gyri. Therefore, the observation of distance-dependent 

modularity might be related to the presence of short association fibers (also called U-fibers) 

between neighboring cortical areas, which have been proposed to be increased in human 

brains41. It has to be noted that similar (and probably homologous) U-fibers have been 

described in the rhesus macaque, and that these fibers are probably highly conserved during 

primate brain evolution42, thus leading to the similar patterns of covariation observed in 

chimpanzees and humans. The structural model of modularity, however, includes within 

certain modules regions of the brain outside of the neocortex that are not connected by short 

association fibers. A potential factor causing correlated variation between adjacent regions 

not connected by U-fibers and even with different developmental origins is spatial packing, 

which can have a role in causing covariation between neighboring regions of the occipital 

cortex and the cerebellum. In this regard, our definition of spatial packing is slightly more 

general than the classically studied relationship between basicranial flexion and 

encephalization43, but it makes reference to the physical constraints imposed by the limited 

available space within the braincase on large brains.

Network analyses of the human skull have shown the importance of spatial relationships and 

proximity to account for the modular structure of correlated shape changes44. These and our 
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results, however, contrast with the pattern of pervasive genetic integration described for 

human skulls, which has been proposed to drive the evolution of cranial shape10. Due to the 

reciprocal interaction between cerebral and cranial development45, related patterns of 

covariation can be expected between the brain and the skull. One possible explanation for 

the apparent difference is that our analyses of pairwise comparisons actually do demonstrate 

that all modules covary significantly with each other (Supplementary Tables 2 and 3). 

Nonetheless, the strength of this covariation differs across different modules, with the 

highest values corresponding to spatially adjacent regions and the lowest values to distant 

regions (Fig. 5). These results are supportive of spatially distant brain areas varying more 

independently from each other than adjacent areas, but not of completely independent 

variation. Additionally, the relationship between genetic and phenotypic integration is not 

entirely clear46. It has been previously demonstrated that fluctuating asymmetry, which can 

be indicative of developmental plasticity and a proxy for non-genetic variance, accounts for 

a substantial proportion of morphological variance in chimpanzee and, even more so, in 

human brains47. In this light, it is important to note that the human cortical surface shows a 

clear proximity-dependent hierarchical organization when genetic correlations are studied, 

but a less clear structure based on phenotypic correlations48. One of the main differences 

reported between phenotypic and genetic correlations is allocated at the posterior perisylvian 

area, where a very asymmetric pattern is observed in humans for phenotypic correlations, 

but not for genetic correlations48. This observation is consistent with previous reports of 

increased fluctuating asymmetry of postsylvian regions in humans47. Environmental effects 

are known to modify the phenotype of brain morphology, which is initiated by genetic 

correlations. Non-genetic influences can give rise to a more modular pattern of variation 

than expected solely on the basis of genetics. If the adult brain phenotype is affected by 

environmental interactions, which are heavily dependent on social and cultural influences in 

humans, it is possible that different brain regions respond in a relatively independent way to 

non-genetic factors, thus giving rise to the observed modular pattern of phenotypic variation.

One of the most consistent results in our study is the general similarity in brain modular 

structure between chimpanzees and humans (Figs 3, 4, 5; Table 2 and 3), a result that 

strikingly contrasts with reported differences in craniofacial integration49. Similar patterns 

of brain modularity are especially relevant because anatomical differences in chimpanzee 

and human brains are clear47,50, but they seem to be built upon fundamental 

symplesiomorphic structural interactions that were probably present in the hominin-panin 

last common ancestor. The predominance of modularity based on spatial proximity may 

permit evolutionary flexibility, allowing for anatomical and functional differences that have 

arisen between chimpanzee and human brains. Studies of the mammalian skull have 

demonstrated that Homo and Pan show the lowest levels of integration and constraints and 

the highest levels of evolutionary flexibility not only across primates, but also across most 

mammals51, a result that is compatible with our results showing a modular architecture in 

chimpanzee and human brains. This modular organization might allow for increased 

responsiveness of the brain to particular selective pressures51, facilitating mosaic evolution.

Mosaic variation is indeed observed in the hominin fossil record through the sequential 

appearance of traits considered to be typical of modern human brains. A reorganization of 
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the occipital areas, represented in fossil endocasts as a change in the position of the lunate 

sulcus marking a reduction of the primary visual cortex, appears to be one of the first 

acquisitions during hominin brain evolution, perhaps already present in A. afarensis and A. 

africanus11 (but see ref. 14). Significant orbitofrontal reorganization has been suggested to 

be present in A. sediba52, and is likely to have occurred during the transition between 

Australopithecus and early Homo13. Both occipital and orbitofrontal reorganization are 

observed in the hominin fossil record before a substantial increase in brain size (and a likely 

related increase in gyrification) is observed in H. erectus. Both Neanderthals and modern 

humans show substantial frontal broadening53, so it can be parsimoniously assumed that this 

trait originated before the divergence of both species. An anterior projection of the temporal 

poles9, as well as a general globularization of the brain involving both a frontal bulging and 

a parietal reorganization16,17,54, have been proposed to be recent acquisitions in human 

evolution, only observed in H. sapiens. Other traits that are not visible in endocasts are 

likely to have evolved as well in a sequential, mosaic fashion, facilitated by the absence of a 

general, large-scale integration. Our results provide an explanation through which the 

interspecific patterns of variation observed in the hominin fossil record can be explained on 

the basis of intraspecific variation in brain anatomy.

Methods

Material

A sample of 189 chimpanzees (Pan troglodytes; 117 females, 72 males; age rage 6–53 years 

old) and 189 humans (Homo sapiens; 113 females, 76 males; age range 18–60 years old) 

was studied through in vivo MRI scans. The number of human subjects was chosen to match 

the number of available chimpanzee scans. Chimpanzees housed at the Yerkes National 

Primate Research Center (YNPRC) in Atlanta, GE, and at the University of Texas MD 

Anderson Cancer Center (UTMDACC) in Bastrop, TX, were scanned using a 3T scanner 

(Siemens Trio, Siemens Medical Solutions, Malvern, USA) or a 1.5T scanner (Phillips, 

Model 51, Philips Medical Systems, N.A., Bothell, Washington, USA). Scanning procedures 

in chimpanzees were approved by the Institutional Animal Care and Use Committees at 

YNPRC and UTMDACC, and also followed the guidelines of the Institute of Medicine on 

the use of chimpanzees in research. Chimpanzees showed a variety of hand preferences for 

different tasks. Human scans were obtained from the OASIS database55, selecting only 

healthy (nondemented) and moderately aged individuals (always younger than 60 years old). 

All the scans stored in this database belong to right-handed individuals and were acquired 

with a 1.5T Vision scanner (Siemens, Erlangen, Germany). Informed consent for all 

participants was obtained in accordance with guidelines of the Washington University 

Human Studies Committee in the context of the OASIS project. Technical details of human 

MRI acquisition, as well as population information, is provided in ref. 55, whereas the 

equivalent information for chimpanzee MRI scans is provided in ref. 56.

Geometric morphometrics and modularity models

Three-dimensional surface models of brain hemispheres for both species were reconstructed 

using BrainVISA software57. Our analyses were based on a set of 19 bilateral cortical 

landmarks and 13 subcortical landmarks (5 unilateral and 8 bilateral) defined after refs. 47 
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and 50 (Fig. 1, Table 1). Although landmark-based geometric morphometric techniques are 

commonly used in evolutionary and paleontological studies (and, therefore, in the analysis 

of skeletal remains), these techniques are readily usable in soft tissues, such as brains, as 

long as homologous locations can be defined and identified. This is the case for the set of 

landmarks used in our study, which were defined using major sulci in the cortical surface 

and clearly defined anatomical subdivisions. Cortical landmarks were digitized on 3D 

reconstructions of the brain surface using IDAV Landmark Editor58, whereas subcortical 

landmarks were digitized on triplanar views of the MRI scans using MIPAV software59. 

Cortical and subcortical landmarks were later merged so as to obtain one single landmark 

configuration for each individual. Non-shape information corresponding to position, size 

and orientation was removed using a Procrustes superimposition60. Unlike other 

neuroimaging approaches, no further registration was performed in order to retain all shape 

variance in the sample, which is the focus of our study.

Landmark configurations were symmetrized by averaging the original and mirrored 

configurations of landmarks for each brain (Supplementary Data 1). Principal components 

analyses (PCA) of superimposed Procrustes coordinates were used for a preliminary 

hypothesis-free assessment of the degree of integration in our samples. Highly integrated 

structures are characterized by one leading PC explaining most variance in the sample, 

whereas non-integrated structures show a regular distribution of variance across different 

PCs61. We evaluated modular variation via three competing models based on different 

biological assumptions (Fig. 2, Supplementary Table 1), evaluated at a large-scale (i.e., 

including only two modules) and at a fine-scale (i.e., including a larger number of modules).

1. An EvoDevo model evaluated covariation between brain structures with different 

developmental origins and evolutionary trajectories. In the large-scale case, this 

model evaluated covariation between cortical and subcortical landmarks. In the 

fine-scale case, this model evaluated covariation between eight different modules: 

frontal (cortical), temporo-parietal (cortical), occipital (cortical), corpus callosum, 

striatum, limbic system, pons and cerebellum. The parcellation of cortical 

landmarks into three different modules (frontal, temporo-parietal, and occipital) is 

mainly based on their different evolutionary trajectories.

2. A structural model studied modularity based on spatial proximity. In the large-scale 

case, this model quantified covariation between rostral and caudal sets of 

landmarks (corresponding roughly to landmarks located anteriorly or posteriorly to 

the central sulcus, Fig. 2 and Supplementary Table 1). Alternative structural models 

separating medial from lateral, and superior from inferior partitions of landmarks 

were also evaluated. In the fine-scale case, this model included seven modules 

defined using spatial proximity: orbitofrontal, precentral, temporal, subcortical 

medial, parietal and occipital. The parietal module was separated into an anterior 

and a posterior submodules in humans, and into a superior and an inferior 

submodules in chimpanzees due to the different spatial relationships among 

landmarks in both species.

3. A functional model evaluated modularity among areas with different functional 

involvement. In the large-scale case, this model evaluated covariation between 
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regions involved in language processing and production versus the remaining brain 

regions. Regions within the language network were selected as those showing 

positron emission tomography (PET) or functional magnetic resonance imaging 

(fMRI) activation for specific language related tasks24. In the fine scale case, 

modules were defined using models of cortical parcellation based on functional 

connectivity25. This parcellation has been also mapped onto the cerebellum62 and 

the striatum63. Landmarks in other locations (corpus callosum, pons, hippocampus 

and amygdala) were not included in this model. In order to design this model of 

modularity, each landmark was assigned to the functional network to which that 

anatomical location belonged in the initial parcellation of the cortex25, striatum63 

and cerebellum62, although extensive variability in the anatomical location of these 

functional networks has been described64. Functional models were defined using 

information based on humans because equivalent information about functional 

parcellation in the chimpanzee brain is not available, although some studies of 

intrinsic connectivity networks have revealed striking similarities between humans, 

chimpanzees, baboons, and capuchins65. Nonetheless, this human-based definition 

of the model may be involved in the higher level of modularity observed for 

humans in the fine-scale functional model. A similar result might be expected for 

the large-scale functional model, which is based on the definition of language-

related areas in humans24, but, in that case, both chimpanzees and humans show 

similar, marginally significant results.

Quantification of integration and modularity

Correlated variation between modules was evaluated using the RV coefficient66. This 

approach measures the strength of correlated changes in the position of landmarks regardless 

of the direction of those changes. The RV coefficient is described as a multivariate analogue 

to the squared correlation coefficient, for which a value of 0 indicates complete modularity 

and a value of 1 indicates complete integration. These extreme values, however, are 

orientative, and the significance of the evaluated patterns of modularity was assessed using 

permutation tests. P-values for modularity models were calculated as the proportion of 

10000 random partitions of landmarks (which observe bilateral symmetry) showing higher 

modularity (lower RV value) than the evaluated model. For models including more than two 

modules, a multi-set RV coefficient was used66.

Because size, age and sex have a quantitatively very minor effect on the evaluated 

morphologies47 (Supplementary Tables 5 and 6), we did not correct shape variables for 

allometry, age or sex. Similarly, significant although quantitatively very minor differences 

located mainly at occipital landmarks were observed between chimpanzee brains scanned 

with a 1.5T versus a 3T scanner. These differences have a quantitative value of less than half 

of the smallest inter-individual Procrustes distance observed in the sample (Supplementary 

Table 6). Even though these differences appear to be minor, we repeated our analyses within 

each of the samples to confirm that no scan-related bias impacts our results. These additional 

analyses showed that modularity patterns observed in chimpanzees are consistent regardless 

of the type of scanner (Supplementary Table 7).
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Models showing significant modularity are not necessarily formed by modules that are 

completely independent from each other. Therefore, RV coefficients between each pair of 

modules were calculated for the structural model. Significance was evaluated using 

permutation tests for the null hypothesis of complete independence between modules. 

Pairwise RV coefficients were calculated using a common Procrustes superimposition for all 

the modules. The geometry of those patterns of covariation was graphically depicted using a 

graphical modelling approach, which has been extensively used in the study of brain 

networks19. Graphical models were obtained with a modification of the approach presented 

in ref. 67 based on between-module pairwise RV coefficients. These coefficients were used 

to calculate partial correlations, which measure the correlation of two variables conditioned 

on all other variables, and their significance was assessed using the edge exclusion deviance 

criterion67. Consensus graphical models were obtained to account for the variability in 

estimating RV coefficients. Only edges showing significant partial correlations (P<0.05) in 

more than 90% of 1000 bootstrap resamplings of the original chimpanzee and human 

populations were represented. Analyses were performed in MorphoJ68 and in Mathematica 

using the Morphometrics package written by P.D. Polly69 and the Modularity package 

written by P.D. Polly and A. Goswami70.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Landmarks used in this study
Cortical (a) and subcortical landmarks (b) are represented on a human brain. Landmarks 17, 

18 and 19 (insular landmarks), 22 and 24 are not represented. Note that the definition of 

landmarks 10, 11, 15, and 16 is not exactly the same in chimpanzees and humans.
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Figure 2. Modularity models
(a) large-scale EvoDevo model; (b) large-scale structural model; (c) large-scale functional 

model; (d) fine-scale EvoDevo model; (e) fine-scale structural model; (f) fine-scale 

functional model. Similarly colored modules are not equivalent across the three models. 

Note that the limbic module is not equivalent in the EvoDevo model and in the functional 

model. Note as well that our parcellation in the fine-scale functional model does not match 

exactly those in refs 25, 62, and 63 because our parcellation uses an interpolation based on 

the anatomical landmarks that are represented in each network.
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Figure 3. Hypothesis-free evaluation of integration
(a) Procrustes superimposed landmarks corresponding to the chimpanzee sample (n=189) 

before symmetrizing configurations of landmarks; (b) scree plot showing the percentage of 

variance (% Variance) explained by each principal component (PC) in the chimpanzee 

sample (red); (c) Procrustes superimposed landmarks corresponding to the human sample 

(n=189) before symmetrizing configurations of landmarks; (d) scree plot showing the 

distribution of variance across different principal components in the human sample (blue). In 

(a) and (c) landmarks have been Procrustes-superimposed and later translated to the original 

space of the individual represented as a brain surface model. Scale bars are 5 cm. Landmarks 

are color-coded to represent dispersion around their location in the mean or consensus shape 

of each sample (red represents high values and purple represent low values). This dispersion 

is highest at the inferior extreme of the left precentral sulcus in chimpanzees and at the most 

posterior extreme of the right superior temporal sulcus in humans. In (b) and (d) solid lines 

represent the scree plots obtained from a random model of variation. Only the first 30 

principal components are represented.
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Figure 4. Hypothesis-based evaluation of modularity in the large-scale models
(a) EvoDevo model in chimpanzees; (b) structural model in chimpanzees; (c) functional 

model in chimpanzees; (d) EvoDevo model in humans; (e) structural model in humans; (f) 

functional model in humans. For (a), (b), (c), (d), (e) and (f), arrows represent the actual RV 

coefficient obtained for the corresponding model, and histograms represent the distribution 

of RV coefficients yielded by random partitions of landmarks from which the P-values 

discussed in the comparison of the models are calculated. Scale bars are 5 cm.
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Figure 5. Graphical models showing pairwise correlations between structural modules
(a) chimpanzees; (b) humans. In (a) and (b) the model to the left shows pairwise RV 

coefficients between all modules, with edge thicknesses and color intensity proportional to 

pairwise RV values (red thick edges represent the highest RV values). Models to the right 

include only edges showing significant partial correlations between structural modules. 

Graphical models are superimposed on 3D models of brain surface. Colored spheres 

represent the centroid of each structural module (Or: orbitofrontal; Pr: precentral; Te: 

temporal; SM: subcortical medial; PS: parietal superior; PI: parietal inferior; PA: parietal 

anterior; PP: parietal posterior; Oc: occipital). (a) Chimpanzees: two complexes are 

identified, a posterior one including the parietal superior and occipital modules, and an 

anterior complex that includes frontal modules, as well as subcortical medial and inferior 

parietal modules. (b) Humans: Two complexes are identified, an anterior one formed by 

both frontal modules and a posterior one formed by both parietal modules. Scale bars are 5 

cm.
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Table 1

Definition of anatomical landmarks

Landmark Definition

1 Frontal pole

2 Occipital pole

3 Anterior end of the Sylvian fissure (defined on the pars orbitalis in humans)

4 Posterior end of the Sylvian fissure (following the main course of the fissure when the terminal segment is divided)

5 Anterior end of the superior temporal sulcus (close to the temporal pole)

6 Inflection point between the horizontal segment and the ascending segment of the superior temporal sulcus

7 Most posterior and superior point of the superior temporal sulcus (following the anterior course of the sulcus when there are 
more than one ascending terminal branches)

8 Inferior termination of the central sulcus

9 Superior termination of the central sulcus (intersection between the central sulcus and the midline)

10 In chimpanzees: intersection between the intraparietal sulcus and the lunate sulcus
In humans: intersection between the intraparietal sulcus and the transverse occipital sulcus

11 In chimpanzees: intersection of the lunate sulcus with the midline
In humans: intersection of the parieto-occipital sulcus with the midline

12 Occipital notch

13 Intersection of the inferior frontal sulcus with the precentral sulcus

14 Inferior end of the precentral sulcus

15 In chimpanzees: superior end of the fronto-orbital sulcus
In humans: anterior end of the latero-orbital sulcus

16 In chimpanzees: inferior end of the fronto-orbital sulcus
In humans: posterior end of the latero-orbital sulcus

17 Intersection between the superior circular insular sulcus and the inferior circular insular sulcus

18 Intersection between the superior circular insular sulcus and the orbito-insular sulcus

19 Intersection between the inferior circular insular sulcus and the orbito-insular sulcus

20* Centroid of the genu of the corpus callosum

21* Centroid of the splenium of the corpus callosum

22* Superior aspect of the pons

23* Inferior aspect of the pons

24* Point where superior cerebellar peduncules meet

25 Most anterior point of the caudate nucleus

26 Most posterior point of the putamen nucleus

27 Most superior and central point of the caudate nucleus

28 Most superior point of the hippocampus

29 Centroid of the anterior aspect of the amygdala

30 Most posterior point of the cerebellum

31 Most lateral point of the cerebellum

32 Most inferior point of the cerebellum

*
Unilateral landmarks
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Table 2

RV coefficients and P-values (based on permutation tests) obtained for the three modularity models at a large 

and fine scale.

Scale of the model Species EvoDevo model Structural model Functional model

Large-scale Chimpanzee RV=0.35
P=0.310

RV=0.26
P<0.001

RV=0.32
P=0.093

Large-scale Human RV=0.29
P=0.406

RV=0.20
P<0.001

RV=0.25
P=0.107

Fine-scale Chimpanzee RV=0.13
P=0.351

RV=0.13
P=0.005

RV=0.13
P=0.386

Fine-scale Human RV=0.11
P=0.938

RV=0.10
P=0.001

RV=0.09
P=0.098

Sample size is 189 in all cases. P-values indicate the proportion of 10000 random models with a higher level of modularity (lower RV coefficient) 
than the evaluated biological model.
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Table 3

RV coefficients and P-values (based on permutation tests) obtained for different structural divisions of 

landmarks.

Anterior-Posterior Medial-Lateral Superior-Inferior

Chimpanzee RV=0.26
P<0.001

RV=0.31
P=0.268

RV=0.32
P=0.232

Human RV=0.20
P<0.001

RV=0.27
P=0.424

RV=0.23
P=0.072

Sample size is 189 in all cases. P-values indicate the proportion of 10000 random models with a higher level of modularity (lower RV coefficient) 
than the evaluated biological model.
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