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Abstract

Background: Proteomics is expected to play a key role in cancer biomarker discovery. Although it has become feasible to
rapidly analyze proteins from crude cell extracts using mass spectrometry, complex sample composition hampers this type
of measurement. Therefore, for effective proteome analysis, it becomes critical to enrich samples for the analytes of interest.
Despite that one-third of the proteins in eukaryotic cells are thought to be phosphorylated at some point in their life cycle,
only a low percentage of intracellular proteins is phosphorylated at a given time.

Methodology/Principal Findings: In this work, we have applied chromatographic phosphopeptide enrichment techniques
to reduce the complexity of human clinical samples. A novel method for high-throughput peptide profiling of human tumor
samples, using Parallel IMAC and MALDI-TOF MS, is described. We have applied this methodology to analyze human normal
and cancer lung samples in the search for new biomarkers. Using a highly reproducible spectral processing algorithm to
produce peptide mass profiles with minimal variability across the samples, lineal discriminant-based and decision tree–
based classification models were generated. These models can distinguish normal from tumor samples, as well as
differentiate the various non–small cell lung cancer histological subtypes.

Conclusions/Significance: A novel, optimized sample preparation method and a careful data acquisition strategy is
described for high-throughput peptide profiling of small amounts of human normal lung and lung cancer samples. We
show that the appropriate combination of peptide expression values is able to discriminate normal lung from non-small cell
lung cancer samples and among different histological subtypes. Our study does emphasize the great potential of
proteomics in the molecular characterization of cancer.
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Introduction

In Western countries, lung cancer represents the leading cause

of cancer-related death [1]. The 5-year overall survival rate is 15%

and has not improved over many decades. This is mainly because

approximately two-thirds of lung cancers are discovered at

advanced stages. Furthermore, even among early-stage patients

who are treated primarily by surgery with curative intent, 30–55%

will develop and die of metastasis recurrence [2].

Today, lung cancer is classified according to histological

criteria. The four main subtypes are: small cell lung cancer

(SCLC), squamous cell carcinoma (SC), adenocarcinoma (AC),

and large cell carcinoma (LC). Clinically, the last three are

considered as non-small cell lung cancer (NSCLC), which

accounts for about the 85% of all lung cancers [3]. Precise

diagnosis and classification of cancers are critical for the selection

of appropriate therapies. The advent of effective targeted

therapies for lung cancer, such as the epidermal growth factor

receptor inhibitors erlotinib and gefitinib, and the prospect of

developing additional targeted therapies, has emphasized the

importance of accurate diagnosis [4].

Proteomics is expected to play a key role in cancer biomarker

discovery. Although it has become feasible to rapidly analyze

proteins from crude cell extracts using mass spectrometry, sample

complexity complicates these studies [5,6]. Therefore, for effective

proteome analysis it is essential to enrich samples for the analytes

of interest [7]. Despite the fact that one-third of the proteins in

eukaryotic cells are thought to be phosphorylated at some point in

their life cycle, only a low percentage of the intracellular proteins is

phosphorylated at any given time [8,9]. Thus, a purification or

enrichment step that isolates phosphorylated species would reduce

complexity and increase sensitivity [10].

MALDI profiling is one of the most promising techniques to

reduce the gap between high-throughput proteomics and clinic

[7,11]. MALDI MS can be used as a high-throughput method with

outstanding sensitivity [6], enabling studies compromising large
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series of patients, and has the potential to revolutionise the early

diagnosis of many diseases [12]. This capacity has been exemplified

by MALDI protein profiling on tumor samples, which permitted the

identification of markers that could be correlated with histological

assessment and patient outcomes through statistical analysis [13,14].

In this work, we applied phosphopeptide enrichment techniques to

small human clinical samples based on Immobilized Metal Affinity

Chromatography (IMAC) to reduce sample complexity. To detect

new biomarkers, we have defined a data analysis workflow applying

lineal discriminant-based and decision tree-based classification

methods to analyze peptide profiles from human normal and

cancer lung samples by mass spectrometry.

Methods

Ethics statement
At the time of initial diagnosis, all patients had provided consent in

the sense that their tumour samples could be used for investigational

purposes. Institutional approval from our ethical committee was

obtained for the conduct of the study (Comité Ético de Investigación

Clı́nica, Hospital Universitario La Paz). Data were analyzed

anonymously. Patients provided written consent so that their

samples and clinical data could be used for investigational purposes.

Sample selection
Frozen samples from patients diagnosed with lung cancer: (15

Adenocarcinoma (AC), 15 Squamous cell carcinoma (SC) and 14

large cell carcinoma (LC) samples) and 15 normal lung (NL)

samples were retrieved from the Department of Pathology of

Hospital Universitario La Paz (Madrid, Spain). The histopatho-

logical features of each sample were reviewed by an experienced

lung pathologist to confirm diagnosis and tumor content. Eligible

samples had to include at least 50% of tumor cells.

Total protein extraction, solubilization, and digestion
Samples were cut in a Leica CM3050S cryostat, obtaining 10

sections of 10 microns thickness of each. Tissue was processed with

TRIzol reagent (Invitrogen, Carsbald, CA, USA) following the

manufacturer’s instructions. Pellets were resuspended in guanidine

hydrochloride 6 M and heated 10 minutes at 95uC with agitation.

Subsequently, 950 ml of 50 mM ammonium bicarbonate (pH 7–9)

per sample were added. Protein sample concentration was

measured by MicroBCA Protein Assay Kit (Pierce-Thermo

Scientific, Rockford, IL, USA). Trypsin MS Grade Gold

(Promega, Madison, WI, USA) was added to each sample to a

1:50 relation. Digestion was carried out overnight at 37uC. The

digested sample was divided into two aliquots.

Parallel IMAC (PIMAC)
IMAC-Fe(III) based was performed in one aliquot of digested

protein with PHOS-Select Iron Affinity Gel (Sigma-Aldrich, St.

Louis, MO, USA) following the manufacturer’s instructions.

IMAC-based Ga(III) was performed in the other aliquot of

digested protein with Phosphopeptide Isolation Kit (Pierce-

Thermo Scientific, Rockford, IL, USA) following the manufac-

turer’s instructions. Samples were stored at 220uC until further

analysis.

Phosphopeptide analysis by mass spectrometry
Peptide mixtures were vacuum dried and dissolved in a solution

containing acetonitrile (30%) and TFA (0.1%). After bath-

sonication (3 min), the peptides were 1:1 mixed with either

a-Cyano-4-hydroxycinnamic acid (CHCA) or 2,5-dihydroxyben-

zoic acid (DHB) used as matrices. A volume of 0.5 ml was

deposited on the MALDI plate and was kept at room temperature

until dried. MALDI-MS spectra (two replicates) were measured on

a Bruker Ultraflex TOF/TOF MALDI mass spectrometer

(Bruker-Daltonics, Billerica, MA, USA) [15] in the positive ion

reflector mode. For protein identification, the peptide ions of

interest were subject to MALDI-MS/MS analysis in the TOF/

TOF mode, and the corresponding MS/MS spectra were

transferred through the MS BioTools program (Bruker-Daltonics,

Billerica, MA, USA) as inputs to search the NCBInr database

using MASCOT software (Matrix Science, London, UK) [16].

Differential m/z peaks selection
ClinProTools (CPT) software 2.1 (Bruker-Daltonics, Billerica,

MA, USA) was used to select differential m/z peaks among

samples subtypes (NL, AC, SC and LC). Spectra were processed as

follows:

1) Normalization of all spectra to their Total Ion Count,

2) Recalibration of spectra on each other using the most

prominent m/z peaks,

3) Baseline subtraction and m/z peak detection.

Once standardized and adjusted, CPT selects mass ranges which

were considered as m/z peaks, and calculates peak areas for each

spectrum [17]. Spectra were divided into two sets (Set 1 and Set 2),

which include a different spot measurement per sample. Each set

was divided in four spectra groups depending on the combinations

between MALDI matrix and IMAC metal (Mx-Mt) used to obtain

them (DHB-Fe, DHB-Ga, CHCA-Fe and CHCA-Ga). Each of

these spectra groups were subsequently divided into histological

subgroups (NL, AC, SC and LC) and analyzed separately by CPT.

CPT settings were S/N.3 and Savitzky-Golay smoothing (1 cycle,

m/z range = 5) [18]. The combination of these lists gives a

combined Mx-Mt m/z peak list. Then we included all spectra of

one Mx-Mt combination in CPT to measure all m/z peaks in the

correspondent combined Mx-Mt m/z peak list. Peaks with Kruskal-

Wallis p-value.0.1 were discarded. Common m/z peaks between

two sets were selected. Finally, Pearson test between area values of

each m/z peak achieved in Set 1 and Set 2 for all samples were

performed and m/z peaks with r,0.4 were excluded. Thus, we

obtained four final Mx-Mt lists of m/z peaks: DHB-Fe, DHB-Ga,

CHCA-Fe and CHCA-Ga lists. Selected m/z peaks were

considered consistent peaks.

Discriminant Analysis and model generation
Discriminant Analysis of each final Mx-Mt m/z peak lists was

performed in SPSS 9.0. m/z peaks included in each discriminant

model were included in a second Stepwise Discriminant Analysis,

which allowed the creation of a global discrimination model,

including m/z peaks from all the Mx-Mt combinations.

Supervised hierarchical clustering
Briefly, a vector is assigned to each pseudo-item, and this vector

is used to compute the distances between this pseudo-item and all

remaining items or pseudo-items using the same similarity metric

that was used to calculate the initial similarity matrix. Analyses

were performed in BRB-ArrayTools v3.6.1 developed by Dr.

Richard Simon and Amy Peng Lang.

Decision-tree ensemble algorithm
With the aim of selecting peaks that could differentiate between

histological subtypes of lung cancer samples, we built a multi-peak

classifier using AdaBoost decision tree-based classifier ensemble

[19,20]. Three independent analyses were performed: AC vs.

MALDI Profiling of Lung Cancer
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(SC+LC), LC vs. (AC+SC) and SC vs. (AC+LC) using the final

DHB-Ga m/z peak list. Normalized m/z peak intensity values

from set1 were used as training set. Normalized m/z peak intensity

values from set2 were used as test set. 200 iterations were

performed in all cases. The area under the ROC (Receiving

Operating Characteristic) curve (AUC) equals the probability of

correctly classifying one pair of samples, each one for a separate

class, and is used as a measurement of classifier performance (20).

Statistical analyses were performed in R version 2.4 with the Boost

software package version 1.0-0 and SPSS 9.0.

Statistical analyses for identified peaks
After protein identification by MS/MS, ANOVA (when

possible) and Kruskall-Wallis analyses were performed to assess

differences in the expression of such proteins in the different

histological subtypes. Mann-Whitney’s U was applied to study

differences between two subgroups after Kruskall-Wallis analyses.

Statistical analyses were performed in SPSS 9.0.

Immunohistochemistry
Formalin-fixed, paraffin-embedded tissue blocks, representative

of NSCLC diagnosis, were retrieved following routine histopath-

ological assessment. Sections were processed using a Dako

Autostainer universal staining system (Dako, Glostrup, Denmark).

For this study, 3.5-mm sections were immunostained with

monoclonal antibody CK8 (1:100 dilution; Novacastra, Newcastle

upon Tyne, UK). Two tissue slices from each sample were

evaluated.

Results

The primary aim of the present study was to test whether tryptic

peptide profiles, obtained from human normal and tumor lung

samples using PIMAC and MALDI-TOF MS techniques, could

discriminate Normal Lung (NL) from lung cancer, as well as

between the most common lung cancer histological subtypes:

AdenoCarcinoma (AC), Large Cell carcinoma (LC) and Squa-

mous Cell carcinoma (SC). Only 49 from 59 samples were selected

for the following analysis because samples without a minimum

content of 50% tumor cells were discarded. Thus, 15 NL, 14 AC,

9 LC and 11 SC samples were subsequently analyzed. The mass

spectrum generated for each sample typically contained several

hundreds of peaks with S/N.3 [5].

Mass signal intensities of tryptic peptides derived from complex

protein mixtures are mediated by several factors, namely relative

protein concentration, varying enzymatic digestion efficiency, and

sequence-dependent desorption/ ionization efficiencies. We per-

formed a highly reproducible spectra processing procedure to

obtain peak profiles with a high degree of concordance in the

sample series. Consistent m/z peaks were selected following these

criteria: mass peaks had to be present in both sample spots and

Pearson’s correlation between intensities of each peak achieved in

Set 1 and Set 2 for all samples had to be .0.4. Mean Pearson’s

correlation coefficient was 0.8 for DHB peaks and 0.65 for CHCA

peaks. An additional requirement (Kruskal-Wallis p-value,0.1)

was applied in order to include peaks with discriminatory power

between the sample subtypes. These criteria provided a consistent

and reproducible methodology, as shown by mean Pearson’s

correlation coefficient of selected mass peaks.

We have investigated the overlap between peaks selected by

each of the Mx-Mt combinations (Figure S1). Overall, 97

consistent mass peaks were identified across the four Mx-Mt

combinations. Regarding MALDI matrices, 81 peaks were

measured in DHB and 41 in CHCA analyses. Contrastingly, 80

peaks were measured in Ga-based IMAC and 42 in Fe-based

IMAC analyses. In both cases, 25 overlapping peaks were found.

Only four peaks were consistently present across all the Mx-Mt

combinations.

Once the consistent peaks had been selected, a Stepwise

Discriminant Analysis was performed in each final Mx-Mt peak

list. Therefore, four discriminant models were constructed and the

mass signals involved in each model are listed in Table S1. All

these discriminant models were able to classify the samples into

four groups, corresponding to NL, AC, SC and LC. Percentages of

correctly classified samples by each model and leave-one-out cross-

validation percentages of correctly classified samples are displayed

in Table S1. A second Stepwise Discriminant Analysis was

performed with peaks included in the four Mx-Mt Discriminant

models (22 peaks) to avoid including noisy mass signals in the

analysis. The Global Model included 9 m/z peaks and correctly

classified 98.0% of the samples (48 of 49) in the LOOCV.

We performed a Supervised Hierarchical Centroid Linkage

Clustering using the 9 peaks included in the Global Model. As

shown in Figure 1, there are two main clusters, separating normal

lung samples from most tumor samples. However, there is not

perfect separation between histological subtypes. With the aim of

selecting mass signals that could characterize samples from one

histological subtype when compared with the other subtypes of

NSCLC samples, AdaBoost decision tree-based classifier ensemble

was performed. Three independent analyses were performed: AC

vs. (SC+LC), LC vs. (AC+SC) and SC vs. (AC+LC), using data in

Set 1 as training set and data in Set 2 as test set from the final

DHB-Ga peak list. The area under the curve (AUC) from ROC

was calculated for each comparison in both training and test set.

The relative influence of each peak in model generation was

obtained. The area under the ROC curve and top peaks for each

comparison are shown in Table 1.

MS/MS identification of some m/z peaks selected by

discriminant and AdaBoost analyses was performed by MALDI-

TOF/TOF (Table S2). In order to evaluate differences in

identified peptide signals among histological subtypes, ANOVA

and Kruskal-Wallis analyses were performed. b-globin mass

signals showed a significantly decreased intensity in tumor samples

when compared with normal lung ones, while GAPDH and b-

actin peaks showed increased intensity in tumor samples. CK8

peak intensity decreased in large cell carcinomas when compared

with adenocarcinoma and squamous cell carcinoma samples.

The pattern of expression by immunohistochemistry (IHC) of

some of these markers was analyzed. The Human Protein Atlas

(http://www.proteinatlas.org/) [21] shows expression and locali-

zation of proteins in a large variety of human normal and cancer

tissues, as well as cell lines with the aid of IHC. IHC expression

profiles for b-actin and GAPDH were evaluated on this useful

database. There is an increased expression of b-actin in some lung

cancer samples when compared with normal ones. However,

GAPDH expression in lung cancer is highly variable. Additionally,

we performed IHC analysis of CK8 expression in five AC, LC and

SC samples. Positive cells for CK8 immunostaining were found in

all LC and AC samples. By contrast, only three of five SC samples

showed positive staining. Positively stained samples showed on

average 20–70% stained cells (Figure 2).

Discussion

Global gene-expression profiling has improved our understand-

ing of the histological heterogeneity of non–small cell lung cancer

and has identified potential biomarkers and gene signatures for

classifying patients with significantly different survival outcomes

MALDI Profiling of Lung Cancer
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[22]. A comprehensive understanding of the mechanisms behind

carcinogenesis, tumor progression, and metastasis will require an

in-depth analysis of not only the genome, but also the proteome

[23]. Analyses at the gene level cannot detect the biologic

subtleties introduced through post-translational modifications of

proteins and thus requires a proteomic approach [5,24].

Reproducibility has been shown to compromise protein

profiling in all stages, from peptide isolation methods to sample

spectra acquisition and processing [5,11,25,26]. In this study, we

have applied phosphopeptide enrichment chromatographic tech-

niques to reduce the complexity of human lung cancer samples

and analyzed isolated peptides by MALDI-TOF MS. We describe

a mass peak selection method which yields a reproducible peptide

profile from MALDI MS experiments using ClinProTools.

Groseclose et al. described one limitation of using CPT is that

peaks which may be significant among a small subset of spectra in

a group, might become insignificant when averaged with the other

spectra in that group [5]. In order to evaluate as many peaks as

possible, we performed a previous step in the peak selection using

CPT. In each Mx-Mt analysis, all spectra from a single sample

subtype were introduced in CPT, obtaining a subtype character-

istic peak list. Once all subtype lists were obtained, a new list was

generated by combination, including all peaks present in these

subtype lists. Afterwards, spectra from all sample subtypes were

included in CPT, and all peaks in this combined list were

measured. We confirmed that some discriminant peaks were

excluded when spectra from all sample subtypes are included

directly in CPT and standard analysis is performed.

It is noteworthy that when using DHB as a MALDI matrix

provided a higher number of mass peaks as compared to CHCA.

Likewise, the Ga-based IMAC approach produces more mass

signals as compared to the Fe-based assay. In addition, the peak

lists derived from DHB spectra showed a higher mean correlation

between data sets. These results suggest that MALDI analyses

using Ga-based IMAC and DHB as MALDI matrix are more

reproducible and provide a higher number of mass signals. The

peaks identified derived from highly expressed proteins and the

remaining discriminating peptides could not be identified by

MALDI MS. Alternative identification strategies should be tested

in order to increase identification of low-intensity signals in

MALDI MS studies.

Discriminant analyses allowed us to separate normal lung and

NSCLC samples and to identify the peptides which best

discriminated between normal and diseased tissues, as shown by

clustering analysis (Figure 1). However, this task is not usually

problematic due to the important differences between normal and

cancer tissues. What proves trickier is finding differences between

distinct histological subtypes. As showed in Figure 1, there are two

Figure 1. Hierarchical clustering analysis. Heat Map of the Supervised Hierarchical Centroid Linkage Clustering of normalized m/z peak areas, in
two dimensions, for the 49 samples and the 9 m/z peaks included in the global discriminant model.
doi:10.1371/journal.pone.0007731.g001

Table 1. Area under the ROC curve and top AdaBoost selected m/z peaks for each comparison.

Comparison AUC training set AUC test set Top Peak list (m/z)

AC vs. (SC+LC) 0.982 0.961 2202.42, 1515.96, 1535.85, 2005.08, 2780.59

LC vs. (AC+SC) 0.991 0.871 1900.24, 2127.38, 2060.31, 2611.60, 1595.85

SC vs. (AC+LC) 1.000 0.893 2465.46, 2611.60, 2202.42, 2946.71, 2273.30

Adenocarcinoma (AC), Squamous cell Carcinoma (SC), Large cell Carcinoma (LC), Normal Lung (NL).
doi:10.1371/journal.pone.0007731.t001

MALDI Profiling of Lung Cancer
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main clusters of lung cancer samples, including adenocarcinomas

and large cell carcinomas separately, but squamous cell carcinoma

samples are splitted between these clusters.

It has been described that ensemble classifiers outperform single

decision trees classifier by having greater accuracies and smaller

prediction errors when applied to proteomics datasets [27]. So, we

tested if AdaBoost analyses could classify the different NSCLC

samples correctly. Our results suggest that AdaBoost can dis-

criminate samples of one lung cancer histological subtype from the

other two. The use of technical replicates as test set allowed us to

assess the robustness of the methodology employed.

Our data suggest that both GAPDH and b-actin have a

significantly increased expression in lung cancer samples. Overex-

pression of GAPDH in human lung cancers was described previously

by Tokunaga et al [28] and there are many publications showing

increased expression of GAPDH in breast [29], pancreatic [30] and

cervical [31,32] human cancers. On the other hand, several studies

indicated that b-actin was differentially expressed in human cancer

(reviewed in 28). Both proteins showed increased levels in rat

hepatoma [33]. Moreover, IHC expression profiles for b-actin and

GAPDH, assessed in the Human Protein Atlas, were highly variable in

lung cancer samples. These results question the use of these proteins as

housekeeping products in proteomic analyses of cancer samples.

Cytokeratin 8 (CK8) is a type II intermediate filament protein

that is persistently expressed in most epithelial malignancies [34],

including all NSCLC subtypes [35]. Increased levels of CK8 in

sera have been associated with tumor progression and decreased

survival in patients with NSCLC [36]. In contrast with these

reports, we did not observe increased expression of CK8 in tumor

samples by MALDI-MS analyses. However, we found out that

CK8 levels are decreased in large cell carcinoma samples when

compared with normal lung.

To assess the utility of CK8 expression as a biomarker of large

cell carcinomas, we performed IHC analyses of CK8 expression in

15 lung cancer samples (five AC, five LC and five SC). In our

opinion, no conclusion could be made about the relationship

between IHC and peptide expression profiling from our data. This

difference between techniques could be due to phosphopeptide

enrichment prior to sample analysis or could imply that MS

approaches are more sensitive than IHC. The peptide identified

by MALDI MS/MS (DVDEAYMNKVELES) contains a poten-

tial phosphorylation site at Tyr204, related to phosphorylation by

oncogenic kinases [37]. Previous studies assessing the utility of

CK8 as a biomarker in lung cancer did not include any large cell

carcinoma [35,36].

The study has some constraints. Thus, there is limited capacity

to identify minor mass peaks based on MS/MS analysis of

relatively complex peptide mixtures. However, MALDI MS has

some advantages for biomarker discovery: protein expression and

relative quantification data can be generated for multiple patient

Figure 2. CK8 immunostaining. CK8 immunostaining (Magnification640). Arrows point to tumoral cells. (A) Squamous cell carcinoma of the lung
showing negative stained tumor cells. Lung epithelium shows positive staining. (B) Squamous cell carcinoma of the lung positively stained. (C,D)
Large cell carcinoma of the lung showing different degrees of positive staining. (E,F) Adenocarcinoma of the lung showing different degrees of
positive staining.
doi:10.1371/journal.pone.0007731.g002

MALDI Profiling of Lung Cancer
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tissue samples in a single experiment. On the other hand,

comparison of IHC and peptide profiling expression values

relationship should be done carefully, as it seems that prior

affinity enrichment of samples could introduce some bias.

However, our study does emphasize the great potential of

proteomics in the molecular characterization of cancer. Identifi-

cation of differentially expressed proteins by PIMAC and MALDI-

TOF/TOF MS was performed on fractionated tryptic digests

derived from small amounts of tissues obtained from normal lung

and NSCLC samples. Using an optimized sample preparation

method and a careful data acquisition strategy, we overcame the

major challenge of reproducibility of MALDI MS-based peptide

profiling. Regardless of the nature of the peptides identified by

MS/MS, the appropriate combination of peptide expression

values is able to discriminate normal lung from NSCLC samples

and among the different NSCLC histological subtypes. Future

studies are aimed at establishing peptide profiling as a useful tool

in the discovery of novel biomarkers with potential diagnostic or

theragnostic relevance.

Supporting Information

Figure S1 Venn diagrams showing m/z peaks overlapping

between final m/z peak lists from: (A) four different Mx-Mt

combinations, (B) IMAC resins, and (C) MALDI matrices.

Found at: doi:10.1371/journal.pone.0007731.s001 (0.04 MB PPT)

Table S1 Percentages of correctly classified samples, leave-one

out cross-validation percentages of correctly classified samples and

m/z peaks included in each Mx-Mt combination discriminant

model. Peaks in bold are also included in the 9 m/z peaks global

discrimination model.

Found at: doi:10.1371/journal.pone.0007731.s002 (0.03 MB

DOC)

Table S2 Differentially expressed peptide masses from the

CHCA-MALDI spectra identified by MALDI-TOF/TOF and

MASCOT search engine. Individual MASCOT ions scores are

significant (p,0.05).

Found at: doi:10.1371/journal.pone.0007731.s003 (0.03 MB

DOC)
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