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In the past, manipulation of the cholinergic systemwas seen as themost likely therapeutic

for neurodegeneration-based cognitive decline in Alzheimer’s disease (AD) (Whitehouse

et al., 1982). However, targeting the noradrenergic system also seems a promising

strategy, since more recent studies revealed that in post-mortem tissue from patients

with AD and other neurodegenerative disorders there is a robust correlation between

cognitive decline and loss of neurons from the Locus coeruleus (LC), a system with

diffuse noradrenaline (NA) innervation in the central nervous system (CNS). Therefore,

the hypothesis has been considered that increasing NA signaling in the CNS will prevent,

or at least halt the progression of neurodegeneration and cognitive decline. A hallmark

of the age- and neurodegeneration-related cognitive decline is reduced neurogenesis.

We here discuss noradrenergic dysfunction in AD-related cognitive decline in humans

and its potential involvement in AD pathology and disease progression. We also focus

on animal models to allow the validation of the noradrenergic hypothesis of AD, including

those based upon the immunotoxin-mediated ablation of LC based on saporin, a protein

synthesis interfering agent, which offers selective and graded demise of LC neurons,

Finally, we address how astrocytes, an abundant and functionally heterogeneous cell type

of neuroglia maintaining homeostasis, may participate in the regulation of neurogenesis,

a new strategy for preventing LC neuron loss.

Keywords: noradrenaline (norepinephrine), cognitive decline, Alzheimer’s disease, neurodegeneration,

neurogenesis, astroglia

INTRODUCTION

With its widespread efferent projections, the small brainstem nucleus Locus coeruleus (LC)
represents the main source of noradrenergic innervation to the entire CNS, and plays a
pivotal regulatory role in a variety of physiological processes, including attention, arousal,
sleep/wakefulness, consciousness as well as in specific aspects of learning and memory (Amaral
and Sinnamon, 1977; Aston-Jones and Cohen, 2005; Benarroch, 2009; Sara, 2009). Notably,
increasing clinical and imaging evidences (Peterson and Li, 2018) indicate that LC degeneration
constitutes a crucial early event in the pathogenesis of Alzheimer’s (AD) and Parkinson’s disease
and most of the LC-regulated functions have been shown to be severely affected during its
progression (Chan-Palay and Asan, 1989; Rub et al., 2001; Wilson et al., 2013; Arendt et al., 2015).
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Taken together, these observations have pointed at the
noradrenergic system as a viable therapeutic target for
the treatment of diseases characterized by memory loss
and cognitive decline. However, a feasible animal model
recapitulating noradrenergic neuronal and terminal fiber
loss and its histopathological and cognitive sequelae has not
yet been achieved, mainly due to the objective difficulty to
selectively and efficiently target LC neurons. This review seeks
to briefly summarize noradrenergic dysfunction in AD-related
memory loss and its potential involvement in AD pathology
and progression. Also, recent findings emerging from our own
studies addressing selective immunotoxic ablation of LC neurons
and its effects upon cognitive performance, tissue pathology
and hippocampal neurogenesis will be briefly outlined. Then
we focus into impaired neurogenesis in neurodegeneration and
point to the possible contribution of astroglia to this process.
Invariably, much relevant literature on the aforementioned
topics will not be mentioned here, and we apologize for this.

LOCUS COERULEUS DYSFUNCTION IN
ALZHEIMER’S DISEASE

The existence of an association between noradrenergic depletion
and neurodegeneration including AD has long been known
(Ishii, 1966; Forno and Alvord, 1971; Mann et al., 1980,
1982; Tomlinson et al., 1981; Iversen et al., 1983), however
only in relatively recent years has noradrenergic neuron loss
in LC been widely acknowledged as a prominent feature of
neurodegeneration and AD, being present often decades prior
to the appearance of clinical symptoms, and having been related
to neurofibrillary pathology and the severity of cognitive deficits,
when overtly present (Haglund et al., 2006; Grudzien et al., 2007;
Braak and Del Tredici, 2011a,b; Wilson et al., 2013; Andres-
Benito et al., 2017; Peterson and Li, 2018).

There have also been conflicting reports regarding the NA
levels in the brain of AD patients. In fact, while some studies have
reported marked decline in regional NA brain tissue content,
whose magnitude correlated with the severity of cognitive
impairments (Martignoni et al., 1992; Nazarali and Reynolds,
1992; Matthews et al., 2002; Chen et al., 2014), others reported no
changes (Sparks et al., 1988; Herregodts et al., 1989; Tohgi et al.,
1992) or even increased NA levels (Tohgi et al., 1992; Elrod et al.,
1997).

Similar conflicting observations in post-mortem brain
specimens from AD patients have been reported for adrenergic
receptors (Shimohama et al., 1986; Kalaria et al., 1989; Pascual
et al., 1992; Leverenz et al., 2001), known to be key mediators
of noradrenergic activity, and recently considered relevant
candidates as novel therapeutic targets for AD (Chen et al.,
2014). These discrepancies, likely reflecting compensatory
responses, or their lack, at more advanced stages of the disease
(Szot et al., 2006, 2007), have thus driven the need to conclusively
dissect the exact role played by the noradrenergic system in
the cognitive sequelae and pathogenesis that characterize AD
and neurodegeneration in general. During the last decades,
numerous animal studies and reviews (Mather and Harley,

2016; Borodovitsyna et al., 2017; Gannon and Wang, 2018)
have provided valuable insights into the factors underlying the
disease. It has been shown, for example, that - possibly via their
direct connections to the prefrontal cortex and hippocampus -
LC neurons have a fundamental role in sustaining behavioral
responsiveness upon exposure to relevant, reward-predicting,
stimuli (Bouret and Sara, 2004; Hagena et al., 2016), including
those related to workingmemory (Milstein et al., 2007; Coradazzi
et al., 2016). Furthermore, LC neuron degeneration offers a major
contribution to AD pathogenesis and progression (Braak et al.,
2011; Iba et al., 2015). In fact, a prevailing hypothesis for
noradrenergic neuron and fiber depletion in AD holds that
LC neurons are uniquely susceptible to tau toxicity (Chandler
et al., 2014) and are especially vulnerable to oxidative stress,
possibly owing to their high bioenergetic needs (Sanchez-Padilla
et al., 2014). In such scenario, accumulation of abnormally
phosphorylated tau in LC neurons and its spreading to most
of the brain due to the extremely diffuse efferent projections,
would account for the progression of the disease (Braak and
Del Tredici, 2015), and the resulting neuronal degeneration and
cognitive impairments.

EXPERIMENTAL ANIMAL PARADIGMS TO
STUDY NORADRENERGIC DYSFUNCTION

Animal studies have so far been extremely helpful to dissect
the importance of NA in cognition and in the pathological
events associated to its loss. Experimental manipulation of
the noradrenergic system by e.g., pharmacological blockade
(Mair et al., 2005; Khakpour-Taleghani et al., 2009), lesioning
with N-(2-chloro-ethyl)-N-ethyl-2- bromobenzylamine (DSP4),
reportedly an LC-selective neurotoxin (Lapiz et al., 2001;
Sontag et al., 2008) or the knockout of the dopamine-β-
hydroxylase (DBH) gene (Thomas and Palmiter, 1997; Marino
et al., 2005; Hammerschmidt et al., 2013) have all resulted in
impaired performance in several learning and memory tasks,
demonstrating the existence of an association between NA loss
and disturbances in various aspects of cognition. However, in
many cases, the impairments observed in these studies have
appeared rather inconsistent, both in efficiency and selectivity,
thus highlighting the potential limitations inherent to each
method (Sontag et al., 2008; Khakpour-Taleghani et al., 2009;
Szot et al., 2010; Gannon et al., 2015). In fact, pharmacological
agents lack anatomical and neurochemical resolution, acting
on most monoaminergic neurons and cells throughout the
central and peripheral nervous system. Likewise, DSP4 does
not seem to be specific for noradrenergic neurons and has
been shown to produce only a modest noradrenergic neuron
loss, at best. Finally, although DBH (–/–) knockout mice have
provided the unique opportunity to precisely assess the effects
of NA loss per se, with respect to the various modulators
produced and released by the very same LC neurons, they do
not seem to offer the possibility to obtain partial or graded
neurotransmitter depletions. In light of these limitations, we have
chosen an alternative lesioning approach based on the use of
the immunotoxin anti-DBH-saporin (Picklo et al., 1994), able
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to target noradrenergic neurons in the LC with unprecedented
selectivity and efficiency. This immunotoxin results from the
conjugation of saporin, a powerful ribosome-inactivating plant
lectin extracted from Saponaria officinalis (Caryophyllaceae)
(Lappi et al., 1985; Barthelemy et al., 1993) to a monoclonal
antibody raised against DBH (the enzyme converting dopamine
to NA) that, in addition to its main localization in the cytosol, is
also expressed at the plasma membrane surface of noradrenergic
neurons (Weinshilboum, 1978; Studelska and Brimijoin, 1989).
Due to its structure, saporin cannot enter the cell (Contestabile
and Stirpe, 1993), but when coupled to a carrier molecule (e.g.,
an antibody), is able to specifically bind a surface antigen protein
(such as DBH, in this case), the toxin gains access to the cytosol
and binds to the ribosomal 60S subunit, interfering with protein
synthesis, and soon leading to cell death (Wiley and Kline, 2000).
In initial anatomical investigations, the immunotoxin, infused
into the lateral ventricles of either adults (Wrenn et al., 1996)
or developing rats (Coradazzi et al., 2010) has been observed
to produce highly specific and dose-dependent depletions of
LC neurons, with no effects on other cholinergic, dopaminergic
or serotonergic neuronal populations (Figure 1). Notably, the
possibility to induce a partial or total noradrenergic loss (by
varying the injected dose) makes this immunotoxic approach
extremely suitable to address compensatory events within the
noradrenergic projection system, in addition to providing an
excellent tissue environment for the survival and integration of
implanted NA-rich progenitors (Coradazzi et al., 2010).

NORADRENALINE AND ADULT
HIPPOCAMPAL NEUROGENESIS

The subgranular zone of the hippocampal dentate gyrus is one
of the brain regions where generation of neural progenitor
cells occurs thoughout life in various species, including humans
(Altman and Das, 1965; Cameron et al., 1993; Eriksson et al.,
1998; Gould et al., 1998). From here, proliferating newborn
cells migrate to the granule cell layer, where they differentiate
into neurons and glia and functionally integrate into the local
tissue environment (Markakis and Gage, 1999; Carlen et al.,
2002; van Praag et al., 2002). Many factors have been observed
to affect hippocampal neurogenesis, including environmental
or stressful stimuli (Dranovsky and Hen, 2006), various kinds
of hormones and drugs (Duman et al., 2001), as well as
neurotransmitter activity (Brezun and Daszuta, 1999; Mohapel
et al., 2005, 2006; Aztiria et al., 2007; Walker et al., 2008).
Notably, the hippocampus is the region where explicit memories
are apparently acquired and consolidated (Murchison et al.,
2004), and one of the brain areas receiving the densest LC-
derived noradrenergic innervation (Swanson and Hartman,
1975). Moreover, hippocampal neurogenesis has been proposed
to underlie some of the behavioral effects of antidepressant drugs
(Santarelli et al., 2003; Warner-Schmidt and Duman, 2006; Airan
et al., 2007), whose actions are mainly exerted by increasing
extracellular levels of serotonin and/or noradrenaline (Fuller
et al., 1994; Sacchetti et al., 1999). It is therefore not surprising
that several studies have begun to investigate the contribution

of LC neurons to the regulation of hippocampal neurogenesis,
and have generally reported a permissive role for NA upon
hippocampal neurogenesis (Kulkarni et al., 2002; Jhaveri et al.,
2010, 2014; Masuda et al., 2012). Again, however, none of
the lesion or pharmacological manipulations adopted in these
investigations proved to be region-or transmitter specific, nor
were any of the observed effects analyzed also in terms of impact
upon cognitive performance. In our study using selective and
discrete immunolesioning of LC neurons, associated with a series
of hippocampus-dependent spatial navigation tasks (Coradazzi
et al., 2016), we found severe deficits in working memory, which
correlated with the magnitude of hippocampal noradrenergic
depletion and the lesion-induced reduction in the numbers
of proliferating cells within the dentate gyrus. Notably, no
changes were detected in reference memory abilities, nor did
the lesion affect long-term survival or differentiation of granule
cell progenitors (Coradazzi et al., 2016). Thus, the noradrenergic
regulation of complex aspects of cognitive function (e.g., those
related to working memory) may take place via the proliferation
of progenitor cells in the hippocampal dentate gyrus.

NORADRENALINE, ASTROGLIA AND
NEUROGENESIS

It appears that noradrenergic receptors are densely present
in astroglia (Aoki, 1992), therefore it is likely that NA may
affect neuronal circuits via astroglia (Ding et al., 2013; Paukert
et al., 2014; Pankratov and Lalo, 2015; Gao et al., 2016; Dong
et al., 2017) (Figure 2. graphical abstract). Current view holds
that neurodegeneration in AD is a consequence of neuron-
specific deficits. However, it is more likely that preceding or
concomitant changes in neuroglia may also contribute to this
process (Heneka et al., 2015; Verkhratsky and Parpura, 2015;
De Strooper and Karran, 2016; Rodriguez-Vieitez et al., 2016;
Stenovec et al., 2016; Verkhratsky et al., 2016). Astroglia, a type
of neuroglia, consisting also of oligodendroglia, microglia and
NG2 cells, are functionally and morphologically heterogeneous,
and are involved in sustaining brain homeostasis at cellular
and whole organ levels, by regulating extracellular levels of ions
and neurotransmitters, by controlling vascular and metabolic
functions, the integrity of blood-brain barrier (BBB) (Terry,
2000; Giaume et al., 2007; Kano and Hashimoto, 2009; Heneka
et al., 2010; Nedergaard et al., 2010; Parpura and Zorec, 2010;
Verkhratsky and Nedergaard, 2014, 2018; Zorec et al., 2018).
Importantly, astrocytes are essential in orchestrating defense
in the CNS as well; pathological states in the CNS lead to
reactive astrogliosis, a process that contains and isolates events
taking place in the damaged brain regions. Moreover, reactive
astrogliosis is also augmenting post-damage regeneration and
repair of brain tissue (Parpura et al., 2012; Pekny et al., 2016;
Verkhratsky et al., 2016); however, under certain conditions
reactive astrogliosis can be neurotoxic (Liddelow et al., 2017).
Astrocytes were also termed gliocrine cells (Vardjan and
Zorec, 2015), since they secrete gliosignalling molecules into
the extracellular space and are then convectively distributed
thoroughout the brain by the glymphatic system (at least in
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FIGURE 1 | Anatomical and functional effects of the selective noradrenergic lesion in young adult Sprague-Dawley rats. (A–D): Photomicrographs showing the effects

of the anti-DBH immunotoxin, injected bilaterally into the LC, on noradrenergic neurons in the LC/SubC (A,B) and on the DBH-immunoreactive terminal innervation in

the parietal cortex and hippocampus (C,D, in dark field). Note in (B,D) the nearly complete loss of immunoreactive neurons and fibers induced by the lesion,

compared to the normal patterns in the specimens from a sham-lesioned animal (A,C). In (E), the actual swim paths taken by representative sham-lesioned and

lesioned animals undergoing the Radial Arm Water Maze (RAWM) task for working memory are illustrated. The sham-lesioned animal rapidly learns the task and

significantly improves its performance from the first to the second trial, whereas the lesioned animal does not. LC, locus coeruleus; SubC, subcoeruleus, v fourth

ventricle, CA, cornu ammonis of the hippocampus; DG, dentate gyrus. Scale bars in (A,C): 500µm. Adapted from Coradazzi et al. (2016).

mice), responsible for waste removal (Thrane et al., 2014).
Changes in these complex functions of astroglia may lead to a
homeostatic failure, leading to disease (Verkhratsky and Parpura,
2015). Hence, primary defect in homeostatic astroglia may lead to
a secondary defect in neurons. Interestingly, the role of neuroglial
cells in dementia and AD was noted already at least a century
ago by A. Alzheimer, who observed glial cells in the proximity of

damaged neurons (Alzheimer, 1907, 1910; Strassnig and Ganguli,
2005).

In tissue from post-mortem patients with AD, several
morphological observations were made, including astroglial
hypertrophy, associated with reactive astrogliosis, the hallmark
of which is increased expression of cytoskeletal glial fibrillary
acidic protein (GFAP) and S100, a Ca2+-binding protein; these
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FIGURE 2 | Graphical abstract. Left: neurons from the Locus coeruleus (LC) project axons to most, if not all, areas of the brain and into the spinal cord as denoted by

the arrows. Right: inset magnifies the LC nerve endings with varicosities (swellings on noradrenergic nerve terminals) from which NA is released and mainly activates

astroglia (Aoki, 1992; Sherpa et al., 2016). About half of these terminals do not form tight contacts with target cells, resembling synapses (Feinstein et al., 2016).

changes in astrocytes were seen associated with senile plaques
(Beach and McGeer, 1988; Griffin et al., 1989; Nagele et al.,
2004; Mrak and Griffin, 2005; Verkhratsky et al., 2014). Further,
studying patients with AD by imaging methods revealed distinct
time- and brain-specific morphological alterations (Rodriguez-
Vieitez et al., 2016). Similar changes occurred in an animal
mouse model of familial AD as well, including astroglial
atrophy in addition to hypertrophy in certain areas of the CNS
(Olabarria et al., 2010, 2011; Yeh et al., 2011; Kulijewicz-Nawrot
et al., 2012). The appearance of asthenic astrocytes appeared
to preced the presence of senile plaques; asthenic astrocytes
were at first observed in the entorhinal cortex, an area affected
early in AD pathology (Yeh et al., 2011). Ideally, studies of
pathological developments associated with neurodegeneration
and AD would be best in humans, but these experiments are
challenging. Recent attempts to classify protein astrogliopathies,
including deposition of amyloid-β, prion protein, tau, α-
synuclein, and transactive response DNA-binding protein 43
(TDP-43), demonstrated that these are present in human
neurodegenerative diseases (Kovacs et al., 2017). However,
animal models seem still very valuable, particularly where many
aspects of this pathology can be, to some extent, reproduced,
and the time emergence of AD-like characteristic take a much
shorter time to develop, providing certain opportunities for
studying AD-related neuropathology experimentally. Not only
mice, there are several other animal models of AD including
nematodes, fruit flies, rabbits, canines, and non-human primates;
in each of the models different aspects of AD properties are
manifested (reviewed in Woodruff-Pak, 2008). The selective
ablation of LC in rats, as presented in previous chapters,

offers interesting insights to be explored as a novel animal
model of AD and neurodegeneration, not only for functional
cognitive impairments (Coradazzi et al., 2016), but also for
morphological alterations and aspects of neurogenesis related to
astroglia.

Neuron degeneration in the LC during early stages of AD
(Heneka et al., 2006) may lead to reduced levels of NA, which
is known to be a generic inhibitor of neuroinflammation (De
Keyser et al., 2004) and remodeling of the neurovascular unit
(del Zoppo, 2009). Therefore, reduced noradrenergic innervation
in the CNS may affect the progression of AD through reduced
inhibition of neuroinflammation, a tissue remodeling process.
This likely operates via a reduced NA contribution of astrocyte
adrenergic excitation. Although NA released by the LC neurons
acts through α- and β-adrenergic receptors (α/β-ARs), which are
expressed in neurons, microglia and astrocytes, but it is the latter
cell type that exhibits a high density of ARs, especially the β-
ARs (Aoki, 1992) and thus represents a key cell type mediating
adrenergic effects on brain tissue. Indeed, activation of α-ARs
stimulates Ca2+ signaling in astrocytes (Salm and McCarthy,
1989; Kirischuk et al., 1996; Horvat et al., 2016); experiments in
vivo reported Ca2+ waves propagating through astroglial syncytia
after stimulating the LC in anesthetized animals (Bekar et al.,
2008). In awake animals, electrical stimulation of LC triggered
(via activation of α?-ARs) widespread and synchronous astroglial
Ca2+ signals in practically all astrocytes in the field of study (Ding
et al., 2013). This phenomenonmay be taken as an event resetting
neural networks (Bouret and Sara, 2005). In AD, astrocytic Ca2+

signaling is impaired (Lim et al., 2014; Stenovec et al., 2016),
which may affect the clearance of Aβ deposits (Mattson, 2004)
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and subsequent glutamate toxicity (Mattson and Chan, 2003;
Mattson, 2004).

Whenever NA is released, not only α-ARs, but also β-ARs
are stimulated, although the effects appear in different time-
domains (Horvat et al., 2016). These latter receptors stimulate
second messenger cAMP, which affects glycogenolysis (Prebil
et al., 2011; Kreft et al., 2012), a likely source of glutamate
for memory consolidation (Gibbs et al., 2010). Glycogen, an
energy reserve, present in astrocytes, but not in neurons
(Barros, 2013; Oe et al., 2016), is likely consumed for processes
related to morphological plasticity controlled by β-AR/cAMP
signaling in astroglia (Vardjan et al., 2014). Not only in memory
formation (Zorec et al., 2015), astroglial β-AR/cAMP-dependent
morphological changes are central for astrocytic cell oedema
attenuation (Vardjan et al., 2016).

Activation of ARs on astrocytes may also affect neurogenesis
through neuronal metabolic support by astroglia. Reduced
support due to lower NA levels may in AD result in reduced
neurogenesis. Astrocytes are the site of aerobic glycolysis,
a special metabolic adaptation, present in tissues exhibiting
cell division and morphological plasticity. This non-oxidative
utilization of glucose, takes place even in the presence of adequate
levels of oxygen; it is also known as “the Warburg effect” (Vander
Heiden et al., 2009). It is also a characteristic of cancer cells
(Salcedo-Sora et al., 2014), hence aerobic glycolysis seems a
universal property needed for tissue enlargement and cell shape
remodeling.

Astroglial aerobic glycolysis, with the end product L-lactate,
is regulated by NA. During exercise, sensory stimulation,
alertness and in some pathophysiological states astroglial L-
lactate production is up-regulated, requiering the activation of
LC neurons (Dienel and Cruz, 2016; Feinstein et al., 2016).
LC neurons respond to L-lactate, generated by astroglia when
NA activates ARs on astroglial plasma membrane, with elevated
electrical activity, an interesting form of communication between
the somata of the two cell-types (Tang et al., 2014). It is
possible that astroglial L-lactate may also stimulate LC axons
away from the somata; as it was recently demonstarted that
transcranial direct current stimulation induces NA-dependent
elevation of second messenger Ca2+ in astrocytes (Monai
et al., 2016). Therefore, degenerated LC neurons in AD fail to
adequately stimulate astroglia, a source of necessary support
for the metabolic needs of neuronal networks, contributing
to attenuated neurogenesis. Hypometabolic manifestation is
observed clinically in patients with AD (Rodriguez-Vieitez et al.,
2016).

Cholesterol is an important building block of membranes
and astroglial aerobic glycolysis is likely linked to cholesterol
homeostasis in the brain, the most cholesterol-rich organ in
the body (Lütjohann et al., 1996). There is little exchange of
cholesterol molecules by circulating lipoproteins, between the
brain and systemic circulation, since lipoproteins are unable
to pass the blood–brain barrier (BBB). Interestingly, the brain
exhibits its own cholesterol synthesis, which occurs mainly in glia
(Mauch et al., 2001)). Brain cholesterol is not only synthesized
de novo in the brain, it is also modified/degraded by enzymatic
conversion to 24(S)-hydroxycholesterol (Lütjohann et al., 1996),

a form that can readily cross the BBB, a major route of cholesterol
exit from the brain.

Cholesterol metabolism is linked to the synthesis of the
neurosteroids including allopregnanolone, a potent stimulator of
neural progenitor cell survival reversing the progress of disease
in the 3xTgAD mouse model (Singh et al., 2012). Thus, it is
possible to speculate that the hypometabolic state in AD, due to
impairment of LC-mediated adrenergic stimulation of astroglia,
results in a reduced provision of metabolic intermediates and in
attenuated neurosteroid-mediated maintenance of neurogenesis,
an avenue that will have to be confirmed experimentally in the
future.

FUTURE PROSPECTS AND THERAPY
OPTIONS

Based on the above observations of the relationship between
central noradrenergic depletion and a series of AD-related
changes, including cognitive disturbances, and tissue pathology,
it is not surprising that much interest has recently mounted
concerning the possibility to restore extracellular NA levels in
the brain as a prerequisite to ameliorate cognitive performance
as well as to promote cell protection and neurogenesis. Several
potential therapeutic venues have been explored so far: one
holds that voluntary physical exercise may improve memory by
enhancing NA release from LC neurons (Segal et al., 2012), an
effect possibly mediated by β-ARs (Van Hoomissen et al., 2004;
Ebrahimi et al., 2010). Another study has addressed the possible
restorative effects of atomoxetine (a NA reuptake inhibitor) in
AD patients undergoing anticholinesterase therapy, reporting no
clear-cut cognitive improvements (Mohs et al., 2009), possibly
due to a poor effectiveness of the NA uptake inhibitor on LC
which is already severely depleted of its neurons as a result of
the disease (Braun et al., 2014; Braun and Feinstein, 2017). A
similar lack of cognitive improvements has been reported in
aged healthy patients following treatment with guanfacine, an
α2-AR agonist (Van Dyck, 2014; http://ClinicalTrials.gov) that, if
anything, should reduce, rather than increase NA levels (Starke,
2001). Indeed, α2-AR antagonists appear to prevent age-related
spatial working memory impairments in a transgenic AD mouse
model (Scullion et al., 2011). In spite of these inconsistencies,
the possibility to ameliorate cognitive performance and cell
protection by enhancing noradrenergic neurotransmission
remains an exciting prospect: in a recent investigation (Pintus
et al., 2018) we have implanted embryonic noradrenergic
progenitors bilaterally into the hippocampus of rats whose LC
neurons had been almost completely and selectively depleted.
We reasoned that if the loss of noradrenergic innervation to
the hippocampus was necessary to induce measurable cognitive
impairments, its restoration promoted by the implanted
embryonic LC neurons should be sufficient to ameliorate/reverse
them. As expected (and consistent with our previous findings
Coradazzi et al., 2016), the LC lesion induced severe deficits
in working memory which were seen fully reversed (up to
normal) in transplanted animals and significantly reinstated by a
second lesion ablating the implanted neuroblasts. Interestingly,
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the transplant-promoted noradrenergic reinnervation also
normalized the nuclear expression of the transactive response
DNA-binding protein 43 (TDP-43) in various hippocampal
subregions, whose cytoplasmic (i.e., pathological) occurrence
appeared dramatically increased as a result of the lesions. These
findings therefore provide support to the view that cognitive
and histopathological changes observed in AD patients may
require concurrent loss of ascending regulatory noradrenergic
inputs from LC and that NA replenishment may be an effective
intervention to slow down and/or reverse cognitive decline and
tissue pathology, including neurogenesis. Moreover, the NA
replenishment may operate via astroglial adrenergic mechanism
that include metabolic and neurotrophic support of neural
networks.

CONCLUDING REMARKS

Noradrenergic neurons in the LC and their widespread efferent
connections play a central role in normal cognition and their
disruption is increasingly believed to be critically associated
with severe memory loss and neurodegeneration in general
(Wilson et al., 2013; Feinstein et al., 2016; Bharani et al., 2017;
Satoh and Iijima, 2017). Notably, the presence of functional and

densely present adrenergic receptors on astrocytes (Aoki, 1992),
whose activation triggers metabolic and energetic responses
supporting synaptic functioning and plasticity (Zorec et al.,
2017), strongly suggests that many, if not all, the NA-mediated
processes may take place also via an action on astrocyes. Thus,
addressing astrocytes as viable targets for neurological diseases
related to noradrenergic dysfunction is an interesting issue
with fundamental therapeutic implications, warranting further
research.
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