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The cancer-associated
fibroblast-related signature
predicts prognosis and indicates
immune microenvironment
infiltration in gastric cancer

Tsz Kin Mak1†, Xing Li1†, Huaping Huang1†, Kaiming Wu1,
Zhijian Huang1,2*, Yulong He1,2* and Changhua Zhang1,2*

1Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University,
Shenzhen, China, 2Guangdong Provincial Key Laboratory of Digestive Cancer Research, The
Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
Background: Gastric cancer (GC) is one of the most common cancers, with a

wide range of symptoms and outcomes. Cancer-associated fibroblasts (CAFs)

are newly identified in the tumor microenvironment (TME) and associated with

GC progression, prognosis, and treatment response. A novel CAF-associated

prognostic model is urgently needed to improve treatment strategies.

Methods: The detailed data of GC samples were downloaded from The Cancer

Genome Atlas (TCGA), GSE62254, GSE26253, and GSE84437 datasets, then

obtained 18 unique CAF-related genes from the research papers. Eight

hundred eight individuals with GC were classified as TCGA or GSE84437

using consensus clustering by the selected CAF-related genes. The

difference between the two subtypes revealed in this study was utilized to

create the “CAF-related signature score” (CAFS-score) prognostic model and

validated with the Gene Expression Omnibus (GEO) database.

Results: We identified two CAF subtypes characterized by high and low CAFS-

score in this study. GC patients in the low CAFS-score group had a better OS

than those in the high CAFS-score group, and the cancer-related malignant

pathways were more active in the high CAFS-score group, compared to

the low CAFS-score group. We found that there was more early TNM stage

in the low CAFS-score subgroup, while there was more advanced TNM stage in

the high CAFS-score subgroup. The expression of TMB was significantly higher

in the low CAFS-score subgroup than in the high CAFS-score subgroup. A low

CAFS-score was linked to increased microsatellite instability-high (MSI-H),

mutation load, and immunological activation. Furthermore, the CAFS-score

was linked to the cancer stem cell (CSC) index as well as chemotherapeutic

treatment sensitivity. The patients in the high CAFS-score subgroup had

significantly higher proportions of monocytes, M2 macrophages, and resting

mast cells, while plasma cells and follicular helper T cells were more abundant

in the low-risk subgroup. The CAFS-score was also highly correlated with the
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sensitivity of chemotherapeutic drugs. The low CAFS-score group was more

likely to have an immune response and respond to immunotherapy. We

developed a nomogram to improve the CAFS-clinical score’s usefulness.

Conclusion: The CAFS-score may have a significant role in the TME,

clinicopathological characteristics, prognosis, CSC, MSI, and drug sensitivity,

according to our investigation of CAFs in GC. We also analyzed the value of the

CAFS-score in immune response and immunotherapy. This work provides a

foundation for improving prognosis and responding to immunotherapy in

patients with GC.
KEYWORDS

CAFS-score, CAFs gene, Gastric cancer, immune therapy, immune microenvironment
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Introduction

Cancer is the leading cause of premature death, which causes a

hugepublic health and economic burden (1).According to the global

cancer statistics, there were 19.3million new cancer cases and nearly

10 million cancer-associated deaths worldwide in 2020. Among

them, gastric cancer (GC) represents more than 1 million new

cases and 769,000 deaths, ranking fifth in incidence (5.6%) and

fourth inmortality (7.7%) (2).CasesofGCwere frequentlydiagnosed

in the advanced stage (3).Meanwhile, a trend of augmented younger

GCcases (aged<50years) alsobringsa severe test in therapy (2).GCis

a highly molecular and phenotypic heterogeneity with a complex

tumormicroenvironment (TME). Researchon theTMEmayhelp to

explore the underlining mechanisms of tumorigenesis

and development.

The TME is a heterogeneous collection of various immune

cells, stromal cells, vessels, and extracellular matrix (ECM).

Tumor cells and the TME act as seed and soil; the TME fosters

tumor progression and mediates relapse (4). Cancer-associated

fibroblasts (CAFs) are one of the most abundant cells and act as

critical components among them. Activated CAFs create a

conducive environment for tumorigenesis and progression.

According to the research papers from PubMed, 18 CAF-

related genes that were confirmed by fundamental experiments

in GC were chosen for modeling purposes. Activated CAFs create

a conducive environment for cancer proliferation and

maintaining CSC by secreting a plethora of cytokines and

chemokines, such as CXC-chemokine ligand 12 (CXCL12),

interleukin-6 (IL-6), and IL-33 (5–8). Secretion of IL-6 can

promote the epithelial–mesenchymal transition (EMT) and

metastasis of GC via the JAK2/STAT3 signaling pathway.

Simultaneously, IL-6 also prompts cancer immune escape by

recruiting immunosuppressive cells into the TME (8, 9). Secretion
02
of ECM-degrading proteases matrix metalloproteinases (MMPs),

such as MMP11 and MMP14, directly confers a migration track

by remodeling the ECM and physically pulling, promoting cancer

invasion and metastasis (10–12). Besides that, CXCL12 and

fibroblast growth factor 9 (FGF9) produced by CAFs facilitate

tumor neovascularization to overcome a hypoxic and acidic TME

(5, 7, 13). The CAF-derived hyaluronan and proteoglycan link

protein 1 (HAPLN1) promotes ECM remodeling by decreasing

the density and size of fibers, as well as increasing the fiber

alignment, resulting in tumor invasion and aggression in GC (14,

15). Meanwhile, GC cells also release the transforming growth

factor-b+ (TGFb+) exosomes to convert mesenchymal stem cells

(MSCs) into activated CAFs. The crosstalk biological aspects

between CAFs and GC create a positive feedback loop to

stimulate GC progression and metastasis (5). Other CAF-

related genes, such as mucin 1 (MUC1), Krüppel-like Zinc-

Finger Transcription Factor 5 (KLF5), tumor endothelial

marker 1 (TEM1), vascular adhesion molecule 1 (VCAM1),

periostin (POSTN), lysyl oxidase like 2 (LOXL2), neuropilin-2

(NRP2), rhomboid 5 homolog 2 (RHBDF2), and serum amyloid

A1 (SAA1), are characterized by high expression of genes

associated with a poor prognosis in patients with GC (12, 16–

22). In contrast, CAF-related genes such as Sorbin and SH3

domain-containing protein 1 (SORBS1), and secreted protein

acidic and rich in cysteine (SPARC) have a significantly low

expression in CAF and are closely related to poor prognosis in GC

(23, 24). Carcinogenesis and development are characteristic of the

interaction between multiple genes and signal pathways. It is not

sufficient to focus on one or two genetic biomarkers to correlate

with the GC prognosis. Hence, we put up an 18-CAF-related gene

subgroup classification and CAFS-score model that may provide

important insights into predicting prognosis and guiding

clinical practice.
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In this present study, we constructed a GC scoring model

(CAFS-score) based on 808 GC patients with transcriptome data

and clinical information and 14 identified GC-related CAF

genes, and validated its reliability with multiple datasets. We

clustered those patients into two CAF subtypes according to the

CAF genes’ expression levels and identified the differentially

expressed genes (DEGs). Then, patients were classified into three

DEG-related gene subtypes and established the CAFS-score

system. The clinical practice of this scoring model was

validated in GC patients, including prognosis, immune

microenvironment, and drug sensitivity.
Methods

Dataset collection and
sample information

The flowchart is described in Supplementary Figure S1 and

the samples were analyzed with staging statistics. The data of

gene expression, somatic mutation, and corresponding clinical

information of GC samples from The Cancer Genome Atlas

(TCGA) database (https://tcga-data.nci.nih.gov/tcga/) were

collected, which include tumor samples and para-cancer

samples with detailed information for further analysis. In

addition, 433 GC samples in South Korea (GSE84437) and 300

GC samples in the ACRG (Asian Cancer Research Group) study

(GSE62254) with detailed characteristic information and

survival duration were obtained from the GEO database

(https://www.ncbi.nlm.nih.gov/geo/). Moreover, GSE26253 was

obtained from the GEO database.
Defining the CAF-related regulators

In the previous research study, Zang et al. (11) found that

matrix metalloproteinase 11 (MMP11) secreted by CAFs is not

only overexpressed in exosomes purified from plasma and GC

samples, but also associated with the overall survival (OS) of GC

patients. Shen et al. (15) showed that HAPLN1 is a significantly

upregulated gene in CAFs of GC, and higher expression is

associated with shorter OS in GC patients. CAF-derived IL-33

is upregulated in the human GC and served as a poorly

prognostic marker in GC patients proved by Su et al. (6). In

the research study of CAFs, Wand et al. (12) demonstrated that

MMP14, LOXL2, and POSTN are characterized by high

expression of genes associated with gastric tumor invasion.

The previous research studies found that SORBS1, IL-6,

MUC1, FGF9, KLF5, SPARC, TEM1, NRP2, CXCL12,

RHBDF2, SAA1, and VCAM are significant expressions in

CAF and have an association with GC (7, 8, 13, 16–24).

According to our search in research papers from PubMed, we

chose the 18 genes (MMP11, HAPLN1, IL-33, IL-6, SORBS1,
Frontiers in Immunology 03
MUC1, FGF9, KLF5, SPARC, TEM1, VCAM1, POSTN,

MMP14, LOXL2, NRP2, CXCL12, RHBDF2, and SAA1) that

related to CAFs in GC.
Consensus clustering and
gene clustering

According to the selectedCAF-related genes, consensus clustering

was utilized to identify and classify the patient intomolecular subtypes

by the k-means method. The “ConsensuClusterPlus” package was

applied to determine the number of clusters and their stability. In

addition, 1,000 repetitions were performed to ensure the stability of

classification (25).

Setting the criteria of |log2(Fold Change)| > 1 and false

discovery rate (FDR)< 0.05, a list of DEGs from consensus

clustering was identified by utilizing the R package limma.

Secondly, according to the expression of prognostic DEGs, an

unsupervised clustering method was used to classify the patient

into different subtype groups (Gene subtype A, Gene subtype B,

and Gene subtype C) for further analysis.

To further examine the clinical value of the consensus

clustering and gene clustering, we evaluated the correlations

among the molecular subtypes, c l inicopathological

characteristics, and prognosis. The clinical characteristics

included age, gender, TNM stage, and grade. Furthermore, we

perform the Kaplan–Meier survival analysis in different clusters

using the survival package of the R software.
Gene set variation analysis

Gene set variation analysis is typically used to estimate variation

in pathway and biological process activity in expression dataset

samples (26). This method was performed to explain the

differences in biological processes between two CAFs-score

subtypes by using “GSVA” R packages. The gene sets of

“c2.cp.kegg.v7.4.symbols.gmt” were downloaded from the MSigDB

database for furtherGSVA.DEGswere analyzedusing theRpackage

clusterProfiler in Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG),with a cutoff value of FDR< 0.05.
Construction and validation of the
prognostic model

LASSO-Cox analysis was utilized to minimize the risk of

over-fitting using the “glmnet” R package. Multivariate Cox

analysis was used to select the candidate genes for establishing

a prognostic model (CAFS-score) in the training cohort. The

CAFS-score was calculated as follows:
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CAFS − score  =  o Expi �  coefið Þ
where Coefi and Expi denote the risk coefficient and

expression of each gene, respectively. The cutoff point was

determined using the “survminer” package. According to the

CAFS-score, we revealed that the survival curve was used for

visualization with both training and testing cohorts in the high-

or low-risk group by Kaplan–Meier analysis. p-values< 0.05 were

considered to be statistically significant.
Clinical correlation and stratification
analyses of the CAFS-score

Between the risk score and clinicopathological variables,

univariate and multivariate Cox regression analysis was done

to validate whether the CAFS-score is an independent

prognostic predictor. The results were revealed in the forest

map. Thorsson et al. (27) found that all tumors could be

divided into six immune subtypes, namely, wound healing

(C1), IFN-g dominant (C2), inflammatory (C3), lymphocyte

depleted (C4), immunologically quiet (C5), and TGF-b
dominant (C6). Therefore, we performed the factor of

immune sub-type (https://tcga-pancan-atlas-hub.s3.us-east-1.

amazonaws.com/download/Subtype_Immune_Model_Based.

txt.gz) between different risk groups, using the R software

of “RColorBrewer”.

For the gene mutation analysis, information on genetic

alteration was downloaded from the TCGA and GEO

databases. The R package “Maftools” was utilized for analyzing

the gene mutation in different risk subgroups. Moreover, the

correlation between the CAFS-score and total mutation burden

(TMB) was analyzed and performed in our study. Further

analysis, we revealed the relationship between the CAFS-score

and CSC index. The CSC index was calculated by using

innovative one-class logistic regression (OCLR) machine-

learning algorithm (28). In addition, we explored the

relationship between the different risk groups and MSI.
Identification of immune characteristics
for the CAFS-score

CIBERSORT (https://cibersort.stanford.edu/) is a common

algorithm to obtain cell composition from solid tumors or gene

expression profiles, which was used to analyze the enrichment of

immune cells in the CAFS-score for our study. The different

content of immune infiltrating cells between the high- and low-

risk groups was analyzed by Wilcoxon signed rank test and

performed on the box chart for the TCGA cohort. In further

analysis, we showed the correlations between the abundance of

immune cells and four genes in the prognostic model according

to the training cohort.
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Assessment of immunotherapy

For the predicted assessment of the patientwith immunotherapy

in the prognostic value of the CAFS-score, the time-dependent

receiver operating characteristic (ROC) curve analysis was

performed for obtaining the area under the curve (AUC). In

addition, we not only downloaded the tumor immune dysfunction

and exclusion (TIDE) score online (http://tide.dfci.harvard.edu/) but

obtained the T-cell-inflamed signature (TIS) score calculating the

average value of a log2-scale normalized expression in the 18

signature genes (29). Thereafter, we revealed the results after

comparing the prognostic values of the CAFS-score, TIDE, and

TIS by using the R package “timeROC” and performed time‐

dependent ROC curve analyses to obtain the AUC.

Besides comparing the prognostic values of the CAFS-score,

TIDE, and TIS, we also utilized the immunophenoscore (IPS) to

predict the response of immune checkpoint inhibitors (ICIs)

based on the expression of the main component in tumor

immunity. According to a scale with a range of 0–10 based on

representative cell-type gene expression z-scores, IPS was

calculated where the immunogenicity was positively correlated

with the score of IPS (30). The IPSs of patients with GC were

derived fromThe Cancer ImmunomeAtlas (TCIA) (http://tcia.at/

home). The result was performed using the R package “ggpubr”.
Assessment of drug sensitivity

Thesensitivityofvariousdrugswaspredicted inpatientsbetween

two CAFS-score subgroups. The pRRophetic R package was utilized

for drug prediction (31). Wilcoxon signed-rank test was utilized to

explore the difference in IC50 between different risk groups. The

results were performed by using the R package “ggplot2”.
Establishment and validation of a
nomogram scoring system

According to the independent prognosis outcome, a predictive

nomogram was produced by the clinical characteristics and the

CAFS-score using the “rms” package of R. In the nomogram

scoring system, each variable has a corresponding score, and the

total score is obtained by adding up the scores of all variables for each

sample (32). The nomogramwas evaluated usingROCcurves for the

1-, 3-, and5-year survival rates.Thenomogramcalibrationplotswere

used to describe the predictive value of the anticipated 1-, 3,- and 5-

year survival events in relation to the actual observed outcomes.
Statistical analysis

R software and R Bioconductor packages were used for the

data analysis.(version 4.1.2; https://www.R-project.org).
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Comparison of non-parametric or parametric method

differences was carried out using Wilcoxon test, Kruskal–

Wallis test, and t-test or one-way ANOVA. Spearman’s and

distance correlation analyses were used to calculate the

correlation coefficients. The validity of the model was verified

by the receiver operating characteristic (ROC) curve. Based on

the correlation between the CAFS-score and patient survival, the

best cutoff point of survival information for each cohort was

determined by the Survminer package. Kaplan–Meier test and

Log-rank test were used to analyze the prognosis of survival

curve, which were used to assess differences between groups. The

hazard ratio (HR) of CAF regulators and CAF-related genes was

computed by using the univariate Cox regression model. To

verify whether the CAFS-score was an independent prognostic

predictor, we incorporated the CAFS-score and CAF-related

clinical parameters into a multivariate Cox regression model

analysis. All statistical analyses were bilateral, and statistical

significance was set at p< 0.05.
Result

Overview of genetic changes and
expression variations of CAF-related
regulators in GC

First, we analyzed the gene mutations to understand the

mutation types of the selected CAF-related genes in GC samples

(Figure 1A). At the genetic level, CAF-related regulator mutations

were found in 82 of the 433 samples (approximately 18.94%). The

study revealed that POSTN had the highest frequency of

mutations. In contrast, we observed that IL-33, IL-6, CXCL12,

and SAA1 do not have any mutations in any GC samples. We

determined the frequency of copy number variants (CNVs) in

selected CAF-related genes and discovered changes in selected

CAF-related genes with CNVs on the chromosome (Figures 1B, C).

For example, KLF5 was shown to be a frequent modification, with

the majority of the changes focusing on copy number amplification

on the 13 chromosomes. In terms of expression levels, 14 of 18

selected genes in tumor samples showed a significant difference as

compared with normal samples (Figure 1D). A network was

created to show the whole landscape of the selected genes’

interconnections, regulator linkages, and prognostic significance

in patients with GC (Figure 1E).
Identification of CAF subtypes in GC

First, we analyzed and revealed the selected CAF genes of

prognostic value in the 808 GC patients using the univariate Cox

regression and Kaplan–Meier analysis (Figure S2). We used the

unsupervised clustering technique to identify different
Frontiers in Immunology 05
regulatory patterns based on the expression levels of 18 CAF-

related regulators. For classifying the entire cohort into subtypes

A (n = 444) and B (n = 364), the result revealed that k = 2 seems

to be the perfect choice (Figure 2A and Table S1). For the

survival analysis, the results showed that cluster B had a better

survival probability than cluster A (Figure 2B). Moreover, the

variations in biological behavior between these two patterns

were investigated using gene set variation analysis (GSVA)

enrichment analysis (Figure 2C and Table S2). It showed that

cluster A was enriched in terms of pathways associated with

ECM and tumor invasion, including the ECM–receptor

interaction and Focal adhesion. Figure 2D illustrates that the

CAF gene subtype B patterns were also linked to advanced TNM

stages, particularly the T stage. We explored the 22 infiltrating

immune cell types in the two GC subtypes (Figure 2E). The

result showed that most of the infiltrating immune cells were

significantly different between the two GC subtypes, except

CD56 bright natural killer cells, CD56 dim natural killer cells,

monocytes, and Type 2 T helper cells. In addition, infiltrating

immune cells were abundant in cluster A, except activated CD4

T cells, neutrophils, and Type 17 T helper cells. Following this,

we confirmed that the 18 CAF-related regulators could be used

to discriminate the two regulatory patterns (Figure S3A).

Setting the criteria of |log2(Fold Change)| > 1 and FDR<

0.05, 342 DEGs from consensus clustering were identified.

Under the functional enrichment analysis, GO analysis and

KEGG pathway analysis were performed, significantly related

to the DEGs. For Figure S3B, a total of 342 DEGs were

significantly associated with 789 GO terms (details in Table

S3), such as ECM organization for Biological Process (BP),

collagen-containing ECM for Cellular Component (CC), and

ECM structural constituent for Molecular Function (MF). In

addition, the result of the top 18 KEGG pathways associated with

candidate genes is illustrated in Figure S3C, such as PI3K-Akt

signaling pathway, Focal adhesion, and Protein digestion and

absorption. The results of GO term and KEGG suggested that

the CAFs play a dynamic role in the ECM and tumor invasion.

Identification of gene subtypes based
on DEGs

After further analysis of univariate Cox regression in DEGs,

we identified 316 genes related to survival time (p< 0.05), which

were used in further analysis. A consensus clustering technique

was utilized to classify patients into three genomic subgroups

based on prognostic genes, termed gene subtypes A to C, to

further validate this regulatory mechanism. According to

Kaplan–Meier curves, patients in subtype A had the worst

survival, whereas patients in cluster C had a favorable survival

time (Figure 3A). Furthermore, the gene subtype A pattern was

linked to an advanced TNM stage (Figure 3B). Expression of 14

of the previous18 selected CAF-related genes had a significant
frontiersin.org
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difference among the three gene subtypes, as expected based on

the patterns (Figure 3C).
Establishment risk assessment model and
survival outcomes in GC

The CAFS-score was constructed using DEGs connected to

subtypes. The distribution of patients in the two CAFs subtypes,
Frontiers in Immunology 06
three gene subtypes, and two CAFS-score groups is revealed in

Figure 4A. According to the least partial likelihood deviance, 10

OS-associated genes remained after LASSO regression analysis

(Figures S4A, B). This was followed by multivariate Cox

regression analysis, wherein four genes (MMP11, HEYL,

NNMT, and PDK) were eventually obtained to construct the

prognostic model, named the “CAFS-score”. Based on the results

of the multivariate Cox regression analysis, the CAFS-score was

constructed as follows:
B

C D

E

A

FIGURE 1

Genetic and transcriptional alterations of CAFs-related genes in GC. (A)Mutation frequencies of 18 CAFs-related genes in 433 patients with STAD from
the TCGA cohort. (B) Frequencies of CNV gain, loss, and non-CNV among CAFs-related genes. (C) Locations of CNV alterations in CAFs-related genes
on 23 chromosomes. (D) Expression distributions of 1 8 CAFs-related genes in normal and GC tissues. (E) Interactions among CAFs-related genes in
GC. The connecting line among CAFs-related genes indicates their interaction, and the thickness of lines represents the strength of the association
between CAFs-related genes. Blue and pink represent negative and positive correlations, respectively. *P<0.05, **P<0.01, ***P<0.001.
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Risk score = expression level of MMP11 ∗ (0:13641)

+ expression level of HEYL ∗ (0:13075)

+ expression level of NNMT ∗ (0:11341)

+ expression level of PDK4 ∗ (0:12228)

After further analysis of applying risk score, there was a

significant difference in the CAFS-score between CAF subtypes

and gene subtypes (Figures 4B, C). The distribution plot of the
Frontiers in Immunology 07
CAFS-score demonstrated that the survival times were reduced

while the CAFS-score increased (Figures 4D, E). Finally, we used

the risk score to re-distinguish high- and low-risk groups in the

training cohort and testing cohort. As illustrated in Figures 4F, G,

low-risk patients had a better OS than high-risk patients (p< 0.05,

log-rank test) whether in the training cohort or the GSE62254

cohort. Consistent with the results of the training cohort, patients

from the low-risk group had a betterOS thanhigh-risk patients (p<

0.05, log-rank test) in the GSE26253 cohort (Figure 4H).
B

C D

E

A

FIGURE 2

Identification of CAFs subtypes in GC. (A) Consensus matrix heatmap defining two clusters (k = 2) and their correlation area. (B) Univariate
analysis indicating 18 CAFs-related genes corelated with the OS time. (C) GSVA of biological pathways between two distinct subtypes. (Red
and blue represent activated and inhibited pathways, respectively). (D) Differences in clinicopathologic features and expression levels of
CAFs-related genes between the two distinct subtypes. (E) The 22 infiltrating immune cell types in the two GC subtypes. **P<0.01,
***P<0.001.
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Clinicopathologic characteristics of
TCGA in the CAFS-score

Based on univariate Cox regression analysis, Figure 5A illustrates

that age, CAFS-score, and stage were significantly associated with the

prognosis of GC. After further multivariate Cox regression analysis,

Figure 5B shows that the CAFS-score presented as an independent

prognostic factorafteradjustingforotherclinicopathologic factors.The

clinicopathologic characteristics of GC patients in the TCGA cohort

are shown inFigure5C,which revealed a significantdifference ingrade

and TNM stage, especially for T stage. Furthermore, we found that

there wasmore early TNMstage in the low-risk subgroup, while there

wasmore advanced TNM stage in the high-risk subgroup (Figure 5D,

p< 0.05). In addition, we found that the immune sub-types were

significantly related to the risk between the two risk subgroups

(Figure 5E, p< 0.05). Meanwhile, GSVA enrichment analysis was

used to explore the differences in biological behavior between the two

risk subgroups (Figure S5). It illustrated that the high-risk groupswere

associated with ECM and tumor invasion, including the ECM–

receptor interaction and Focal adhesion.

Relationship of the CAFS-score with
TMB, MSI, and CSC index

We analyzed the gene mutations to further understand the

immunological nature in different risk subgroups. We identified
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the top 20 genes with the highest mutation rates in the high-risk

subgroup (Figure 6A) and low-risk subgroup (Figure 6B). The

results illustrated that missense mutation was the most common

mutation type. The mutation rates of TTN, MUC16, and TP53

were not only higher than 25% in both groups, but the most

common in both groups. Moreover, we analyzed the relationship

between the risk score and TMB. The expression of TMB was

significantly higher in the low-risk subgroup than in the high-

risk subgroup (Figure 6C). In addition, the risk score was

correlated with TMB in gene subtypes (r = −0.26, p< 0.05), as

revealed in Figure 6D.

Moreover, we observed that the risk score was correlated

with the CSC index (r = −0.66, p< 0.05), as shown in Figure 6E.

Finally, we revealed that a low CAFS-score was linked to MSI-H

status, whereas a high CAFS-score was linked to microsatellite

stable (MSS) status (Figures 6F, G).
Immune infiltration in CAFS-score subgroup

The gene expression matrix of the TCGA database in GC was

uploaded into CIBERSORT web to estimate the fractions of 22

immune cells. Next, we explored the composition of immune cells in

different risk subgroups (Figure 7A) in the TCGA database of GC

samples. The result illustrated that the patients in the high-risk

subgroup had significantly higher proportions of monocytes, M2
B

C

A

FIGURE 3

Identification of gene subtypes based on DEGs. (A) Kaplan-Meier curves for RFS of the three gene subtypes (log-rank tests, p < 0.001). (B)
Relationships between clinicopathologic features and the three gene subtypes. (C) Differences in the expression of 18 CAFs-related genes
among the three gene subtypes. *P<0.05, **P<0.01, ***P<0.001.
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macrophages, and resting mast cells, while plasma cells and follicular

helper T cells weremore abundant in the low-risk subgroup (p< 0.05)

(Figure 7B). We also found that the infiltrating abundance of M0

macrophages, resting mast cells, resting dendritic cells, M2

macrophages, resting NK cells, and CD8 T cells was significantly

relatedtoOS(p<0.05)(FigureS6).Thehigher infiltratingabundanceof

macrophages M2 was associated with poorer OS.

Based on the training set, we explored that the CAFS-score was

positively correlated tonaïve B cells,M2macrophages, restingmast

cells, monocytes, andCD4memory resting T cells (Figure 7C). The

four genes were also shown to be highly linked to the majority of

immune cells (Figure 7D). Therefore, theCAFS-score is statistically

correlated with the infiltration of most kinds of immune cells. This

means that the CAFS-score has the potential to indicate poor

prognosis under different immune infiltrations.

Immunotherapy prediction

This study aims to assess the potential efficacy of

immunotherapy in a clinical setting in different risk subgroups.
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To illustrate, a higher TIDE prediction score corresponded with

a higher potential for immune evasion, which proved that the

patients were unlikely to benefit from the treatment of

immunotherapy. The subgroup with low risk had lower TIDE

scores than the subgroup with high risk, which means that

patients with low risk were more likely to benefit from ICI

treatment than those with high risk (Figure 8A), whereas higher

TIDE prediction scores are associated with poorer benefits from

ICI treatment. For a lower TIDE score, the patients with low risk

might have a better prognosis than those with high risk.

Moreover, we found that the T-cell exclusion score

(Figure 8C) and T-cell dysfunction (Figure 8D) were

significantly different between the two risk subgroups, except

the MSI score (Figure 8B). Under the AUC, the result illustrated

that our risk model was the best compared with TIS and TIDE

(Figure 8E). Therefore, we suggested that the predictive value of

risk was comparable with 18-gene TIS and TIDE.

Besides utilizing the TIDE score, we also analyzed the

correlation between the risk and IPS in GC patients to predict

the response of ICIs. For the IPS, cytotoxic T lymphocyte
B C

D E
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FIGURE 4

Establishment risk assessment model and survival outcomes in GC. (A) Alluvial diagram of the subtype distributions in groups with different
CAFS-score and survival outcomes. (B) Differences in CAFS-score between two CAF subtypes. (C) Differences in CAFS-score between three
gene subtypes. (D, E) Ranked dot and scatter plots representing the CAFS-score distribution and patient survival status. (F-H) Kaplan-Meier
analysis of the RFS between the two risk groups in the TCGA, GSE62254, and GSE26253 cohort.
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antigen-4 (CTLA-4), programmed cell death protein 1 (PD-1),

and programmed death ligand-1 (PD-L1) were the immune

checkpoints. Therefore, their immune checkpoints were utilized

to evaluate the potential ICI treatment (Figure 9). As a result, we

found that they were significantly elevated in the low-risk group,

which was categorized by the risk, which means more

immunogenicity on ICIs in the low-risk group. Collectively,

these results suggested that the low-risk group was more likely to

have an immune response and respond to immunotherapy.
Drug sensitivity

Except for assessment of ICI treatment, we tried to find the

links between different risk groupings and the effectiveness of

chemotherapy for treating GC in the training cohort. We

illustrated that the low risk was associated with a lower half

inhibitory concentration (IC50) of chemo-therapeutics such as

Mitomycin C, Paclitaxel, and Sorafenib (p< 0.05), whereas the

high risk was associated with a low IC50 such as Pazopanib,
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Imatinib, and Bryostatin (p< 0.05). Therefore, Figure 10

illustrates that the CAFS-score acted as a potential predictor

for chemo-sensitivity, and details are shown in Table S4.
Establishment of a nomogram to
predict survival

Given the inconvenient clinical value of the CAFS-score in

predicting OS in patients with GC, a nomogram incorporating

the CAFS-score and clinicopathological characteristics was

developed to predict 1-, 3-, and 5-year OS rates in patients

with GC (Figure 11A). For the TCGA, GSE62254, and

GSE26253 cohorts, our AUC studies on the nomogram model

revealed a good accuracy for OS at 1, 3, and 5 years

(Figures 11B–D). In the TCGA, GSE62254, and GSE26253

cohorts, the proposed nomogram performed similarly to an

ideal model according to the calibration plots (Figures 11E–G).

Finally, we compared the nomogram’s prediction accuracy to

that of the TNM stage in the TCGA, GSE62254, and GSE26253
B

C D
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A

FIGURE 5

Clinicopathologic characteristics of TCGA in CAFS-score. (A) The Univariate Cox regression analysis in CAFS-score subgroups. (B) The multiple
Cox regression analysis in CAFS-score subgroups. (C) The clinicopathologic characteristics of GC patients in the TCGA cohort. (D, E) The
staging and the immune subtypes was significantly related to the risk between the two CAFS-score subgroups, respectively. *P<0.05,
***P<0.001.
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cohorts (Figure S7). The results illustrated that the nomogram’s

AUC values were greater than the TNM stage in three cohorts.
Discussion

Globally, GC is one of the leading causes of preventable

death and ranks fifth in incidence (5.6%) and fourth in

mortality (7.7%) among malignant tumors (2, 33). The

etiology of this tumor remains poorly understood. Despite

the rapid development of biological agents, the choices of
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treatment in GC are limited until now. Meanwhile, the

prognosis of advanced GC under the primary treatment

remains disappointing (34). CAFs are the most abundant cell

in the TME of GC. By exerting ECM deposition and

remodeling, the activated CAFs exhibit extensive reciprocal

signaling interaction, crosstalk with immune cells, and mediate

oncogenesis and progression of GC (5, 9, 35). However, it is not

precise to focus on a single gene or an entire CAF-related gene

set to correlate with GC prognosis. Hence, the results of the

present study are based on an 18-identified GC-related CAF

gene set and constructed a CAFS-risk score to predict
B

C D
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FIGURE 6

Characteristic in gene mutation and relationship of CAFS-score with MSI and CSC index. (A, B) Significantly mutated genes in the mutated GC
samples of the high and the low risk groups, respectively. Mutated genes (rows, top 20) are ordered by mutation rate; samples (columns) are
arranged to emphasize mutual exclusivity among mutations. The right shows mutation percentage, and the top shows the overall number of
mutations. The color-coding indicates the mutation type. (C) The TMB of two differen risk subgroups. (D) Relationships between CAFS-score
and TMR in three gene subtypes. (E) Relationships between CAFS-score and CSC index. (F, G) Relationships between CAFS-score and MSI.
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FIGURE 7

Immune Infiltration in two CAFS-score subgroup (TCGA). (A) Composition of immune cells in two CAFS-score subgroup. (B) The Relative
immune infiltration score of 22 immune cells between low- and high-risk groups. (C) Relationships between CAFS-score and different immune
cells. (D) Correlations between the abundance of immune cells and four genes in the proposed model. *P<0.05, **P<0.01, ***P<0.001
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prognosis and guidelines for the individualized clinical

strategies of GC.

Consensus clustering algorithms offer the ability to

efficiently analyze and identify clusters of patients with

different characteristics in a large amount of data (36).

Therefore, we used this unsupervised algorithm to identify two

distinct molecular subtypes based on the expression levels of 18

CAF-related regulators. We found that patients with subtype B

had a better survival probability than subtype A patients. We

also used GSVA enrichment analysis to investigate the variations

in biological behavior between these two subtypes. Subtype A

was enriched in terms of pathways associated with ECM and

tumor invasion, especially ECM–receptor interaction and Focal

adhesion. Some literature proved that the ECM receptor
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contributes to GC progression and poor survival (37). Focal

adhesion-related proteins independently predicted the poor

clinical prognosis of GC (38). Moreover, this consensus

clustering algorithm was also used to classify the patient into

three different subtype groups for deeper analysis according to

the expression of prognostic DEGs.

In this study, we constructed the powerfully effective

prognostic model and demonstrated its predictive ability. The

expression levels of four genes (MMP11, PDK4, HEYL, and

NNMT), including the CAF-related gene, MMP11, were also

explored in GC. MMP11, one kind of ECM-degrading protease,

in exosomes was secreted from CAFs and promoted GC cell

migration and invasion by regulating and shaping the TME.

Normally, MMP11 is absent in human organs, and the
B C DA

FIGURE 9

The prognostic value of CAFS-score in immunotherapy from TCGA cohort. (A–D) The vioplot of the difference expression of CTLA4 and PD-1
between high- and low-risk groups.
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A

FIGURE 8

The prognostic value of CAFS-score in immunotherapy from TCGA cohort. (A–D) TIDE, MSI, T cell exclusion, and T cell dysfunction score in
two CAFS-score subgroup, respectively. (E) ROC analysis of CAFS-score, TIDE, and TIS on OS in GC cohort. ***P<0.001, ns, P>0.05.
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expression level of MMP11 correlates to the OS of gastric

patients (10, 11). HEYL and NNMT are usually upregulated in

GC. Both act as an oncogenic factor to promote the carcinogenic

and progressive process of GC via activating CDH11 and

transforming growth factor-b (TGF-b) expression, respectively
(39, 40). PDK4 promotes the Warburg effect in GC and the

overexpression of PDK4 also leads to drug resistance and GC

metastasis (41).

To further improve the accuracy of prognostic prediction,

we constructed and validated a nomogram by screening various

indexes, CAFS-score, age, gender, and pathological stage. The

result illustrated that age, CAFS-score, and pathological stage

were significantly associated with the prognosis of GC. Under

the newest edition of AJCC, In et al. found that the pathological

stage was closely associated with the prognosis of GC (42, 43).

Moreover, we developed a quantitative nomogram that

increased performance and made it easier to use the CAFS-

score. GC is considered as an age-related disease, because older

cancer patients have been shown to have poorer OS outcomes

(44). According to the result, we found that the CAFS-score

presented as an independent prognostic factor. Thorsson et al.

(27) found that all tumors could be divided into six immune

subtypes that are intended to serve as a resource for future

targeted studies to further advance the field. Therefore, we found

that the factor of immune subtypes was closely correlated with

the risk score. These immune subtypes represent features of the

TME that largely cut across traditional cancer classifications to

create subgroups and suggest that certain treatments may be

independent of histological type (27).
Frontiers in Immunology 14
Numerous studies on various tumors have shown that

patients with high TMB tend to favor good survival rates (45).

Similarly, we illustrated that higher TMB was seen in the low risk

of the CAFS-score. It means that high TMB has significantly

better OS than the patients with a low TMB. In some literature,

MUC16 mutations are associated with better prognosis and

higher TMB in GC, while TTN mutations are associated with

better response to immune checkpoint blockade in solid tumors

(43, 46, 47). Even though TP53 is one of the most frequently

mutated genes, it is insufficient to properly predict patient

outcomes (48, 49). Patients with a high level of MSI respond

better to immunotherapy and may benefit from it (50).

Therefore, GC patients with a low-risk score had a better

benefit from immunotherapy. In addition, GC cells with a

lower CAFS-score exhibited more pronounced stem cell

characteristics and a lower degree of cell differentiation.

To explore the importance of immune cell infiltration in GC

with different risk groups for our study, CIBERSORT was utilized

for analyzing the relative proportion of 22 immune cells in each

GC specimen. As we know, circulating monocytes in peripheral

blood migrate to tissue where they differentiate to macrophages or

dendritic cells. Macrophages can be differentiated into two main

types (M1 macrophages and M2 macrophages) depending on

mode of activation and function. Meanwhile, some literature

indicated that M2 macrophages can promote tumor growth in

GC (51, 52). Consistent with these studies, we illustrated that less

infiltration ofM2 had a better prognosis. Wang et al. analyzed that

the greater risk score resulted in a considerably shorter total

survival time, and there was a positive association between risk
B C
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A

FIGURE 10

Relationships between CAFS-score and medicine sensitivity. Lower IC50 of indicated chemo-therapeutics drugs in low (A–C) and high (D–F)
CAFS-score group, respectively.
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score and dendritic cell infiltration in GC (53). Our result showed

that the CAFs gene is associated with ECM-associated pathways.

Therefore, less infiltration of dendritic cells had a better prognosis

according to our result. The literature revealed that infiltrating

mast cells are seen in large numbers in GC, which is linked to

tumor growth and predicts poorer OS (54). Consistent with this

study, we illustrated that more infiltration of mast cells had a

poorer prognosis. According to the evidence, we believed that the

CAFS-score had the potential to reflect immune cell infiltration as

well as the prognostic significance of various immune cell types.

In our study, we explored the CAFS‐based differences in the

TME that might reflect different immune benefits from ICI

therapy by utilizing TIDE and IPS. Firstly, the TIDE score is

associated with the two different mechanisms of immune escape,
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namely, dysfunction of tumor-infiltrating cytotoxic T

lymphocytes (CTLs) and exclusion of CTL. For the evidence,

TIDE scores correlate to the potential of anti-tumor immune

escape and thus show the response rate to ICI treatment (55).

According to our analysis, we found that the lower CAFS-score

corresponds to a lower score of the TIDE than high CAFS-score

patients, and thus higher ICI response might predictably occur.

Secondly, the IPS is mainly associated with a couple of immune

checkpoints, including CTLA-4, PD-1, and PD-L1. For the

clinical trial with immunotherapy, literature demonstrated that

avelumab (anti-PD-1) has anti-tumor activity and is safe for

patients with GC, which is administered as maintenance therapy

(after the disease is under control with standard chemotherapy)

(56). Consistent with our results, it was significantly higher in
B C D
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A

FIGURE 11

Construction and validation of a nomogram. (A) Nomogram for predicting the 1-, 3-, and 5-year OS of GC patients in TCGA cohort. (B-D) ROC
curves for predicting the 1-, 3-, and 5-year ROC curves in TCGA, GSE62254, and GSE26253 cohorts. (E-G) Calibration curves of the nomogram
for predicting of 1-, 3-, and 5-year OS in the TCGA, GSE62254, and GSE26253 cohorts. ***P<0.001.
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the low-risk group, which was categorized by the CAFS-score.

Based on the results identified with TIDE and IPS, we discovered

that the CAFS-score may distinguish between various outcomes

in individuals receiving immunotherapy. The CAFS-predictive

score’s value has the potential to offer a theoretical foundation

for ICI treatment selection in clinical trials. This predictive

model could assist to speed up the development of

personalized cancer therapies.

According to the clinical trial, the literature showed that

immune therapy in patients with GC had a great outcome before

the disease was under control by standard chemotherapy (56).

We wanted to figure out if the combination treatment with

chemotherapy and immune therapy in GC had a better efficacy

for further study. Therefore, we explored the sensitivity of various

drugs in patients between two risk subgroups. Our study

demonstrated that the low-risk group had a high potential for

ICI response; meanwhile, we found out that the low risk was

highly associated with sensitive drugs, including Mitomycin C,

Paclitaxel, and Sorafenib. It means that further studies can focus

on the combined treatment for GC patients. These drugs were

found by the predictive model of the CAFS-score and had

potential to treat GC under specific conditions (57–59).

Our comprehensive analysis demonstrated that the CAFS-

score grouping might help to differentiate the clinicopathological

features, immune infiltration, and clinical prognosis of GC

patients. Furthermore, this study sheds light on the role of the

CAFS-score in prognosis predictive value, and provides insights

into individualized strategies, guiding immunotherapy, and

chemotherapy. However, further studies on interactions

among these model genes and their biological mechanisms

are needed.
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