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Abstract

Intellectual disability (ID) is characterized by significant limitations in both intellectual

functioning and adaptive behaviors, originating before the age of 18 years. However,
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the genetic etiologies of ID are still incompletely elucidated due to the wide range of

clinical and genetic heterogeneity. Whole genome sequencing (WGS) has been

applied as a single-step clinical diagnostic tool for ID because it detects genetic varia-

tions with a wide range of resolution from single nucleotide variants (SNVs) to struc-

tural variants (SVs). To explore the causative genes for ID, we employed WGS in

45 patients from 44 unrelated Japanese families and performed a stepwise screening

approach focusing on the coding variants in the genes. Here, we report 12 pathogenic

and likely pathogenic variants: seven heterozygous variants of ADNP, SATB2,

ANKRD11, PTEN, TCF4, SPAST, and KCNA2, three hemizygous variants of SMS,

SLC6A8, and IQSEC2, and one homozygous variant in AGTPBP1. Of these, four were

considered novel. Furthermore, a novel 76 kb deletion containing exons 1 and 2 in

DYRK1A was identified. We confirmed the clinical and genetic heterogeneity and high

frequency of de novo causative variants (8/12, 66.7%). This is the first report of WGS

analysis in Japanese patients with ID. Our results would provide insight into the cor-

relation between novel variants and expanded phenotypes of the disease.

K E YWORD S

intellectual disability, intellectual disability-associated gene, likely pathogenic variant,
pathogenic variant, whole genome sequencing

1 | INTRODUCTION

Intellectual disability (ID), defined as significant limitations in both intellec-

tual functioning and adaptive behaviors originating before the age of

18 years, is present in 1–3% of the global population (Hu et al., 2019;

Maulik, Mascarenhas, Mathers, Dua, & Saxena, 2011; Ropers, 2010). The

development of a subset of IDs is caused by genetic defects. To date,

1535 ID-associated genes have been described using the Human Gene

Mutation Database (HGMD), Professional 2019.2, of which inheritance

modes include autosomal dominant, autosomal recessive, X-linked reces-

sive, and de novo. Autosomal de novo variants have been observed in

60–70% IDs with a definite molecular diagnosis (Fitzgerald et al., 2015).

In addition, variants causing monogenic forms of X-linked ID are also fre-

quently responsible and explain up to 10–12% ID in males (Musante &

Ropers, 2014; Vissers, Gilissen, & Veltman, 2016). In the Caucasian popu-

lation, autosomal recessive ID (ARID) has been also estimated to account

for 10–12% ID (Musante & Ropers, 2014), but the majority of causative

ARID genes remain unidentified. Other genetic causes that cannot be

identified by analysis of nuclear genes, such as imprinting abnormalities

and mitochondrial abnormalities, also have been identified.

Despite the essential roles of genetic factors in ID etiology, delin-

eation of the genetic causes in each patient with ID remains largely

unsolved due to the requirement of extensive multi-step investiga-

tions, including chromosome analysis for numerical and large struc-

tural abnormalities and array comparative genomic hybridization

(aCGH) analysis for submicroscopic structural abnormalities, followed

by panel or exome sequencing for pathogenic variants and insertions/

deletions (indels) in single genes. The potential of whole genome

sequencing (WGS) as the first-line clinical diagnostic tool has been

widely discussed (Bowling et al., 2017; Gilissen et al., 2014; Lindstrand

et al., 2019; Ostrander et al., 2018; Zahir et al., 2017). WGS enables a

comprehensive single-step genome evaluation and the cost per

genome is continuously decreasing. The use of different algorithms on

WGS data enables the detection of pathogenic variants, small indels,

and structural variants from a single source; moreover, WGS detects

alterations in coding and noncoding regions more precisely than

exome sequencing (Bowling et al., 2017; Gilissen et al., 2014; Zahir

et al., 2017). Recently, variants in noncoding regions have also been

highlighted as ID causes (Devanna, van de Vorst, Pfundt, Gilissen, &

Vernes, 2018; Niemi et al., 2018; Short et al., 2018; Smedley

et al., 2016). Theoretically, WGS can replace all these procedures as a

single-step clinical diagnostic tool for ID (Lindstrand et al., 2019).

In this pilot study, we explored the genetic causes of ID in Japa-

nese individuals by WGS and identified 12 pathogenic and likely path-

ogenic variants of the ID-associated genes.

2 | MATERIALS AND METHODS

2.1 | Editorial policies and ethical considerations

This study was approved by the ethical committee of the National

Center of Neurology and Psychiatry (NCNP). Written informed con-

sent was obtained from all participants and their parents.

2.2 | Patient cohort

Forty-five patients with ID from 44 families and their parents were

enrolled from the NCNP Biobank (Tokyo, Japan) after obtaining
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informed consent. We collected clinical information as well as

extracted genomic DNA from the peripheral blood.

2.3 | Whole genome sequencing

We enrolled all patients without MECP2 pathogenic variants. We per-

formed WGS using HiSeq 2500 (Illumina; San Diego, CA, USA) on the

DNA extracted from the patients and their parents, as described pre-

viously (Okada et al., 2018). The mean depth was 32×, with >99.4%

bases covered at 5×. We additionally performed whole exome

sequencing (WES) on the DNA extracted from the sibling of MR464

using DNBseq (Beijing Genomics Institute; Guangdong, Shenzhen,

China). The mean depth was 96.5×, with >99.7% bases covered at 5×.

Reads were aligned to the hs37d5 reference genome, which includes

data from GRCh37, the rCRS mitochondrial sequence, human herpes-

virus 4 type 1, and concatenated decoy sequences, using Burrows-

Wheeler aligner (BWA) (Li & Durbin, 2009). The duplicate reads were

removed using Picard (http://broadinstitute.github.io/picard/). Vari-

ants, including small insertions and deletions, were called according to

the Genome Analysis Toolkit (GATK) (McKenna et al., 2010) version

3.2 in the individuals whose DNA was used to perform WGS and

GATK version 3.5 in the individual whose DNA was used to perform

WES. Annotation was performed by Annovar (K. Wang, Li, &

Hakonarson, 2010).

2.4 | Verification of SNVs identified by WGS
and WES

The variants were filtered according to the following strategies:

(1) nonsense, missense, or frameshift variants located in the exonic

or canonical splicing regions; (2) absent from common variants in

Exome Sequencing Project 6500 (ESP6500, https://evs.gs.

washington.edu/EVS/), the 1000 Genomes Project (1000genome,

https://www.internationalgenome.org/), the Exome Aggregation

Consortium (ExAC, http://exac.broadinstitute.org/), if autosomal

de novo or X-linked recessive; (3) allele frequency < 0.001 and no

homozygotes in these public databases if autosomal recessive;

(4) predicted to be damaging by at least three of the following four

algorithms: SIFT (Kumar, Henikoff, & Ng, 2009), PolyPhen2

(Adzhubei et al., 2010), MutationTaster (Schwarz, Rödelsperger,

Schuelke, & Seelow, 2010), and CADD (Kircher et al., 2014) with a

cutoff value of 20. The average number of qualified variants was

3.38 per individual, with a maximum of 10 and a minimum of

0. These variants were curated manually by using the following

three conditions: (1) variants of a gene that has been reported to be

associated with ID; (2) matching clinical phenotypes with previously

reported cases; (3) not registered in the Genome Aggregation Data-

base (gnomAD, https://gnomad.broadinstitute.org/) if autosomal

de novo or X-linked recessive, or registered as variants with allele

frequency of 0.001 or less if autosomal recessive. In parallel, variants

in the list of ID-associated genes based on HGMD Professional

2015 were extracted regardless of the mode of inheritance

(Supplementary Table 1). In addition, the Human Genetic Variation

Database (HGVD, http://www.hgvd.genome.med.kyoto-u.ac.jp/)

and Tohoku Medical Megabank Organization (ToMMo, https://

jmorp.megabank.tohoku.ac.jp/202001/) were utilized to evaluate

the specific variants in the Japanese population. The extracted vari-

ants were classified according to the American College of Medical

Genetics and Genomics (ACMG) guidelines (Richards et al., 2015).

All variants were confirmed using Sanger sequencing. The verified

variants were submitted to the ClinVar database (https://www.ncbi.

nlm.nih.gov/clinvar/) and the accession numbers were registered as

SCV001438314 to SCV001438325.

2.5 | Verification of SVs identified by WGS

We investigated the structural variants (SVs) larger than 50 bp using

our original pipeline (manuscript in preparation) developed based on

our previous study (Kosugi et al., 2019). Briefly, SVs were called with

14 existing SV detection tools, including BreakDancer (K. Chen

et al., 2009), CNVnator (Abyzov, Urban, Snyder, & Gerstein, 2011),

DELLY (Rausch et al., 2012), forestSV (Michaelson & Sebat, 2012),

inGAP-sv (Qi & Zhao, 2011), Lumpy (Layer, Chiang, Quinlan, &

Hall, 2014), Manta (X. Chen et al., 2016), MATCHCLIP (Wu, Tian,

Pirastu, Stambolian, & Li, 2013), MELT (Gardner et al., 2017), MetaSV

(Mohiyuddin et al., 2015), Mobster (Thung et al., 2014), Pindel (Ye,

Schulz, Long, Apweiler, & Ning, 2009), SoftSV (Bartenhagen &

Dugas, 2016), Wham (Kronenberg et al., 2015). For each individual,

we obtained overlap calls that were shared between the selected pairs

of tools for each SV type, as previously shown (Kosugi et al., 2019).

The overlap call sets for each individual were merged to generate a

single vcf file. Among them, we extracted the exon-overlapped

de novo SVs and, in the case of males, the maternally inherited SVs on

X chromosome. We confirmed all these SVs by Integrative Genomics

Viewer (IGV, https://software.broadinstitute.org/software/igv/). Fur-

thermore, we excluded 13 SVs registered in the Database of Genomic

Variants (DGV, http://dgv.tcag.ca/dgv/app/home). Remaining SVs

were manually curated by reference to clinical features associated

with genes contained in each SV via PubMed (https://pubmed.ncbi.

nlm.nih.gov/) and OMIM (https://www.omim.org/). A direct sequence

was performed for the case classified as pathogenic or likely patho-

genic according to the standards and guidelines for interpretation and

reporting of postnatal constitutional copy number variants (Kearney,

Thorland, Brown, Quintero-Rivera, & South, 2011). In addition, to

detect cases developed by loss of heterozygosity, we evaluated the

variants on the counter allele when an SV involves the causative

genes of ARID.

2.6 | Statistical analysis

Statistical differences were analyzed using the Chi-square test by

GraphPad Prism5.
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3 | RESULTS

3.1 | Clinical overview of the Japanese ID cohort

Forty-five patients (26 males and 19 females) with ID from

44 unrelated families were included. A summary of the clinical infor-

mation of the patients is shown in Table 1. Speech delay, epilepsy,

hypotonia, brain abnormalities, and growth retardation were observed

at various frequencies. Imaging the brain of the patients showed

abnormal findings including white matter atrophy, cerebellum hypo-

plasia, and corpus callosum thinning. There were no meaningful differ-

ences (p > 0.05) in the sex ratio (male versus female, p = 0.52), ID

severity (borderline and mild versus moderate and severe disability,

p = 0.45), and the incidence of hypotonia (p = 1) and abnormal findings

in brain magnetic resonance imaging (MRI) (p = 0.51) between the

patient group with pathogenic or likely pathogenic variants and the

group without pathogenic or likely pathogenic variants.

3.2 | Overview of the variants identified in this
study

We found nine coding variants in the nine known ID-associated

genes, SATB2 (NM_015265), SMS (NM_004595), AGTPBP1

(NM_001330701), PTEN (NM_000314), TCF4 (NM_001083962),

IQSEC2 (NM_001111125), SLC6A8 (NM_005629), SPAST

(NM_014946), and KCNA2 (NM_004974), and two coding deletions, a

2 bp deletion in ANKRD11 (NM_001256182), and a 10 bp deletion in

ADNP (NM_001282531). The clinical information of each patient with

the pathogenic or likely pathogenic variant is summarized in Table 2.

TABLE 1 Clinical characteristics of
45 ID individuals

Characteristic

Individuals

Total Positivea Negativeb

Sex

Male 26 8 18

Female 19 4 15

Age (years) at registration

0–2 19 7 12

3–6 16 4 12

7–12 6 1 5

13–18 3 0 3

19+ 1 0 1

Neurological abnormalities

Borderline intellectual disability (79–70) 3 3 0

Intellectual disability, mild (DQ69–50) 8 1 7

Intellectual disability, moderate (DQ49–35) 7 4 3

Intellectual disability, severe (DQ35–20) 9 3 6

Intellectual disability, most severe (DQ20–) 17 1 16

Intellectual disability (not evaluated) 1 0 1

Speech delay 40 12 28

Epilepsy 17 1 16

Autism spectrum disorder 9 1 8

Sleep disturbance 7 2 5

Hypotonia 10 3 7

Abnormal findings in brain MRIc 22 7 15

Growth retardation 13 4 9

Congenital malformations

Cardiac 4 2 2

Renal 2 0 2

Genital 4 2 2

Skeletal 6 1 5

aIndividuals with pathogenic or likely pathogenic variants.
bIndividuals without pathogenic or likely pathogenic variants.
cMRI findings include white matter atrophy, cerebellum hypoplasia, or corpus callosum thinning.
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Of these 11 individuals, four were female and seven were male. The

inheritance modes were autosomal dominant in one, de novo in six, X-

linked recessive in two, X-linked de novo in one, and autosomal reces-

sive in one individual. Three heterozygous variants in ADNP, SATB2,

and ANKRD11, and one hemizygous variant in SMS were considered

novel in comparison with those mentioned in public databases. Pedi-

grees and electropherograms of the families with the novel variants

are shown in Figure 1. No other potentially pathogenic variants were

identified in any of the 11 families. Finally, the evaluation of variations

based on the guidelines for the classification of genetic variants from

ACMG is shown in Supplementary Table 2.

3.3 | Case presentation with novel variants

3.3.1 | Case 1

MR391 with a novel de novo variant c.642_651del (p.N214Kfs*31) in

ADNP was born to non-consanguineous parents as their first child

after 41 weeks of gestation through an uneventful delivery when her

father was 39 and her mother was 41 years old (Figure 1(a) and

Table 2). Her birth weight was 2200 g (−3.0 SD). After birth, echocar-

diography showed a ventricular septal defect, which closed spontane-

ously. Bilateral double ureters were also identified. She showed

depressed nasal bridge and tented upper lips. Although her motor

development was initially within normal range, holding her head at

the age of 3 months, sitting at the age of 6 months, and standing with

support at the age of 10 months; thereafter, her psychomotor devel-

opment remained unchanged. At the age of 12 years, her height was

132 cm (−3.4SD), weight 31 kg (−2.1SD), and head circumference

50 cm (−3.1SD) suggesting short stature and microcephaly. She wal-

ked with support and spoke no meaningful words. She was hypotonic

and hyperactive. She also showed stereotypic behaviors and was diag-

nosed as autism spectrum disorder.

3.3.2 | Case 2

MR456 with c.1174G > A (p.G392R) in SATB2 was born after

40 weeks of uneventful gestation to non-consanguineous patients as

their second child when her father was 38 and her mother was

34 years old (Figure 1(b) and Table 2). She showed hypotonia and

developmental delay since early infancy. At the age of 9 years, she

could move only by rolling and was unable to sit without support. She

sometimes spoke some words, “no”, “good”, and “hello”, but it was

rare. Her physical examination showed strabismus, but no craniofacial

abnormalities, including palatal and dental anomalies. Her head cir-

cumference was 53 cm (0.6SD), not microcephaly or macrocephaly.

Brain MRI revealed mild volume loss of the bilateral frontal lobes.

3.3.3 | Case 3

MR464 with c.2615_2616del (p.S872Cfs*43) in ANKRD11 was born

after 41 weeks of uncomplicated gestation to non-consanguineous

patients as their first child when her father was 32 and her mother

was 36 years old (Figure 1(c) and Table 2). He revealed amblyopia.

Although his milestones were initially delayed, he gradually developed

head control at the age of 6 months, sat without support at the age of

12 months, and walked at the age of 1 year and 6 months. He spoke

meaningful words at the age of 2 years and 7 months, and two-word

sentences at the age of 4 years. He suffered from complex febrile sei-

zures at the age of 1 year, but both MRI and electroencephalogram

revealed normal findings. His developmental quotient (DQ) was

73, within borderline intelligence, and his younger brother revealed

borderline intelligence. However, his brother did not have the same

variant.

F IGURE 1 Pedigree charts and electropherograms of the four
families with affected individuals carrying the novel variants identified
by WGS. (a) Pedigree and electropherogram of family MR391. A
heterozygous frameshift variant c.642_651del (p.N214Kfs*31) in
ADNP was identified in the proband (II-1). (b) Pedigree and
electropherogram of family MR456. A heterozygous missense variant
c.1174G > A (p.G392R) in SATB2 was identified in the proband (II-2).
(c) Pedigree and electropherogram of family MR464. A heterozygous
frameshift variant c.2615_2616del (p.S872Cfs*43) in ANKRD11 was
identified in the proband (II-1). His father (I-1), mother (I-2), and
affected brother (II-2) did not carry the same variant. (d) Pedigree and
electropherogram of family MR483. A hemizygous variant c.587 T > C
(p.I196T) in SMS was identified in the proband (II-3). His mother (I-2)
was heterozygous for the variant and his father (I-1) was wild type at
the same site [Color figure can be viewed at wileyonlinelibrary.com]
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3.3.4 | Case 4

MR483 with c.587 T > C (p.I196T) in SMS, which was inherited from

his mother, was born after 39 weeks of gestation to non-

consanguineous parents as their third child (Figure 1(d) and Table 2).

He has a healthy brother and a sister with normal development. His

birth weight was 2580 g (−1.9 SD). He showed bilateral cryptorchi-

dism and peripheral pulmonary arterial stenosis. His development was

initially normal: he smiled and followed objects with his eyes at the

age of 3 months and held his head at the age of 4 months. However, a

delay in his developmental milestones became apparent. He achieved

sitting without support at the age of 2 years and walking with support

at the age of 7 years. At the age of 9 years, he was unable to walk or

speak meaningful words. His physical examination revealed growth

delay with a body weight of 16.3 kg (−2.0 SD), and height of 116 cm

(−2.5SD). He had no history of bone fractures, but his plain radio-

graphs suggested diminished bone density. Dual-energy X-ray absorp-

tiometry (DEXA) scan Z score was −7.1 in the lumber spine, and his

bone density 0.249 g/cm2. He was diagnosed as osteoporosis.

3.4 | Case presentation with a partial deletion
in DYRK1A

We identified a 75,820 bp deletion (hg19:chr21:38,720,165–

38,795,984) involving the exons 1 and 2 of DYRK1A in MR508

(Table 2). The breakpoint and flanking sequences are shown in

Figure 2. The patient was born to non-consanguineous parents as

their first child after in vitro fertilization accompanied with

velamentous insertion when her father was 35 and her mother was

34 years old. His birth weight was 2374 g (−2.2 SD), and his head cir-

cumference was 29.5 cm (−2.9 SD). He had hypertonia and irritability

from birth. He followed objects and was able to hold his head at the

age of 2 months. He was able to sit at the age of 9 months, but there-

after his development stopped. At the age of 1 year and 1 month, he

did not stand with support or walk. He also showed growth retar-

dation: his height and weight were 66 cm (−3.8 SD) and 8.2 kg

(−1.5 SD), respectively. He died of unknown cause at the age of

1 year and 7 months.

4 | DISCUSSION

We identified 12 pathogenic or likely pathogenic variants involving

ID-associated genes in 12 out of 44 families (27%). Of these variants,

eight occurred de novo (66.7%), two showed maternally inherited X-

linked patterns (16.7%), one was autosomal dominant (8.3%), and one

was transmitted in an autosomal recessive (AR) manner (8.3%). The

proportion of inheritance patterns of pathogenic or likely pathogenic

variants in previous studies using high-throughput DNA sequencing

analysis differs in frequency study by study from other East Asian and

Western European countries, but de novo dominant variants were the

most common (55–90%), while maternally inherited X-linked variants

(5–22%) and variants inherited in AR manner (0–22%) have variable

frequencies, second only to de novo variants (Chérot et al., 2018;

Fitzgerald et al., 2015; Gieldon et al., 2018; Han, Jang, Park, &

Lee, 2018; Nambot et al., 2018; Wright et al., 2015; Yamamoto

et al., 2019; Yan et al., 2019). Our study in a Japanese ID cohort also

showed a high frequency of de novo variants and a similar frequency

in X-linked and AR variants. Moreover, this high prevalence of de novo

F IGURE 2 Breakpoint
sequence of DYRK1A identified in
MR508. Sequence analysis
revealed a de novo 75,820 bp
deletion and no apparent
homology between the proximal
and distal sequences of the
junction fragment [Color figure
can be viewed at
wileyonlinelibrary.com]
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pathogenic variants was similar to the result of the previous targeted

gene analysis in the Japanese population (Yamamoto et al., 2019). It

should be noted that the homozygous variant c.2552C > T (p.T851M)

found in AGTPBP1 was not registered in either HGVD or ToMMo,

suggesting that this variant is likely a private mutation rather than a

common founder mutation in the Japanese population. These findings

suggest that the distribution of genetic causes for ID in the Japanese

population is similar to that in other outbred population, and the anal-

ysis of de novo variants is particularly important in the Japanese popu-

lation as well. Common founder mutations for ARID were not evident

in our Japanese cohort.

Overall, our detection rate for the pathogenic and likely patho-

genic variants were limited to 27% because we scanned for variants

only in the coding regions. Previous studies on ID using high-

throughput DNA sequencing revealed a conclusive diagnostic rate as

8.0–34.0% (Chérot et al., 2018; Fitzgerald et al., 2015; Gieldon

et al., 2018; Han et al., 2018; Lindstrand et al., 2019; Nambot

et al., 2018; Wright et al., 2015; Yamamoto et al., 2019; Yan

et al., 2019). Of these, one study using WGS revealed a total diagnos-

tic rate of 27%, which was the same as that reported in this study

(Lindstrand et al., 2019). In the current post hoc pipeline of variant

detection, WGS showed no higher diagnostic rate in ID than WES and

panel analysis. WGS has some technical limitations. Evaluating the

intergenic and deep intronic genomic regions is challenging due to the

absence of algorithms to predict variant pathogenicity in such regions.

Short-read WGS cannot detect triplet repeat expansions, which are

involved in triplet repeat diseases that results in ID (Budworth &

McMurray, 2013; Wright, FitzPatrick, & Firth, 2018). Although many

algorithms for SV detection have been developed, it is difficult to

evaluate the results correctly due to the differences in the SVs

detected by each algorithm, and standardized WGS-based detection

of chromosomal abnormalities is still challenging (Kosugi et al., 2019).

In addition, mosaic variants can be missed due to the low coverage

depth (Wright et al., 2018). However, some of these issues with WGS

will be resolved in the near future by developed public databases of

non-coding regions and SVs, empowerment of prediction tools, and

effective combination of SV detection tools (Collins et al., 2020;

Cummings et al., 2020; Karczewski et al., 2020). Accordingly, the

diagnostic rate of ID using WGS will increase.

The interpretation of pathogenicity of the five novel variants is

discussed below. We identified a heterozygous frameshift variant,

c.642_651del (p.N214Kfs*31), in ADNP in MR391 (Table 2). ADNP is a

homeodomain-containing zinc finger transcription factor important

for brain formation, axonal transport, dendritic spine plasticity, and

autophagy (Gozes, 2007; Gozes et al., 2017; Helsmoortel et al., 2014)

and is associated with Helsmoortel-Van der Aa syndrome (HVDAS;

OMIM#615873). A total of 96 pathogenic or likely pathogenic vari-

ants have been reported (HGMD Professional 2020.2), 30 of which

are small deletions. HVDAS is characterized by ID, stereotypic behav-

iors, attention deficit/hyperactivity disorder (AD/HD), and hypotonia.

The average age for achieving independent walking and speaking

meaningful words in the patients with HVDAS is 2 years and 6 months

(Van Dijck et al., 2019), while MR391 did not reach these

developmental milestones at 12 years, suggesting that she had severe

HVDAS. In MR391, the identified deletion in the fifth and last exon is

predicted to escape nonsense-mediated decay. This deletion presum-

ably results in a truncated protein lacking both the N-terminal NAP

motif and multiple C-terminal domains, including the DNA-binding

domain, which interacts with the chromatin remodeling complex.

HVDAS onset is strongly related to the abnormalities in multiple C-

terminal domains, but the genotype–phenotype correlation is still

unclear (Gozes, Ivashko-Pachima, & Sayas, 2018; Helsmoortel

et al., 2014; Van Dijck et al., 2019; Vandeweyer et al., 2014). In this

study, pathogenic variants predicted to lack both the motif and the

domains have been reported, but no difference in severity of clinical

symptoms due to the range of lacking regions was apparent. Thus, the

factors affecting HVDAS severity are still unclear, confirming a high

degree of genetic heterogeneity. Cardiovascular problems are

observed in approximately one-third of patients (Gozes et al., 2017;

Helsmoortel et al., 2014; Van Dijck et al., 2019). These include atrial

septal defect, patent ductus arteriosus, mitral valve prolapse, tetralogy

of Fallot, and ventricular septal defect, as seen in this study. As these

features require appropriate medical management, providing genetic

diagnosis in the patients with HDVAS is critical for their medical care.

We identified a heterozygous missense variant, c.1174G >

A (p.G392R), of SATB2 in MR456. SATB2 is associated with GLASS

syndrome (OMIM#612313), which is characterized by developmental

delay and craniofacial anomalies including dental and palatal anoma-

lies, and strabismus (Zarate & Fish, 2017; Zarate et al., 2018). SATB2

encodes a highly conserved transcription factor that organizes chro-

matin remodeling by binding to genomic nuclear matrix-attachment

regions and regulates gene regulatory networks associated with brain

and craniofacial patterning development (Dobreva et al., 2006;

Gyorgy, Szemes, de Juan Romero, Tarabykin, & Agoston, 2008). The

SATB2 protein has two DNA-binding domains: CUT1 and CUT2. Of

the 89 pathogenic variants, missense variants are enriched in the

CUT1 domain (17 out of 31 missense variants); such variants may

affect its DNA binding activity by changing the protein structure

(Bengani et al., 2017; Zarate et al., 2019). Interestingly, MR456 with

c.1174G > A (p.G392R) did not show palatal or dental anomalies,

which were the typical features of GLASS syndrome. Conversely, the

previously reported patient with c.1174G > C (p.G392R), carrying a

different nucleotide substitution but the same residual alteration, had

shown all the typical features. This study further confirms the clinical

heterogeneity caused by SATB2 pathogenic variants.

The c.2615_2616del (p.S872Cfs*43) variant of ANKRD11 was

identified in MR464. ANKRD11 encodes a protein interacting with

nuclear receptor complexes and functions as both a transcription

inhibitor by interacting with histone deacetylases and histone mole-

cules, and a transcription activator by interacting with histone

acetyltransferases in different cellular contexts (Gallagher et al., 2015;

Ka & Kim, 2018; A. Zhang et al., 2004). It is generally recognized that

ANKRD11 haploinsufficiency seems to cause KBG syndrome

(OMIM#148050) characterized by mild ID in most, macrodontia, and

short stature (Gallagher et al., 2015; Isrie et al., 2012; Sirmaci

et al., 2011; Walz et al., 2015) with 200 reported pathogenic or likely
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pathogenic variants (HGMD Professional 2020.4). This variant results

in frameshift and premature termination, and presumably causes

haploinsufficiency. However, his younger brother with borderline ID

did not have the same variant. One potential explanation for this

genetic discordance is genetic heterogeneity, as reported in familial

ASD with or without ID, due to which about 70% of the affected sib-

lings had different genetic causes from those of probands (Yuen

et al., 2015). The second explanation is the complex etiologies in mild

IDs. Mild ID is more prevalent and may involve more complex or mul-

tiple genetic factors than severe IDs (Vissers et al., 2016). This family

illustrated a genetic discordance between siblings with borderline ID,

representing a challenge in delineating their genetic causes.

c.587 T > C (p.I196T), an SMS variant, was identified in MR483.

Loss-of-function SMS variants cause Snyder-Robinson syndrome

(SRS; OMIM#309583), which is characterized by mild to profound ID,

osteoporosis, genital anomalies, hypotonia, and seizures (Z. Zhang

et al., 2013). SMS is a polyamine biosynthesis enzyme that converts

spermidine to spermine. Both spermine and spermidine play essential

roles in protein and nucleic acid synthesis, and the correct spermine:

spermidine ratio is important for normal cell growth and development

(Pegg, 2016). In the central nervous system, spermine binds to the ion

channels involved in synaptic transmission and plasticity, and regu-

lates ionic flux (Pegg, 2016), probably underlying the ID phenotype.

Along with the typical features of SRS, MR483 also revealed periph-

eral pulmonary artery stenosis, a cardiovascular problem, which has

not been reported as a symptom associated with SMS variants. In

adults, polyamines are also associated with cardiovascular disease. For

example, excess spermine exacerbates abnormal vascular remodeling,

which is involved in pulmonary arterial hypertension, and spermine

regulation by SMS inhibition is a potential therapeutic method

(He et al., 2020). In addition, spermidine, another polyamine, improves

age-related vascular disorders such as arteriosclerosis (J. Wang

et al., 2020). SMS is expressed in the cardiovascular system during

both the perinatal and adult periods; thus, it is possible that his abnor-

mality of the pulmonary artery is associated with the SMS variant.

DYRK1A haploinsufficiency causes mental retardation, autosomal

dominant 7 (MRD7; OMIM #614104), which is characterized by ID,

autism spectrum disorder, and microcephaly often at birth or early

infancy (van Bon et al., 2011). Intrauterine growth retardation is also

common. Microcephaly and hypertonia beginning at birth seen in our

patient were concordant with the typical features of MRD7. DYRK1A

encodes a member of the dual-specificity tyrosine phosphorylation-

regulated kinase family, which has both serine/threonine and tyrosine

kinase activities and functions in cellular processes including prolifera-

tion and development. Dyrk1A+/− mice show growth retardation,

developmental delay, learning deficits, and impaired recognition ability

(Arque et al., 2008; Fotaki et al., 2002). DYRK1A is located in the

Down syndrome critical region of chromosome 21 and is regarded as

a candidate gene for ID in Down syndrome, in which DYRK1A is over-

expressed due to an extra copy of chromosome 21. A total of 96 vari-

ants, including whole or partial DYRK1A deletions, have been reported

as pathogenic or likely pathogenic variants (HGMD Professional

2020.4). The 75.8 kb deletion removes the putative promoter region

and the first two exons of DYRK1A, which are constitutive in most

transcripts, thereby presumably causing a loss-of-function allele and

resulting in haploinsufficiency. Analyses of genome sequences

flanking the deletion breakpoints identified no stretch of homologous

sequences or palindromic structures that potentially stimulate recur-

rent genomic rearrangement at this locus (Figure 2). Thus, non-

homologous end joining is likely the recombination mechanism for the

genomic rearrangement in this case.

In conclusion, the WGS analysis of 45 Japanese patients with ID

identified 12 pathogenic and likely pathogenic variants in clinically

undiagnosed patients. We confirmed the diverse genetic etiology with

a high frequency of de novo causative variants.
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SUPPORTING INFORMATION

Additional supporting information may be found online in the

Supporting Information section at the end of this article.
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