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Abstract

One of the major breakthroughs in oncogenesis research in recent years is the discovery that, in most patients, oncogenic
mutations are concentrated in a few core biological functional pathways. This discovery indicates that oncogenic
mechanisms are highly related to the dynamics of biologic regulatory networks, which govern the behaviour of functional
pathways. Here, we propose that oncogenic mutations found in different biological functional pathways are closely related
to parameter sensitivity of the corresponding networks. To test this hypothesis, we focus on the DNA damage-induced
apoptotic pathway—the most important safeguard against oncogenesis. We first built the regulatory network that governs
the apoptosis pathway, and then translated the network into dynamics equations. Using sensitivity analysis of the network
parameters and comparing the results with cancer gene mutation spectra, we found that parameters that significantly affect
the bifurcation point correspond to high-frequency oncogenic mutations. This result shows that the position of the
bifurcation point is a better measure of the functionality of a biological network than gene expression levels of certain key
proteins. It further demonstrates the suitability of applying systems-level analysis to biological networks as opposed to
studying genes or proteins in isolation.
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Introduction

Cancer is one of the most important diseases affecting human

health today [1]. Although cancer is considered a genetic disease

[2], with a variety of oncogenes and tumour suppressor genes

identified, the specific genomic alterations vary wildly between

and within cancer types. In 2008, three high-throughput cancer

genomic studies reported that cancer gene mutations are con-

centrated in a limited number of core cellular pathways and

regulatory processes [3–5]. This discovery suggests that oncogen-

esis is highly related to the dynamics of biologic regulatory

networks, which govern the behaviour of functional pathways.

Clearly, to understand the mechanisms underlying oncogenesis,

we need to take a systems and dynamics approach.

A number of studies have proposed a network-based approach

to investigate oncogenesis. For example, Torkamani and Schork

identified functionally related gene modules targeted by somatic

mutation in cancer [6]; Cerami et al. proposed an automated

network analysis approach to identify candidate oncogenic

processes [7]. A more recent approach by Stites et al. sought to

explain mutations in Ras pathway, which are commonly found in

cancer, by investigating the steady state concentrations of cellular

proteins in parameters changes [8].

In this paper, we propose a new way to identify high-frequency

gene mutations in cancer cells. We reason that because gene

mutations may affect the activities of their corresponding proteins

in a biological regulatory network, they can be considered as

perturbations of the system’s dynamics. Therefore, those muta-

tions that qualitatively affect biological network function should

correspond to mutation hot spots in cancer. From a dynamics

point of view, a qualitative change in a system relates to

bifurcations—oncogenic mutations should therefore significantly

affect certain bifurcation points.

One of the hallmarks of cancer is evasion of apoptosis; in fact

p53 mutations are found in most human cancers [9]. We therefore

chose the DNA damage-induced p53-centered apoptosis pathway,

as an example, to evaluate our hypothesis. We evaluated the

sensitivity of bifurcation points to different network parameters,

and compared the results with the cancer gene mutation spectrum.

We found that parameters that significantly affect the bifurcation

points corresponded to high-frequency oncogenic mutations. This

study investigates the mutation spectrum found in cancer cells and

provides a useful tool for predicting oncogenic mutations.

Results

Network description and model building
We focused on the apoptotic pathway that responds to sustained

DNA damage, induced by the chemotherapeutic compound,

etoposide [10,11]. A recent study showed that while low-dose

etoposide induces oscillations in p53 levels, caspase3 levels remain

low, and most cells survive; in contrast, high-dose etoposide

induces a monotonic increase in p53 concentration, followed

by a rapid increase in caspase3 with most cells undergoing
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apoptosis [11]. This experiment further justifies the use of p53 in

our model.

A schematic of the corresponding regulatory network, which is a

modification of the p53 DNA damage response network estab-

lished and analysed by Li et al. [12], is shown in Figure 1. Nuclear

p53 induces mdm2 transcription, while MDM2 antagonizes p53 by

promoting multistep ubiquitination and proteasome-dependent

degradation of p53 [13,14]. In unstressed cells, p53 is kept at a low

concentration by its negative regulator MDM2. DNA damage

reduces the binding affinity between p53 and MDM2 by inducing

phosphorylation of p53 and MDM2 [15] — phosphorylated

MDM2 undergoes rapid degradation [16] and p53 is subsequently

activated by phosphorylation to a ‘‘response state’’, triggering

downstream events, such as apoptosis and cell-cycle arrest [17]. As

shown in Figure 1, mono-ubiquitinated p53 is exported to the

cytoplasm, while poly-ubiquitinated p53 undergoes degradation

[18]. At elevated p53 levels, apoptosis can be initiated by both

nuclear and cytoplasmic (or mitochondrial) p53 [19]. While

nuclear p53 regulates the transcription of pro-apoptotic proteins

such as Puma, Noxa, Bax and Bak [20], mitochondrial p53 exerts

a direct pro-apoptotic effect by interacting with Bax and Bak to

form a positive feedback loop that activates caspase3 [20–24]. In

the experiments conducted by Chipuk et al. [21] and Chen et al.

[11], p53 appears to regulate apoptosis through its cytoplasmic

pro-death activity and not its nuclear activity.

Many previous studies of p53 dynamics have focused on the

response to transient DNA damage induced by ionising radiation

or UV; following cell-cycle arrest, cell proliferation resumes once

the DNA damage is repaired [25,26]. In our model, we consider

sustained DNA damage, which is maintained at a constant

damage level until the cell initiates apoptosis [12]. In this way, we

can ignore the cell-cycle arrest pathway, and instead concentrate

on the apoptosis pathway.

Model simulation
We first present an overview of network dynamics in response to

DNA damage at two typical doses of etoposide. As shown in

Figure 2, at 1 mM etoposide (low DNA damage), the concentration

of nuclear p53 (including inactivated- and activated-p53) oscillates

around basal levels (blue line), while the concentration of caspase3

remains low (green line), indicating that apoptosis has not been

trigged. At 100 mM etoposide (high DNA damage), nuclear p53

increases monotonically (black line), which is followed by a rapid

increase in caspase3 (red line), which in turn triggers downstream

apoptotic processes. These results are consistent with the

experimental observations of Chen et al. [11], indicating that

our model qualitatively reflects the real system.

Having created a suitable model, we next conducted bifurcation

analysis to identify potential qualitative changes in the system.

Using the level of DNA damage as the control parameter, two

types of bifurcations were found in this analysis: two Hopf

bifurcations and one saddle-node bifurcation. The transition

diagrams of these bifurcations are presented in Figure 3. In

Figure 3A, as the level of DNA damage increases, nuclear p53

undergoes two Hopf bifurcations. In the first bifurcation, with

increasing DNA damage, the system changes from a low steady

state to an oscillatory state; in the second bifurcation, with further

DNA damage, the oscillatory state changes to a high steady state.

This result is consistent with previously published observations

[10,12,27–29]. In the case of caspase3, there exists a saddle-node

bifurcation as a function of the level of DNA damage, where a

stable node collides with an unstable saddle at the bifurcation

point, as shown in Figure 3B. This bifurcation separates the system

into two dynamic regimes: a mono-stable steady state regime and a

bistable regime. In the bistable regime, one steady state

corresponds to a low caspase3 concentration and the other to a

high caspase3 concentration. In a wild-type cell, the caspase3

concentration remains low. Once the DNA damage level increases

beyond the bifurcation point (about 26 mM etoposide in

Figure 3B), the system will switch to a high caspase3 concentration

that turns on the apoptosis pathway. Notice that this switch is

irreversible—once the apoptosis pathway is turned on, caspase3

can maintain the high level state even when the level of DNA

damage falls below the initial threshold.

Our model is based on biological facts, together with certain

assumptions and simplifications. The details of our model are

presented in the Supporting Information (Text S1). Notice that in

our model, ac-p53 refers to phosphorylated p53.

Parameter sensitivity
In biological systems, many biological functions are controlled

through dynamic bifurcations. A good example is the saddle-node

bifurcation in G1/S transition of the cell cycle [30–33], where the

qualitative behaviour of the system is significantly affected by

changes in control parameters, which may dramatically affect the

location of the critical point. Figure 3C represents such an

example in the apoptosis pathway, where increasing the control

parameter kf5 (which corresponds to the rate of association of

mono-ub-p53 and MDM2 in the regulatory network of Figure 1)

1.9-fold, shifts the critical point to the right. If kf5 is increased 4.2-

fold, the high caspase3 state can never be reached under medium

or high drug dose. This indicates that if the parameter kf5 is

increased due to certain mutations, apoptosis will not be initiated

properly, or will not initiate at all, even when the DNA is seriously

damaged. The damaged cells therefore have a chance to bypass

apoptosis, which may facilitate oncogenesis.

The effect of parameter changes on the location of the

bifurcation point is not evenly distributed: some parameters

significantly impact the bifurcation points, while others do not. We

believe that genes that fall in the former category play important

roles in oncogenesis.

To identify which parameters have a major impact on the

location of the bifurcation point, we conducted parameter

sensitivity analysis by increasing and decreasing each of the 54

parameters in our model 1.2-fold and recording the percentage

change of the bifurcation points. In this way, we established a

Author Summary

Among complex genetic diseases affecting humans,
cancer is a major cause of death. In 2008, a genome-wide
analysis of hundreds of tumour samples showed that
oncogenic mutations are concentrated in a few core
functional pathways, revealing a new conceptual frame-
work for cancer biology research, where the role of
oncogenic mutations and oncogenic mechanisms are
addressed from a network perspective. We therefore
propose a new way of identifying high-frequency gene
mutations in cancer: gene mutations may affect their
corresponding proteins’ activity in the biological regula-
tory network and can be considered as perturbations of
the dynamical system. Therefore, mutations that induce
qualitative changes in biological networks should corre-
spond to high-frequency mutations in cancer. This concept
can help us identify and understand the function of genes
that play an important role in oncogenesis, thereby
allowing targeted and effective design of gene-based
therapy in cancer.
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spectrum of parameter sensitivity, which allowed us to compare

the result with the oncogenic mutation spectrum.

The gene mutation spectrum of cancer
High-throughput cancer genomic projects, such as the Cancer

Genome Atlas (TCGA) and the Catalogue of Somatic Mutations

in Cancers (COSMIC) [34], are major resources to obtain the

spectrum of genetic variants in different cancer types [35]. To

investigate the relationship between parameter changes and the

spectrum of cancer gene mutations, we chose skin cancer mutated

genes from the Catalogue of Somatic Mutations in Cancers

(COSMIC) and glioblastoma multiforme mutated genes from the

‘‘CAN-genes’’ by Parsons et al. [4], and TCGA [5].

Based on the knowledge of biochemical reactions and gene

expression [3–5], we concentrated on three types of gene

mutations: somatic mutations, amplifications, and deletions.

Each mutation corresponds to specific parameters in ordinary

differential equations (ODEs) in our model, the basis and details of

which are given in the Supporting Information (Text S1).

The correspondence between parameter sensitivity and
mutated genes

The main result of our calculation is summarized in Figure 4.

Parameter sensitivities of the saddle-node bifurcation point of each

parameter of the apoptosis pathway are shown in Figure 4A (see

also Supporting Information Table S2); parameters that cause

large or small changes in bifurcation points are marked in yellow,

and green, respectively. For the apoptosis pathway about 70% of

the parameters are non-influential: the bifurcation point varies

very little when changing those parameters. This suggests that the

apoptosis pathway is robust, a hallmark of biological networks.

However, about 26% of parameters have significant effects on the

critical bifurcation points, such as gc_Bax (the basal generation

rate of Bax) and kex (nuclear-export rate of mono-ubiquitinated

Figure 1. DNA damage-induced apoptotic pathway. Blue lines indicate dimerization; black lines indicate transformation; green lines indicate
transcription or activation. ‘‘mono-ub’’, mono-ubiquitinated; ‘‘poly-ub’’, poly-ubiquitinated; ‘‘mito-’’ mitochondrial and ‘‘/’’ refers to a complex. The
production and degradation of most components are not drawn but are included in the ODEs. Protein families with similar functions are grouped
into one node/variable denoted by their representative members (e.g. Bax stands for Bax and Bak). High and low levels of caspase-3 indicate
apoptosis and survival, respectively.
doi:10.1371/journal.pcbi.1003451.g001

Oncogenic Mutations and Parameter Sensitivity
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p53), see Figure 4A. A small change in these parameters will

induce large changes in the bifurcation points, as shown in

Figure 3B. Increasing gc_Bax causes the critical bifurcation point

to shift to the left. Therefore, in a biological experiment, to achieve

a given rate of apoptosis, increasing the basal generation rate of

Bax will require a lower dose of the DNA damaging drug

compared with the unaltered basal generation rate of Bax.

Similarly, increasing kex will cause the critical bifurcation point

to shift to the left, so that for a given rate of apoptosis, increasing

the nuclear-export rate of mono-ubiquitinated p53 will require a

lower dose of the DNA damaging drug compared with the

unaltered nuclear-export rate.

Our parameter sensitivity analysis of critical bifurcation points

is in agreement with the literature. For example, overexpression

of Bax significantly increases the rate of radiation-induced

apoptosis in human breast cancer cells [36], indicating that a

perturbation of the basal generation rate of Bax (in our model the

corresponding parameter is gc_Bax) would significantly affect

the rate of apoptosis—as is indeed predicted by our model.

Furthermore, mitochondrial p53-translocation and -accumulation

may be induced by a variety of apoptotic stimuli, [37,38]. In fact

Marchenko et al. found that the rate of apoptosis is significantly

increased after redirecting p53 from the nucleus to the mitochon-

dria by using mitochondrial import leader peptides [37]. This

means that a perturbation in the nuclear-export rate of p53 (in our

model the corresponding parameter is kex) could greatly alter the

rate of apoptosis. Again, we confirmed this effect in our model.

Moreover, Dewson et al. recently reported that following

apoptotic signalling in cells and mitochondrial fractions, Bax

homodimerises via a BH3:groove interface interaction [39], a

necessary step in the apoptotic pathway. The key interaction

domains that affect apoptotic function are located in the a2–a5

regions (54–126A) of Bax; mutations in one of these key residues

disrupt apoptotic function, thereby reducing the rate of cell death

following treatment with etoposide [39]. According to the

COSMIC database, cancer mutation hot spots do exist in

the a2–a5 helices of Bax. These loss-of-function mutations in

the Bax BH3 domain decrease the dimerization rate of activated

Bax (in our model the corresponding parameter is kf10).

Our model showed that kf10 is indeed a sensitive parameter

and a slight decrease in kf10 shifts the critical bifurcation point to

the right.

We next sought to compare our results to those of Stites et al.

who investigated mutations in Ras pathway by measuring the

steady state concentrations of cellular proteins in parameter

changes [8]. In addition to parameter sensitivity analysis of the

bifurcation points, we therefore used the steady-state concentra-

tion of caspase3 as a measure of oncogenesis. To achieve this, we

increased and decreased each of the 54 parameters 1.2-fold and

recorded the percentage change in the steady-state concentration

of caspase3. The results are presented in Figure 4B (See also

Supporting Information Table S3). The parameters that cause a

large or small percentage change in the steady-state concentration

of caspase3 are marked in magenta and blue, respectively. Overall,

Figure 2. The typical time evolution of the level of total nuclear
p53 and caspase3. Blue and black lines represent p53 concentrations
at low- and high-level DNA damage, respectively; Green and red lines
represent caspase-3 concentrations at low- and high-level DNA
damage, respectively.
doi:10.1371/journal.pcbi.1003451.g002

Figure 3. Bifurcation diagram for nuclear p53 and caspase3 for
apoptosis. (A) The bifurcation diagram for nuclear p53 using DNA
damage as the control parameter. (B) The bifurcation diagram for
caspase3 using DNA damage as the control parameter (black dots). (C)
Comparison of bifurcation point with an increase in the parameter kf5.
Black, without increase; green, 1.9-fold increase; red, 4.2-fold increase.
doi:10.1371/journal.pcbi.1003451.g003
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we found that the bifurcation point and the steady-state

concentration of caspase3 are sensitive to mutually exclusive sets

of parameters.

As shown in Figure 4A, the critical points of bifurcation are

largely affected by 15 parameters (yellow in Figure 4A), which we

then selected to compare with the skin cancer and glioblastoma

multiforme gene mutation spectrum, as shown in Figure 5A.

Changes in the bifurcation point (yellow bar) and in the steady-

state concentration of caspase3 (blue bar) are displayed alongside

mutation frequencies in skin cancer and glioblastoma multiforme.

Almost all influential parameters correspond to mutation hot spots

in skin cancer and glioblastoma multiforme. This result supports

our hypothesis that bifurcation points are sensitive to parameters

corresponding to mutations that are most likely oncogenic. Here,

we note that the definition of ‘‘mutation hot spot’’ is not

quantitative; we will discuss this issue in the last section of the paper.

For the sake of comparison, we also selected the parameters to

which the bifurcation point was insensitive; the result is presented

in Figures 5B and 5C. We found that a part of the insensitive

parameters correspond to very small number of mutation hot spots

(Figure 5B), but the other part correspond to a large number of

mutation hot spots (Figure 5C). Several factors may contribute to

the inconsistency. It is well established that alteration of a single

gene may not be oncogenic in itself [40]—in most cases, multiple

hits are necessary [41]. We therefore suggest a synergistic effect for

these parameters (Figure 5C), where two or more parameter

changes, which are non-influential in isolation, may induce

sensitivity in the bifurcation point when they co-occur. Indeed,

we found that by decreasing kf3 (association rate of p53 and

MDM2) and increasing kr3 (dissociation rate of p53/MDM2

complex) at the same time by 1.2-fold, the bifurcation point

changes by about 22%. However, when changing these two

parameters in isolation, the bifurcation point only changes by 5%

and 2%. This may partially explain the observed inconsistency.

Furthermore, one gene mutation may affect several parameters in

our model, and one model parameter may involve several genes.

In our analysis, the one-to-one mapping between the model

parameters and the genes involved in the network is certainly an

oversimplification. Fully understanding this behaviour requires

detailed knowledge of the effect of mutations on the parameters,

which is not available except in a few special cases.

Similarly, we investigated the effect of different parameters on

the steady state concentration of caspase3 as a measure of

oncogenesis. We identified two parameters (magenta in Figure 4B),

which led to the largest changes in the steady-state concentration

of caspase3. We also calculated changes in the critical point when

changing the parameters (Figure 6). According to the results in

Figures 5A and 6, and compared with the results of bifurcation

points, the relationship between the protein steady-state concen-

tration and the cancer mutation spectrum is very weak.

Discussion

Our work is based on the hypothesis that key regulators in

physiological networks and oncogenesis are closely correlated and

that the critical point of bifurcation is a good measure of network

functionality. Therefore, mutations that cause variations in

parameters that affect the bifurcation point are more likely to be

oncogenic. In our apoptosis model, the location of the saddle-node

bifurcation point reflects the DNA damage threshold where

apoptosis is activated; when this threshold is exceeded, the system

will switch from the low to the high state, which is accompanied by

a rapid increase in caspase3 levels. A mutation may increase the

apoptotic threshold, thereby allowing cells to evade apoptosis even

at high levels of DNA damage, which may facilitate oncogenesis—

a hypothesis that was confirmed by our analysis.

Distinguishing driver- from passenger-mutations is a central

challenge in cancer research [42–44], and recently a network-

based approach to identify cancer driver mutations has been

proposed [6,7]. Similarly, our strategy may be applied to identify

driver mutations by identifying parameters with the greatest

impact on the bifurcation point.

Several issues need to be addressed in this analysis: First, what is

the impact of the Hopf bifurcation of nuclear p53 on oncogenesis?

Although a number of studies have investigated the oscillatory

behaviour of p53 in response to stress [25,45–47], the functional

role of these oscillations in DNA damage response remains

unclear. We also conducted parameter sensitivity analysis of the

Hopf bifurcation of nuclear p53 as a function of the level of DNA

damage [12], and found a strong correlation between the

spectrum of parameter sensitivities and the oncogenic mutation

spectrum (see Figure S1). This may indicate that nuclear p53

Figure 4. Parameter sensitivity analysis. (A) The change of the
saddle-node bifurcation point in response to a 20% increase or
decrease in each parameter of the apoptosis pathway. (B) The change
in the steady-state concentration of caspase3 in response to a 20%
increase or decrease in each parameter of the apoptosis pathway.
doi:10.1371/journal.pcbi.1003451.g004

Oncogenic Mutations and Parameter Sensitivity
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oscillation plays a crucial role in protecting the cell against

malignant transformation [11].

Second, as previously stated, our model parameters do not have

one-to-one correspondence with gene mutations: changing one

parameter may correspond to mutations in different genes or

different types of mutations in the same gene. For example, the

association and dissociation constants of two proteins may relate to

mutations in either of the associated genes; an increase in a given

protein may be caused by an increase in gene copy number, or by

an increase in the catalytic efficiency of the relevant transcription

factor (corresponding to the mutation). Moreover, different

mutations in a single gene may correspond to different parameters:

a gene mutation may change the functionality of the protein,

reduce the binding capacity of the protein with another protein, or

alter its phosphorylation efficiency. As molecular biology advanc-

es, information regarding the function of different mutations in

regulatory networks will become more quantitative, which will

allow for more precise analysis using our model.

The third concern relates to the definition of an oncogenic

mutation hot spot. Different genes may be involved in different

regulatory pathways, and have very large differences in mutation

frequency. For example, p53 is involved in several regulatory

pathways and has hundreds of known mutations, while Puma

(BBC3) is involved in the apoptosis pathway, with only four or five

known mutations. A method for normalising mutation frequency is

necessary to allow quantitative analysis using our model. However,

due to the lack of detailed information on the impact of each

mutation on different regulatory pathways and on the model

Figure 5. The correspondence between parameter sensitivities and the cancer gene mutation spectrum. (A) The correspondence
between parameters linked to sensitivity of the bifurcation point (yellow bar) or caspase3 (blue bar) and high-frequency mutation genes. (B) The
correspondence between insensitive parameters and low-frequency mutation genes. (C) The inconsistency between parameter sensitivity and gene
mutation frequency. The numbers in the frame indicate the number of occurrences in the mutation spectrum of the gene that relates to the
corresponding parameters.
doi:10.1371/journal.pcbi.1003451.g005

Oncogenic Mutations and Parameter Sensitivity
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parameters, our analysis can only be qualitative. In this work, we

used arbitrary thresholds to define a ‘‘mutation hot spot’’, that

were determined by our knowledge of the specific gene. As such,

for genes involved in several regulatory pathways and with a high

mutation frequency (like p53), we set a high threshold value (.10)

for mutation hot spots. For genes involved in only one or two

pathways, and which have very low mutation frequencies (like

Puma), we believe that in spite of the low mutation frequency, they

are still mutation hot spots. Because of the lack of detailed

information on the impact of each mutation on the model

parameters, our analysis can only achieve qualitative conclusions.

The fourth issue relates to the simplicity of our model network:

although the apoptosis pathway involves both the extrinsic and

intrinsic pathways [48], we used a simplified, qualitative network

model to conduct our research. To prove the validity of our model,

we extended the current apoptosis pathway and repeated our

analysis. Compared with the original model, the extended model

consisted of 10 additional nodes including Noxa, Mcl-1, Bcl-xL

and the complexes that they formed. Puma, Noxa, Bcl-2, Mcl-1

and Bcl-xL are all proteins of the Bcl-2 family. Like Puma, Noxa is

a pro-apoptotic protein, which is regulated by nuclear p53 at the

Figure 6. Comparison of parameters linked to sensitivity of
caspase3 levels and gene mutations. The numbers in the frame
indicate the number of occurrences in the mutation spectrum of the
gene relating to the corresponding parameters. Magenta bar, change in
the steady-state concentration of caspase3; Green bar, change in the
critical point of bifurcation. gpre-casp, the basal generation rate of
pre-caspase; dcaspase, the degradation rate of caspase3.
doi:10.1371/journal.pcbi.1003451.g006

Figure 7. Extended DNA damage-induced apoptotic pathway. Blue lines indicate dimerization; black lines indicate transformation; green lines
indicate transcription or activation. ‘‘mono-ub’’, mono-ubiquitinated; ‘‘poly-ub’’, poly-ubiquitinated; ‘‘mito-’’, mitochondrial; ‘‘/’’ stands for complex.
doi:10.1371/journal.pcbi.1003451.g007

Oncogenic Mutations and Parameter Sensitivity
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transcriptional level. Bcl-2, Mcl-1 and Bcl-xL are pro-survival

proteins that inhibit cell apoptosis [48]. Puma binds Bcl-2, Bcl-xL

and Mcl-1, whereas Noxa binds only Mcl-1 [49]. The corre-

sponding extended regulatory network is shown in Figure 7. The

details of the extended model are presented in the Supporting

Information (Text S1, Figure S2and Figure S3). The results of the

parameter sensitivity analysis and the correspondence between

parameter sensitivity and mutations are shown in Figure 8.

Notably, sensitive parameters in the extended pathway are very

similar to those of the simplified pathway, with the 15 most

influential parameters shared between the simplified (Figure 4A)

and the extended pathways (Figure 8A). However, in the extended

pathway, we found three additional sensitive parameters. Similar

to the results of the simplified model (Figure 5A), we found that all

sensitive parameters in the extended pathway correspond to

mutation hot spots found in skin cancer and glioblastoma

multiforme (Figure 8C). The analysis of the extended version of

the network produces almost the same results as the simplified

network, which supports the applicability and validity of our method.

Finally, in our analysis, the change of each mutated property

(parameter in ODE) was counted only once within our model,

despite the general consensus that more than one mutation is

needed for oncogenesis to occur [50]. Our primary goal is to study

the role of mutated genes in cancer-related biological functions. In

future, we will analyse the role of multiple mutations on network

functionality.

Materials and Methods

Equations for the DNA damage-induced apoptotic
pathway

We compiled a set of ordinary differential equations (ODEs)

(Text S1.) to model the apoptotic pathway in response to DNA

damage. Model parameters were chosen based on the literature

and biochemical constraints [51].

Gene mutation database of cancer
The skin cancer mutated genes database was obtained from

COSMIC (http://www.sanger.ac.uk/genetics/CGP/cosmic), glio-

blastoma multiforme mutated genes from the ‘‘CAN-genes’’ by

Parsons et al. [4], and TCGA [5]. The ‘‘CAN-genes’’ by Parsons

et al. [4] included genes frequently mutated in 22 glioblastoma

Figure 8. Parameter sensitivity analysis and its correspondence with mutations in the extended pathway. (A) The change in the saddle-
node bifurcation point in response to a 20% increase or decrease of each parameter of the extended apoptosis pathway. Yellow and green bars
indicate parameters that cause a large or small percentage change in the bifurcation points, respectively. (B) The change in the steady-state
concentration of caspase-3 in response to a 20% increase or decrease in each parameter of the extended apoptosis pathway. Magenta and blue bars
indicate parameters that cause a large or small change in the steady-state concentration of caspase3, respectively. (C) The correspondence between
parameters linked to sensitivity of the bifurcation point (yellow bar) or caspase3 (blue bar) and high-frequency mutation genes. (D) The
correspondence between insensitive parameters and low-frequency mutation genes. (E) The inconsistency between parameter sensitivity and gene
mutation frequency. The numbers in the frame indicate the number of occurrences in the mutation spectrum of the gene that relates to the
corresponding parameters.
doi:10.1371/journal.pcbi.1003451.g008

Oncogenic Mutations and Parameter Sensitivity
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multiforme samples. The TCGA project has catalogued somatic

mutations and recurrent copy number alterations in 91 glioblasto-

ma multiforme cases [5]. The basis and details of the correspon-

dence of three forms of gene mutations and specific parameters in

ordinary differential equations (ODEs) in our model are given in

Text S1.

Supporting Information

Figure S1 Parameter sensitivity analysis and its corre-
spondence with mutations. (A) The percentage change in the

Hopf bifurcation point in response to 20% increase or decrease in

each parameter. (B) The correspondence between sensitive

parameters and high-frequency mutation genes.

(TIF)

Figure S2 Time evolution diagram of the level of total
nuclear p53 and caspase3. Blue and black lines represent p53

concentrations at low- and high-level DNA damage, respectively;

Green and red lines represent caspase3 concentrations at low- and

high-level DNA damage, respectively.

(TIF)

Figure S3 Bifurcation diagram for caspase3 using DNA
damage as the control parameter.

(TIF)

Figure S4 Comparison of parameters linked to sensi-
tivity of caspase3 levels and gene mutations.

(TIF)

Table S1 The specific correspondence between each
parameters and its gene mutations. amp, amplification;

mut, mutation; del, deletion.

(DOCX)

Table S2 Parameter sensitivity analysis. The effect of a

1.2-fold increase or decrease of each of the 54 parameters on the

percentage change in the critical point of bifurcation.

(DOCX)

Table S3 Parameter sensitivity analysis. The effect of a

1.2-fold increase or decrease of each of the 54 parameters on the

percentage change in the critical point of bifurcation.

(DOCX)

Text S1 Detailed description of the model and param-
eters used.
(DOCX)
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