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Abstract

The ability to precisely target specific motifs on disease-related proteins, whether conserved
epitopes on viral proteins, intrinsically disordered regions within transcription factors, or
breakpoint junctions in fusion oncoproteins, is essential for modulating their function while
minimizing off-target effects. Current methods struggle to achieve this specificity without
reliable structural information. In this work, we introduce a motif-specific PPI targeting
algorithm, moPPIt, for de novo generation of motif-specific peptide binders from the
target protein sequence alone. At the core of moPPIt is BindEvaluator, a transformer-based
model that interpolates protein language model embeddings of two proteins via a series of
multi-headed self-attention blocks, with a key focus on local motif features. Trained on
over 510,000 annotated PPIs, BindEvaluator accurately predicts target binding sites given
protein-protein sequence pairs with a test AUC > 0.94, improving to AUC > 0.96 when
fine-tuned on peptide-protein pairs. By combining BindEvaluator with our PepMLM peptide
generator and genetic algorithm-based optimization, moPPIt generates peptides that bind
specifically to user-defined residues on target proteins. We demonstrate moPPIt’s efficacy in
computationally designing binders to specific motifs, first on targets with known binding
peptides and then extending to structured and disordered targets with no known binders. In
total, moPPIt serves as a powerful tool for developing highly specific peptide therapeutics
without relying on target structure or structure-dependent latent spaces.

Introduction

Motif-specific targeting of protein-protein interactions (PPIs) offers the potential for highly selective
biotherapeutics that can modulate protein function while minimizing off-target effects, an advantage
unattainable with traditional small molecule drugs, which typically require well-defined and conserved binding
sites for inhibition [Lu et al., 2020]. The importance of targeting specific motifs is evident across a wide range
of biological contexts. For instance, in cancer biology, restoring the function of the p53 tumor suppressor
by targeting its DNA-binding domain could provide a powerful therapeutic approach in cancers where p53
is inactivated by mutations [Sullivan et al., 2017]. In neurodegenerative disorders like Alzheimer’s disease,
precise binding to the β-secretase cleavage site of the amyloid precursor protein (APP) could modulate
its processing and potentially reduce the formation of toxic amyloid-β peptides [Kitazume et al., 2001].
Targeting active sites of enzymes, such as the catalytic domain of BRAF kinase in melanoma, offers more
specific inhibition compared to traditional small molecule inhibitors [Castellani et al., 2023]. Allosteric
domains present another important target, exemplified by the potential to modulate G protein-coupled
receptor (GPCR) function by binding to their allosteric sites [Shpakov, 2023]. For intrinsically disordered
proteins, targeting specific regions of the tau protein involved in pathological aggregation could provide new
avenues for treating tauopathies [Chen et al., 2019]. Furthermore, in cancers driven by fusion oncoproteins,
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such as PAX3::FOXO1 in alveolar rhabdomyosarcoma, targeting the unique sequence at the fusion breakpoint
could offer exquisite specificity for therapeutic interventions [Linardic, 2008, Azorsa et al., 2021].

While experimental methods to generate motif-specific binders, such as animal immunization, phage
display, and yeast display, are often prohibitively laborious, computational approaches offer a much
more streamlined and efficient design process [Chen et al., 2023a]. Advances including AlphaFold and
RFDiffusion, have shown promise in various protein design tasks, including motif-specific binder design
[Jumper et al., 2021, Abramson et al., 2024, Watson et al., 2023, Bryant and Elofsson, 2023]. However,
these methods operate purely in structure space, making them less suitable for targets lacking stable tertiary
conformations, such as intrinsically disordered proteins, which were not present in their training sets.
While recent efforts have attempted to extend diffusion-based methods to sample “plausible” conformations
of disordered proteins via Gaussian perturbations [Liu et al., 2024], they remain constrained by their
reliance on static structural data for training, which biases the underlying latent space, thus precluding
accurate conformational sampling. An alternative approach leverages protein language models (pLMs)
like ESM-2, ESM3, and ProtT5, which have been trained on vast, diverse protein sequence datasets to
capture underlying physicochemical and functional properties of protein sequences, including disorder
propensities [Lin et al., 2023, Elnaggar et al., 2022, Hayes et al., 2024, Vincoff et al., 2024]. These pLMs
have demonstrated utility in various protein design tasks, including our recent work on designing target-
specific peptide binders from target sequence alone [Brixi et al., 2023, Chen et al., 2023b, Bhat et al., 2023].
However, existing pLM-based methods have not yet focused on targeting specific motifs or epitopes on
proteins, leaving a significant gap in our ability to design highly specific binders for conformationally and
functionally diverse protein targets.

To address this gap, in this work, we develop a motif-specific PPI targeting algorithm, termed
moPPIt, that enables the design of motif-specific peptide binders using sequence-only pLM embeddings.
To enable moPPIt-based generation, we train BindEvaluator, a transformer interpolating ESM-2 pLM
embeddings [Lin et al., 2023] via a series of multi-headed self-attention blocks to capture both global and
local interaction properties. Trained on over 510,000 annotated PPI sequence pairs, BindEvaluator accurately
predicts binding hotspots between two proteins with a test AUC > 0.94, improving to AUC > 0.96 when
fine-tuned on known peptide-protein pairs. moPPIt integrates BindEvaluator with our previous PepMLM
peptide generation algorithm [Chen et al., 2023b], via a genetic optimization approach, to generate peptides
that bind specifically to user-defined motifs on target proteins. We demonstrate moPPIt’s efficacy in designing
binders to specific epitopes on a diverse set of targets, including kinases, transcription factors, and even
intrinsically disordered regions (IDRs). Using a combination of AlphaFold2-Multimer [Evans et al., 2021]
and PeptiDerive, a Rosetta-based algorithm for identifying key binding residues [Sedan et al., 2016], we
computationally validate the specificity and binding affinity of our designed peptides on targets with known
peptide binders, as well as on novel structured targets and variable disordered domains. Our comprehensive
approach allows moPPIt to specifically target motifs on a wide range of targets, including those previously
considered “undruggable,” potentially aiding drug discovery efforts for diseases driven by aberrant protein
interactions.

Results

BindEvaluator accurately predicts target binding sites provided two interacting sequences

To enable motif-specific peptide binder generation, we first developed a BindEvaluator model to predict
peptide-protein interaction binding sites (Figure 1A). Specifically, BindEvaluator takes a binder sequence
and a target sequence as input and predicts the binding residues on the target protein. Both sequences
are first processed by the pre-trained ESM-2-650M model to generate embeddings [Lin et al., 2023]. These
embeddings are then refined using multiple multi-head attention modules to capture sequence information. A
reciprocal multi-head attention layer then integrates these processed embeddings to learn global interaction
dependencies. Finally, feed-forward and linear layers analyze the integrated embeddings to predict interaction
hotspots on the target protein (Figure 1A).

We initially trained BindEvaluator on a large protein-protein interaction (PPI) dataset containing over
500,000 entries with annotated interface residues [Bushuiev et al., 2023] to provide foundational knowledge
of protein interaction information. During training, we observed a consistent decline in the validation loss,
which indicates stable and effective learning (Figure S1A). The steady decrease in binary cross entropy (BCE)
loss and Kullback-Leibler (KL) divergence loss suggested that the model improves in distinguishing between
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binding and non-binding residues and in understanding the fundamental distribution of binding sites. The
model’s performance on the test data further confirmed its efficacy, achieving an accuracy of 0.83, an area
under the ROC curve (AUC) of 0.93, an F1 score of 0.65, and a Matthews correlation coefficient (MCC) of
0.59 (Figure 1B).

We hypothesized that incorporating dilated convolutional neural network (CNN) modules into BindEvaluator
would enhance its performance by effectively extracting local features relevant to binding site information
(Figure 1A). To test this hypothesis, we trained a version of BindEvaluator with dilated CNN modules
on the same PPI dataset, holding all other training settings constant except for slightly different gradient
accumulation schedules compared to the original model without dilated CNN modules. The inclusion of these
CNN modules led to observable improvements across several metrics (Figure 1B). Specifically, the adjusted
model achieved a lower test loss than the model without these modules. Additionally, the decrease in BCE
loss indicates stronger binding site classification performance. Although the KL divergence loss showed a
slight increase from 0.773 to 0.776, this did not significantly impact the overall model performance. Both
models, with and without dilated CNN modules demonstrated similar declining trends in their loss curves,
indicating effective learning (Figure S1B). Notably, the total loss continued to decrease even in the final
training epochs, suggesting that the BindEvaluator with dilated CNN modules was more adept at learning
subtle features, leading to better performance.

To adapt our model for peptide-protein binding site prediction, the BindEvaluator model with dilated
CNN modules, initially trained on PPI data, was further fine-tuned on over 12,000 structurally validated,
non-redundant peptide-protein sequence pairs. We observed validation loss curves steadily improving during
fine-tuning (Figure S1). The fine-tuned model demonstrated notably lower Kullback-Leibler (KL) divergence
loss in peptide-protein binding region predictions compared to its performance on PPI interaction prediction,
and achieved strong test metrics, indicating high precision in binding site prediction (Figure 1B).

moPPIt generates epitope-specific binders to target proteins

With the fine-tuned BindEvaluator for peptide-protein binding site prediction in hand, we turned our attention
to peptide generation by developing the motif-specific PPI targeting algorithm (moPPIt) to generate motif-
specific peptide binders based solely on target protein sequences. Rather than sampling random sequences
through BindEvaluator, we decided to employ our recent PepMLM model, a state-of-the-art ESM-2-based
model that generates peptide binders conditioned on a target protein sequence alone [Chen et al., 2023b].
As such, we sought to optimize PepMLM-generated peptides to bind to specific motifs on a target protein. To
accomplish this, moPPIt leverages a genetic algorithm, integrating the pre-trained PepMLM and fine-tuned
BindEvaluator, to produce binders with high specificity to user-defined residues (Figure 2).

The process begins with PepMLM generating a pool of candidate peptide binders of a defined length for a
given target protein sequence. BindEvaluator then predicts the interacting residues between each candidate
binder and the target protein. A penalty score is assigned to each binder based on these predictions (see
Methods). Additionally, PepMLM computes the perplexity of each peptide given the target sequence, which
serves as another metric to evaluate the biological relevance of the binders. The candidate binders are then
sorted based on penalty scores and perplexity. Subsequently, a new pool of candidate binders is generated
from the sorted binders via a genetic algorithm, aiming for lower penalty scores or perplexity (see Methods).
This new pool undergoes another round of evaluation by BindEvaluator and PepMLM, and the process is
repeated. The iteration continues until the penalty score falls below a set threshold, the maximum number of
genetic algorithm rounds is reached, or there is no further improvement in successive rounds. The resulting
top binders are expected to exhibit high affinity and specificity for the specified binding motifs on the target
protein.

To evaluate moPPIt in a well-controlled setting, we designed binders for 15 structured, unseen proteins
with known, pre-existing peptide binders, all derived from the PDB. We calculated the ipTM and pTM
scores, which represent confidence in interface formation and overall complex formation, respectively, for the
peptide-protein complexes predicted by AlphaFold2-Multimer, comparing the performance of the pre-existing
peptides to the ones designed by moPPIt [Evans et al., 2021]. We observed that moPPIt-designed binders can
form peptide-protein complexes with similar or superior ipTM and pTM scores compared to the pre-existing
ones (Table S1). Notably, only one of the 15 designed peptides fell slightly below the defined ipTM threshold,
set at 0.05 below the ipTM score of the existing peptide-protein complex (Figure 2). The superior ipTM
scores underscore moPPIt’s capability to generate peptides with strong binding to target proteins. Moreover,
moPPIt successfully designed binders of varying lengths, demonstrating its overall versatility (Table S1).
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We further analyzed the relative interface scores (RIS) of both existing and designed peptide-protein complexes
using PeptiDerive [Sedan et al., 2016], which evaluates the energy contribution of specific residues to the
overall free energy of the binder-target complex structure (Figure 3, S3). The designed complexes showed
similar or higher RIS at specified binding positions compared to existing complexes, indicating similar or
stronger binding potential. Additionally, the residues with high RIS were primarily localized in regions
adjacent to the binding motifs, showcasing the high specificity of moPPIt-designed binders.

moPPIt generates epitope-specific binders for structured proteins without known binders

To further assess moPPIt’s performance, we designed peptide binders for structured proteins without pre-
existing binders. We specifically selected proteins from three enzyme classes (kinases, phosphatases, and
deubiquitinases) to evaluate moPPIt’s versatility in designing binders for diverse structured proteins without
pre-identified binding sites. We first identified potential binding sites for these proteins. We utilized PepMLM
to generate 50 candidate binders for each protein. BindEvaluator then predicted the binding sites on the
target proteins for the top three binders with the lowest perplexity. The binding residues were identified as
those present in all three predictions.

We confirm that moPPIt-designed peptides, when co-folded with target proteins, exhibit high pTM and
ipTM scores, indicating that the designed peptides can form structured complexes with target proteins
(Table S2). Having confirmed binding capacity, we next evaluated the epitope specificity of designed binders
to corresponding targets (Figure 4, S4). The structure of three example targets, CLK1, PPP5, and MINDY1,
co-folded with their designed binders, are shown in Figure 4. Notably, the residues with the highest RIS
predicted by PeptiDerive are at the specified binding motifs, indicating moPPIt’s capability to generate highly
specific binders. The 3D structures of the peptide-protein complexes show the designed peptides positioned
close to the target binding sites, further validating moPPIt’s capacity to produce binders with high affinity
for the target motifs.

moPPIt generates binders targeting intrinsically disordered proteins

The true utility of using pLMs as opposed to structure-based models such as RFDiffusion, lies in the
ability to bind to conformationally diverse targets and regions. To demonstrate this, we selected three
proteins with structurally disordered domains (UCHL5, 4E-BP2, and EWS::FLI1) and designed binders for
them using moPPIt. Table S3 displays the pTM and ipTM scores for each complex structure formed with
the designed binders, along with their binding sites and target proteins’ disordered regions predicted by
DisorderUnetLM [Kotowski et al., 2024]. For UCHL5, we targeted the binder to one of its disordered regions,
achieving a high ipTM score and pTM score, similar to the binder for 4E-BP2. For EWS::FLI, we designed
binders to its structured domain so as to demonstrate that moPPIt is able to design binders to the structured
regions of intrinsically disordered proteins. The high ipTM scores of the three peptide-protein complexes
demonstrate the strong binding capacity of the designed peptides (Table S3).

We next conducted an analysis of binding site specificity. Remarkably, the PeptiDerive scores align with
the specified binding motifs, showing high predicted RIS (Figure 5). The visualizations of the 3D predicted
structures reveal that the designed peptides are positioned close to the target motifs, suggesting a high
affinity for the intrinsically disordered domains. These alignments indicate that moPPIt can design binders
targeting both conformationally ordered and disordered regions of structurally disordered proteins. Although
BindEvaluator and PepMLM were primarily trained on sequences from solved peptide-protein structures
[Chen et al., 2023b], and tools like AlphaFold2-Multimer and PeptiDerive may not be fully reliable for
disordered regions, the consistency between the target motifs and PeptiDerive’s predictions, as well as
3D complex structures, provides a high degree of confidence in moPPIt-designed binders. Nevertheless,
experimental validation is necessary to confirm whether these binders will effectively bind to the specified
disordered regions.

Discussion

The challenge of designing highly specific peptide binders, particularly for targets lacking well-defined
structural pockets or those with intrinsically disordered regions, has long been a bottleneck in therapeutic
development. In this work, we have presented moPPIt, a purely sequence-based approach that addresses
this challenge by enabling the design of motif-specific peptide binders without relying or interpolating on
structural representations. By integrating feature-rich pLM embeddings, moPPIt demonstrates the ability to
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generate peptides that bind to user-defined epitopes across a diverse range of protein targets, those with both
structured and conformationally flexible motifs.

We believe moPPIt has the potential to be effective across a broad spectrum of protein targets. To
prove this, our next steps will include a comprehensive experimental validation of moPPIt, alongside
structure-based methods like RFDiffusion [Watson et al., 2023, Liu et al., 2024], evaluating performance
on both structured and disordered regions. This will involve biochemical binding affinity assays and
leveraging our chimeric peptide-E3 ubiquitin ligase ubiquibody (uAb) architecture for target degradation
studies [Brixi et al., 2023, Chen et al., 2023b, Bhat et al., 2023]. Furthermore, the motif-specific nature of
our approach suggests promising applications in developing binders with mutant selectivity and the ability to
target specific post-translational modification sites [Peng et al., 2024]. Importantly, moPPIt’s capability to
target specific epitopes could be particularly valuable in interrogating viral proteins, such as those of SARS-
CoV-2 and future pandemic viruses, by enabling the design of binders that target highly conserved regions
less prone to escape mutations [Abbasian et al., 2023]. Overall, these capabilities could prove invaluable
for both detection and therapeutic applications, potentially enabling more precise modulation of protein
function in complex diseases that are driven by aberrant post-translational states. As we move forward with
experimental validation, we anticipate that moPPIt will contribute significantly to expanding the repertoire
of targetable proteins and advancing the field of precision biotherapeutics.

Methods

Dataset Curation

The training data for BindEvaluator was curated from the PPIRef dataset, a large and non-redundant
databank of PPIs [Bushuiev et al., 2023]. To augment the dataset, additional entries were generated by
reversing the roles of the target and binder sequences for each original entry. Proteins exceeding 500 amino
acids were removed due to GPU constraints. After removing all duplicates, the final dataset comprised
510,804 triplets, each containing target sequence, binder sequence, and binding motifs. This dataset was split
at a 60/20/20 ratio into a training set, validation set, and test set.

The peptide-protein interaction data for fine-tuning BindEvaluator was curated from the PepNN and BioLip2
databases [Abdin et al., 2022, Zhang et al., 2024]. Specifically, 3022 PepNN and 9251 BioLip2 non-redundant
triplets for peptide-protein binding were collected. Proteins longer than 500 amino acids and peptides longer
than 25 amino acids were removed. The dataset was split at a 80/10/10 ratio into a training set, validation
set, and test set.

BindEvaluator Model Architecture

The generation algorithm is based on the BindEvaluator model. As shown in Figure 1, BindEvaluator takes
a binder sequence and a target sequence as inputs to predict the binding residues on the target protein.
The design of this model draws inspiration from the architectures of PepNN and Pseq2Sites, which have
demonstrated effectiveness in similar tasks [Abdin et al., 2022, Seo et al., 2024].

Both binder and target sequences are first passed into the pre-trained ESM-2-650M model to obtain their
embeddings [Lin et al., 2023]. For the target sequence, a dilated CNN module captures the local features of
adjacent residues. Specifically, the module is composed of three stacked CNN blocks with different dilation
rates (1, 2, and 3) to extract hierarchical features. Each block consists of three convolutional layers with
different kernel widths (3, 5, and 7) to cover different receptive field sizes, accommodating different binding
site sizes. Padding is added to each convolutional layer to maintain consistent output and input sizes. Since
the focus is to identify binding residues for the target protein, the dilated CNN module is applied only to the
target sequence. Given that no binding motifs in the training set contain more than 23 continuous residues,
the dilated CNN module is sufficient to capture the binding region features.

The processed embeddings are then passed through multi-head attention modules to capture global depen-
dencies for each residue. In the reciprocal attention modules, the target and binder sequence representations
are integrated to capture binder-target interaction information. Specifically, in these modules, the binder
representations are projected into a key matrix K and a query matrix Q, while the target representations are
projected into a value matrix V , and vice versa. The reciprocal attention is formulated as follows:
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Attentiontarget(Q,K, Vbinder) = softmax
(
QKT

√
dk

)
Vbinder (1)

Attentionbinder(Q,K, Vtarget) = softmax
(
KQT

√
dk

)
Vtarget (2)

where dk is the model dimension.

Following several layers of dilated CNN and attention modules, the resulting target sequence representation
encapsulates the binder-target binding information. Finally, this representation is processed by feed-forward
layers and linear layers to predict the binding sites.

Model Training and Fine-Tuning

BindEvaluator is first trained on a PPI dataset and then fine-tuned using peptide-protein binding data.
During training and fine-tuning, the same model architecture is used. The weights of ESM-2-650M are
fixed, and all other parameters remain trainable. To accurately capture the intrinsic distribution of binding
residues, the loss function L is designed to be the sum of the Binary Cross-Entropy (BCE) loss and the
Kullback-Leibler (KL) divergence between the predicted and the true binding motifs. Specifically, letting ŷ
be the predicted binding motifs and y be the true binding motifs, the loss function is defined as:

L(y, ŷ) = −
∑
i

[yi log(ŷi) + (1− yi) log(1− ŷi)] + λ
∑
i

yi log

(
yi
ŷi

)
(3)

Here, λ is a hyper-parameter that balances the contribution of the KL divergence to the total loss. During
training, λ is set to 0.1, while during fine-tuning, λ is set to 1.

BindEvaluator was trained on a 6xA6000 NVIDIA RTX GPU system with 48 GB of VRAM each for 30
epochs. The batch size was set to 32, with a learning rate of 1e-3, a dropout rate of 0.3, and a gradient
clipping value of 0.5. The AdamW optimizer was used with weight decay. Fine-tuning was performed on the
same six GPUs for 30 epochs, with an increased dropout rate of 0.5. The batch size, learning rate, gradient
clipping, and optimizer settings were identical to those used during training.

Motif-Specific Binder Design Algorithm

The moPPIt algorithm aims to generate motif-specific peptide binders based on the target protein se-
quence, leveraging the PepMLM algorithm: https://huggingface.co/ChatterjeeLab/PepMLM-650M The
visualization of the moPPIt algorithm is shown in Figure 2.

Given a target protein sequence, PepMLM generates a pool of candidate peptide binders of a specified length.
BindEvaluator then predicts the interacting residues of a candidate binder to the target protein. A penalty
score is assigned based on these predictions. Specifically, for each amino acid in the specified binding motifs,
but not in the predicted binding sites, the penalty score increases by 1. In contrast, for each amino acid in
the predicted but not the specified binding motifs, the penalty score increases by 0.5. The scoring system
ensures that the generated binders target the specified motifs with high selectivity. Additionally, as a masked
language model, PepMLM computes the perplexity of each peptide based on the target protein sequence.
The perplexity (PPL) of the peptide sequence given the target protein is defined as:

PPL = exp

(
− 1

L

L∑
i=1

logP (ai|T, a<i)

)
(4)

where L is the number of amino acids in the peptide, ai is the i-th amino acid in the peptide sequence, T
represents the target protein, and P (ai|T, a<i) is the probability of the i-th amino acid given the target
protein and the preceding amino acids in the peptide sequence.

After computing the penalty scores and perplexity, candidate binders are sorted based on these metrics. A
genetic algorithm is then applied to the sorted binders. Specifically, the top 10% of binder sequences remain
unchanged. For the remaining 90%, new binders are created by randomly selecting and mating two sequences
from the top half of the original pool. During mating, each position on the binder sequence has a 45% chance
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of inheriting the amino acid from one parent sequence, a 45% chance from the other parent, and a 10%
chance of being replaced by a new amino acid. This process generates a new pool of candidate binders.

The new pool undergoes another round of evaluation using BindEvaluator and PepMLM to compute penalty
scores and perplexity. After sorting based on the metrics, these binders are forwarded to the next round of
the genetic algorithm. This iterative process continues until the penalty score falls below a certain threshold,
the maximum number of genetic algorithm rounds is reached, or no further improvement is observed in
successive rounds. In the benchmarking tasks presented in this paper, the threshold is set to be one-tenth
of the number of specified binding positions, rounded to the nearest integer. The resulting top binders are
expected to bind to the specified motifs on the target protein with high affinity and specificity.

In Silico Benchmarking

All proteins and PDB IDs used for benchmarking can be found in the supplementary tables. Complex
structures of peptide and target proteins, and their associated pTM and ipTM scores, were predicted
using the AlphaFold2-Multimer v3 model in a locally installed version of ColabFold [Mirdita et al., 2022].
The PeptiDerive algorithm (https://rosie.rosettacommons.org/peptiderive) was used to calculate the
relative interaction score (RIS) for each position on the target protein based on the output AlphaFold2-
Multimer structure [Sedan et al., 2016].
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Figure 1: BindEvaluator. (A) Overview of the architecture of BindEvaluator. BindEvaluator predicts
the binding residues on the target protein given a target sequence and a binder sequence. The binder and
target sequences are first processed using a pre-trained ESM-2-650M model to obtain their embeddings.
The target sequence embeddings are further refined using a dilated CNN module to capture local features.
Both embeddings are then passed through multi-head attention modules to capture global dependencies.
Reciprocal multi-head attention modules integrate the representations of the target and binder sequences,
allowing for the capture of binder-target interaction information. Feed-forward and linear layers subsequently
process the refined embeddings to predict the binding sites. (B) Test performance metrics of BindEvaluator
across different training configurations. Performance metrics were calculated for BindEvaluator across three
configurations: trained without dilated CNN modules, trained with dilated CNN modules, and fine-tuned for
peptide-protein binding site prediction. Metrics include overall loss, binary cross-entropy (BCE) loss, KL
divergence loss, accuracy, area under the ROC curve (AUC), F1 score, and Matthews correlation coefficient
(MCC).
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Figure 2: moPPIT. (A) Schematic of moPPIt. The algorithm starts with a target protein sequence input,
generating initial binder sequences using PepMLM and calculating their perplexity. BindEvaluator predicts
binding residues and assigns penalty scores. The binders are refined via a genetic algorithm, iterating until
stopping criteria are met, as detailed in the main text. (B) Hit rate of moPPIt on structured targets with
known binders. The ipTM scores of input peptides, in complex with their target protein, were calculated via
AlphaFold-Multimer. The ipTM scores for known peptides (red) from PDB structures were compared to
moPPIt-designed peptides (blue) for the same target proteins. An ipTM below 0.05 of the existing peptide
for a given target protein (green line) was used as a threshold to call hits.
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Figure 3: PeptiDerive relative interface scores for existing and designed peptide-protein com-
plexes. The PeptiDerive relative interface scores (RIS) for existing and designed peptide-protein complexes
were computed and visualized for three example proteins with PDB IDs: (A) 1A2C, (B) 2FAI, and (C)
3IDJ. The first heatmap for each protein shows the RIS of the existing peptide-protein complex, while the
second heatmap shows the scores for the designed peptide-protein complex. For each heatmap, the x-axis
indicates the residue positions, with highlighted positions in red representing the target binding amino acids
that were input into moPPIt. High RIS at these positions indicate strong binding potential.
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Figure 4: Structural visualization and PeptiDerive relative interaction scores for designed
peptides targeting structured motifs. The peptide-complex structures are visualized for three proteins
without known binders: (A) CLK1, (B) PPP5, and (C) MINDY1. The target proteins are depicted in
grey, the designed peptide binders are shown in yellow, and the binding residues specified by the moPPIt
algorithm are highlighted in magenta. Below each structure, the relative interaction scores (RIS) computed
by PeptiDerive are shown, with high scores indicating strong binding potential. Positions highlighted in red
were input into moPPIt as the desired target amino acids.
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Figure 5: Structural visualization and PeptiDerive relative interaction scores for designed
peptides targeting disordered regions. The peptide-complex structures are visualized for three proteins
with disordered regions: (A) UCHL5, (B) 4E-BP2, and (C) EWS::FLI1. The target proteins are depicted in
grey, the designed peptide binders are shown in yellow, and the binding residues specified by the moPPIt
algorithm are highlighted in magenta. Below each structure, the relative interaction scores (RIS) computed
by PeptiDerive are shown, with high scores indicating strong binding potential. Positions highlighted in red
were input into moPPIt as the desired target amino acids.
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Supplementary Information

Figure S1: Validation loss curves for BindEvaluator training and fine-tuning. (A) Validation
loss, binary cross-entropy (BCE) loss, and Kullback-Leibler (KL) divergence loss curves during training of
BindEvaluator on the PPI dataset without dilated CNN modules. (B) Loss curves for training with dilated
CNN modules, showing similar trends to (A) but with noticeable reductions in losses during the final epochs.
(C) Loss curves during fine-tuning of BindEvaluator with dilated CNN modules on peptide-protein binding
data, illustrating further decreases in loss metrics, particularly in KL divergence.
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Table S1: Comparison of ipTM and pTM scores for existing and designed peptide-protein
complexes. The ipTM and pTM scores are calculated by AlphaFold2-Multimer for peptide-protein complexes
using both existing peptides and peptides designed by the moPPIt algorithm. The designed binders for each
protein are presented.

PDB ID ipTM score
(existing binder)

ipTM score
(designed binder)

pTM score
(existing binder)

pTM score
(designed binder) Designed Binder

1A2C 0.91 0.93 0.96 0.96 GYEEIPEEYLQ

1AYC 0.69 0.8 0.9 0.88 SSQVVADLQPP

1B8Q 0.84 0.83 0.82 0.81 VVSVDSV

1LTJ 0.94 0.87 0.89 0.89 GHRG

2FAI 0.88 0.89 0.95 0.95 HHKILHRLLQDSS

3IDG 0.51 0.51 0.71 0.72 PRRRGGRR

3IDJ 0.48 0.63 0.79 0.77 LLLELDKWLLS

4IU7 0.93 0.92 0.93 0.92 KKIHHRLLQD

5E1C 0.86 0.81 0.93 0.93 HKKIHHRLLQQQSE

5EZ0 0.84 0.84 0.85 0.85 GWESLKTGKETPL

5KRI 0.86 0.84 0.93 0.92 HKKILHRLLQDSSS

5M02 0.5 0.49 0.86 0.86 KAPANFATM

6ERW 0.96 0.94 0.95 0.96 TTYADIIASGRTGRRAAI

8CN1 0.93 0.93 0.89 0.89 VVTV

8OEP 0.84 0.84 0.84 0.85 RWRDPKARPGRETPL

16

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 1, 2024. ; https://doi.org/10.1101/2024.07.31.606098doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.31.606098
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table S2: pTM and ipTM Scores for designed binders targeting proteins without known binders.
This table lists the pTM and ipTM scores for the complex structures of proteins with designed binders targeting
proteins without known binders. The proteins are categorized by type, including kinases, phosphatases, and
deubiquitinating enzymes (DUBs). The designed binders are provided alongside each protein.

UniProt ID Protein Name Type ipTM score pTM score Designed Binder

P49759 CLK1 Kinases 0.76 0.72 PDGDRR

P11309 P1M1 Kinases 0.83 0.84 KKRRRHPS

P11801 PSKH1 Kinases 0.86 0.72 RRPDDIAW

P17612 PRKACA Kinases 0.88 0.95 TRGRIHI

P53041 PPP5 Phosphatases 0.88 0.89 EDLPA

Q15257 PTPA Phosphatases 0.88 0.84 PDLFDLFL

P67775 PPP2CA Phosphatases 0.8 0.92 SELGDRFP

P62136 PPP1CA Phosphatases 0.82 0.89 PLVVTE

P63279 UBC9 DUBs 0.84 0.92 AQVVPE

Q8N5J2 MINDY1 DUBs 0.87 0.58 SRLSSGK
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Table S3: pTM and ipTM scores for designed binders targeting disordered regions in selected
proteins. The table includes the UniProt ID, protein name, binding sites, disordered regions, pTM and
ipTM scores, and the designed binders for each protein. High pTM and ipTM scores indicate the reliability
and stability of the predicted complex structures.

UniProt ID Protein Name Binding Sites Disordered Regions ipTM score pTM score Binder

Q9Y5K5 UCHL5 153-158 1-4/148-159/243-253/327-329 0.68 0.81 AQRGRGR

Q13542 4E-BP2 52-67 1-119 0.71 0.36 STTAQAFVQE

B1PRL2 EWS:FLI 324-331 1-260 0.82 0.3 GPSSWYS
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Figure S2: PeptiDerive relative interface scores for existing and designed peptide-protein
complexes. Heatmaps of PeptiDerive relative interface scores (RIS) are shown for 6 peptide-protein
complexes among 15 structured complexes with known binders that were tested: (A) 1AYC, (B) 1B8Q, (C)
1LTJ, (D) 3IDG, (E) 4IU7, (F) 5E1C. The first heatmap for each protein shows the RIS of the existing
peptide-protein complex, while the second heatmap shows the scores for the designed peptide-protein complex.
For each heatmap, the x-axis indicates the residue positions, with highlighted positions in red representing
the target binding amino acid positions that were input into moPPIt. High RIS at these positions indicate
strong binding potential.
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Figure S3: PeptiDerive relative interface scores for existing and designed peptide-protein
complexes. Heatmaps of PeptiDerive relative interface scores (RIS) are shown for 6 peptide-protein
complexes among 15 structured complexes with known binders that were tested: (G) 5EZ0, (H) 5KRI, (I)
5M02, (J) 6ERW, (K) 8CN1, (L) 8OEP. The first heatmap for each protein shows the RIS of the existing
peptide-protein complex, while the second heatmap shows the scores for the designed peptide-protein complex.
For each heatmap, the x-axis indicates the residue positions, with highlighted positions in red representing
the target binding amino acid positions that were input into moPPIt. High RIS at these positions indicate
strong binding potential.
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Figure S4: PeptiDerive relative interface scores for complexes with peptides designed to novel
structured targets. Heatmaps of PeptiDerive relative interface scores (RIS) are shown for 7 peptide-protein
complexes from 10 proteins without known binders that were tested: (A) P1M1, (B) PSKH1, (C) PRKACA,
(D) PTPA, (E) PPP2CA, (F) PPP1CA, (G) UBC9. For each heatmap, the x-axis indicates the residue
positions, with highlighted positions in red representing the target binding amino acids positions that were
input into moPPIt. High RIS at these positions indicate strong binding potential.
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