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Abstract

Increasingly, the matrisome, a set of proteins that form the core of the extracellular matrix (ECM) or are
closely associated with it, has been demonstrated to play a key role in tumor progression. However, in the
context of gynecological cancers, the matrisome has not been well characterized. A holistic, yet targeted,
exploration of the tumor microenvironment is critical for better understanding the progression of gyneco-
logical cancers, identifying key biomarkers for cancer progression, establishing the role of gene expres-
sion in patient survival, and for assisting in the development of new targeted therapies. In this work, we
explored the matrisome gene expression profiles of cervical squamous cell carcinoma and endocervical
adenocarcinoma (CESC), uterine corpus endometrial carcinoma (UCEC), and uterine carcinosarcoma
(UCS) using publicly available RNA-seq data from The Cancer Genome Atlas (TCGA) and The
Genotype-Tissue Expression (GTEx) portal. We hypothesized that the matrisomal expression patterns
of CESC, UCEC, and UCS would be highly distinct with respect to genes which are differentially
expressed and hold inferential significance with respect to tumor progression, patient survival, or both.
Through a combination of statistical and machine learning analysis techniques, we identified sets of genes
and gene networks which characterized each of the gynecological cancer cohorts. Our findings demon-
strate that the matrisome is critical for characterizing gynecological cancers and transcriptomic mecha-
nisms of cancer progression and outcome. Furthermore, while the goal of pan-cancer transcriptional
analyses is often to highlight the shared attributes of these cancer types, we demonstrate that they are
highly distinct diseases which require separate analysis, modeling, and treatment approaches. In future
studies, matrisome genes and gene ontology terms that were identified as holding inferential significance
for cancer stage and patient survival can be evaluated as potential drug targets and incorporated into
in vitro models of disease.
� 2022 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.

org/licenses/by-nc-nd/4.0/).
Introduction

Gynecological cancers are a major cause of
cancer related death for women worldwide
by Elsevier B.V.This is an open access article un
[84,30,92,5]. The most prevalent types include cer-
vical, endometrial, and ovarian cancers. An esti-
mated 91 % of cervical cancer occurrences in the
United States take place when the cells of the cervix
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are exposed to certain strains of human papilloma
virus (HPV) [15,17]. Cervical cancer rates have
been reduced in countries with robust healthcare
systems due to improved screening and HPV vacci-
nation; however, mortality and infection rates
remain high – cervical cancer is the 2nd leading
cause of cancer-related death in women under 40
[35,5,87]. Endometrial cancer, the most common
type of uterine cancer, forms in the lining of the
uterus [39]. Endometrial cancer is the most com-
mon gynecological cancer in the United States.
Prevalence has increased by over 50 % in recent
decades, and survival rates for late-stage diagnosis
are less than 15 % [84,35]. Ovarian cancer is the
fifth most common cause of cancer related death
in women in the US, with four out of five patients
diagnosed with late-stage disease, leading to poor
prognosis [35]. While rare, uterine carcinosarcomas
are a highly aggressive form of uterine cancer that
form in the muscle lining of the uterus [20]. Uterine
carcinosarcomas account for under 5 % of uterine
tumors but are responsible for 30 % of uterine can-
cer deaths – statistics which have not improved in
several decades [66]. Overall, while gynecological
cancers are related by their involvement in the
reproductive tract, each gynecological cancer origi-
nates in a unique tissue and has a unique pathology
[16].
Increasingly, the matrisome, a set of proteins that

form the core of the extracellular matrix (ECM) or
are closely associated with it, has been
demonstrated to play a key role in cancer
progression, influencing epithelial-mesenchymal
transition, angiogenesis, and metastasis
[41,70,71,69,59,105]. However, in the context of
gynecological cancers, the gene expression of the
matrisome has not been well characterized. A holis-
tic, yet targeted, exploration of the tumor microenvi-
ronment is critical for better understanding the
progression of gynecological cancers, identifying
key biomarkers for cancer progression, establishing
the role of gene expression in patient prognosis,
and assisting in the development of new targeted
therapies. It is also a key step in the construction
of 3-dimenaional in vitro gynecological tumor mod-
els [110], which could help accelerate drug screen-
ing and other research [55,99]. In short, a deeper
understanding of the transcriptome characteristics
of the gynecological tumor matrisome has the
potential to revolutionize the way gynecological
cancers are understood and treated.
Publicly available datasets such as The Cancer

Genome Atlas (TCGA) [91] and The Genotype-
Tissue Expression (GTEx) database [2] make it
possible to do large-scale analyses of the transcrip-
tomic profiles of different cancer types and tissues.
Numerous studies have used these data to investi-
gate overlapping expression patterns and enrich-
ments between cancer types, find common
features and subtypes, and explore novel tech-
niques for analyzing these data
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[22,48,77,18,25,21]. Gynecological cancers have
been included in pan-cancer studies [9,59,75], but
often with the goal of highlighting shared attributes
or analyzing them alongside breast cancer. With
TCGA and other datasets, targeted analyses of
gynecological cancers have been performed
[11,26,43,98,80,111,93]. These studies engage in
analyses as specific as investigating the role of
L1CAM in endometrial cancer progression [26],
and as broad as analyzing expression, copy num-
ber variation, somatic mutation, and promoter
methylation to identify pathways of interest across
gynecological cancers [43]. However, the need
remains to conduct targeted analyses of the
matrisome-level gene expression of individual
gynecological cancers and explore their unique
and shared attributes.
In this study, we used a combination of statistical

methods and machine learning approaches to
analyze bulk RNA sequencing (RNA-seq) and
clinical patient data from a unified dataset of
TCGA and GTEx [98], allowing us to compare the
matrisome gene expression of gynecological
tumors to their corresponding healthy tissues. We
explored the matrisome of four primary gynecologi-
cal cancer types in the TCGA dataset: (1) Cervical
squamous cell carcinoma and endocervical adeno-
carcinoma (CESC), (2) Ovarian serous cystadeno-
carcinoma (OV), (3) Uterine Corpus Endometrial
Carcinoma (UCEC), and (4) Uterine Carcinosar-
coma (UCS). We then performed inferential analy-
ses of the CESC, UCEC, and UCS cohorts to
characterize the dysregulation of the tumors’
respective matrisome expression. Unfortunately,
OV was excluded from these analyses due to the
lack of sufficient readily available bulk RNA-Seq
data for normal tissue samples to enable statistical
inference. For each type of cancer we identified
genes that were differentially expressed between
cancer and healthy tissue (i.e., healthy cervical tis-
sue and cervical cancer) and filtered the differen-
tially expressed genes by those involved in the
matrisome. Additionally, we identified individual
matrisome genes and matrisome gene network
modules which had inferential significance for
patient survival and FIGO stage (the standard met-
ric set by Fédération Internationale de Gynécologie
et d’Obstétrique (FIGO) and used by pathologists
when classifying gynecological cancer stage [33].
We then used the differentially expressed matri-
some genes, the genes that held inferential signifi-
cance for FIGO stage, and the genes that held
inferential significance for patient survival to identify
enriched gene ontology (GO) terms (groups of func-
tionally related genes found to be overrepresented
among gene sets of interest using enrichment anal-
ysis) [6]. Cervical cancer, endometrial cancer, and
uterine carcinosarcomas each had unique matri-
some dysregulation profiles, highlighting how criti-
cal it is that gynecological cancers be viewed as
highly distinct pathologies. Furthermore, our
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approach to identify matrisome genes and GO
terms of interest can be applied to other types of
cancer as well as other pathologies.
Results

For all studies we used a unified database
created by Wang et al. (Q. [98] that contained un-
normalized unified RNA-seq data from The Cancer
Genome Atlas (TCGA) and Genotype Tissue
Expression (GTEx) databases that were processed
uniformly, removing batch effects between
databases.
Matrisome gene expression is selectively
dysregulated in gynecological cancers

To investigate the overall importance of the
matrisome in characterizing tumor tissues, we
performed differential gene expression (DGE)
analysis on the full set of genes for each
gynecological cancer cohort in our dataset
(ngenes ¼ 20; 242), comparing tumor tissue to
corresponding normal tissue for each cancer type
(CESC: nnormal ¼ 13, ntumor ¼ 259; UCEC:
nnormal ¼ 105, ntumor ¼ 14; UCS: nnormal ¼ 105,
ntumor ¼ 47). Functional enrichment analysis was
then performed on the sets of differentially
expressed genes (DEGs) to determine whether
matrisome GO terms were enriched among the
DEGs. We found large numbers of DEGs in all
gynecological cancers: 7,652, 8,229, and 7,646 in
CESC, UCEC, and UCS, respectively (Fig. 1A
and Table 1). We also found that a high proportion
of matrisome genes were differentially expressed
(Fig. 1B and Table 1).
After DGE analysis had been performed,

differentially expressed matrisome genes
(DEMGs) were stratified using matrisome
categories defined by Naba et al. [70] (Fig. 1C,
Table S1). The established matrisome categories
are proteoglycans, collagens, ECM-affiliated pro-
teins, ECM glycoproteins, ECM regulators, and
secreted factors. While over half of the genes in
all matrisome categories were differentially
expressed in each cohort, collagens and proteogly-
cans were the most dysregulated in all three can-
cers (Fig. 1C, Table S1). This is likely due, at least
in part, to the fact that collagens and proteoglycans
are constituents of the core matrisome and are
more likely to be found in all tissues than the
ECM-related matrisome genes [70]. Additionally,
we observed that ECM-related GO terms were con-
sistently enriched among each cancer type (Fig. 1-
D-F). In each cohort, the matrisome genes present
in the unified dataset (nmat:genes ¼ 1; 008) were
approximately 20 % more likely to be differentially
expressed than the general gene population
(Table 1). For example, in CESC, 38 % of total
genes were differentially expressed compared to
59 % of matrisome genes. This strongly reinforces
3

the idea that matrisome gene expression is critical
for characterizing cancer pathology.
Next, we sought to assess whether or not the

expression of the matrisome genes alone
(nmat:genes ¼ 1; 008), as opposed to the expression
of all genes (ngenes ¼ 20; 242), can be used to
successfully classify samples as tumor and non-
tumor within each gynecological cancer. To
reduce the amount of heteroskedasticity in the
gene expression count data we first employed the
varianceStabilizingTransofrmation function from
the DESeq2 [63]. We refer to these data as the
variance-stabilizing transformed (VST) unified data.
We trained elastic net penalized logistic regression
[113] models on the variance-stabilizing trans-
formed (VST) unified matrisome expression data
for each gynecological cancer (CESC, UCEC, and
UCS). This was done with all matrisome genes,
not just those that were differentially expressed in
cancer vs healthy tissue. Because the numbers of
tumor and normal observations were imbalanced
in each cohort, especially in CESC (Table S2), bal-
anced classification accuracy was used to assess
model performance because of its ability to penalize
poor performance on minority classes [12]. The
classifiers were able to attain perfect or near-
perfect cross-validated balanced accuracy scores
in all three cohorts when distinguishing between
tumor and normal samples (Table S2). The results
of the elastic net model demonstrate that matrisome
gene expression alone was sufficient for capturing
enough information to classify samples as either
tumor or non tumor, even though the full matrisome
constitutes only 4 % of the human proteome [70].
Given the performance of these models, the broad
enrichment of ECMGO terms among DEGs in each
cohort, and the widely acknowledged tissue-
specific characteristics of ECM [32,41], it is clear
that matrisome gene expression profiles from bulk
RNA-seq capture valuable information about the
tumor microenvironment.

Gynecological tumor heterogeneity

Gynecological cancers are often grouped with
each other as well as breast cancer as a
homogenous block of “women’s cancer” in large
pan-cancer studies [100,86,9,81,59,75]. However,
clinically, it is widely acknowledged that cervical,
endometrial, uterine, and breast cancer are highly
distinct. To evaluate tumor heterogeneity at the
matrisome level between gynecological cancers,
we used the VST harmonized TCGA matrisome
expression data [72] to perform clustering and
dimensionality-reduced data visualizations. First,
we computed centroids for each cancer type, con-
stituted of gene-wise median matrisome gene
expression values in each cancer, and identified
25 samples in each cancer which had minimum L1

(gene-wise absolute value) distance from these
centroids. Correlative hierarchical clustering on
these representative samples showed clear



Fig. 1. Differential gene expression and functional enrichment analysis. Volcano plots showing gene upregulation
and downregulation for the cervical (CESC), endometrial (UCEC), and uterine (UCS) cohorts in (A) all genes and (B)
matrisome genes only. Observations with � log10 q-values of � 100 were excluded from visualization. (C) Breakdown
of differential expression among matrisome genes by matrisome category. Gene expression color-coded by
differential expression direction (blue = downregulated, red = upregulated, gray = no significant change). Sample
sizes: CESC (nnormal ¼ 13, ntumor ¼ 259), UCEC (nnormal ¼ 105, ntumor ¼ 141), and UCS (nnormal ¼ 105, ntumor ¼ 47). Top
5 most enriched ECM-related gene ontology (GO) results for (D) CESC, (E) UCEC, and (F) UCS. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
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matrisome heterogeneity between gynecological
tumors, though there were a few representative
UCS and UCEC samples which correlated with
the OV samples more closely than the rest of their
cohort (Fig. 2A).
4

We then evaluated whether or not gynecological
cancers were more similar to each other than
other types of cancers or vice versa at the
matrisome level. Instead of comparing
gynecological cancers to all cancer types in



Table 1 Differential gene expression summary for tumor
versus healthy tissue in each gynecological cancer
cohort.

Cohort Total DE % DE Upregulated Downregulated

All genes (n ¼ 20; 242)

CESC 7652 38 % 3966 3686

UCEC 8229 41 % 4862 3367

UCS 7646 38 % 4682 2964

Matrisome genes (n ¼ 1; 008)

CESC 593 59 % 262 331

UCEC 618 61 % 317 301

UCS 595 59 % 363 232

Breakdown of DEGs & DEMGs by cancer cohort (CESC,

UCEC, and UCS). Here, DE means differentially expressed and

% DE means percent of all/matrisome genes found to be dif-

ferentially expressed. Sample sizes: CESC (nnormal ¼ 13,

ntumor ¼ 259), UCEC (nnormal ¼ 105, ntumor ¼ 141), and UCS

(nnormal ¼ 105, ntumor ¼ 47).
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TCGA, we chose specific cancer types that we
hypothesized would be either similar or distinct.
BRCA (breast invasive carcinoma) was chosen as
gynecological cancers are often grouped with
breast cancer and deemed “women’s cancer.” We
hypothesized that at the matrisome level BRCA
would be highly distinct from all gynecological
cancers, as while they share cancer-susceptibility
genes such as BRCA1 and BRCA2 mutations,
their tissues of origin are highly distinct [27]. Testic-
ular germ cell tumors (TGCT) and prostate adeno-
carcinoma (PRAD) were chosen specifically for
the reason that we hypothesized they would be
highly distinct from gynecological cancers due to
hormonal and sex-based differences. Lastly, colon
adenocarcinoma (COAD) was chosen as colon
cancer starts in the cells that make mucus, similar
to cervical cancer (CESC), thus we hypothesized
that their matrisome signatures would be similar.
[57] Correlative hierarchical clustering was per-
formed again, and the results showed instances in
which the matrisome gene expression profiles of
gynecological tumors correlated more closely with
non-gynecological tumors than with other gyneco-
logical tumors (Fig. 2B). For example, as expected
CESC clustered tightly with COAD. Interestingly,
CESC clustered more closely with COAD than all
of the other gynecological cancers. Furthermore,
unexpectedly UCS clustered more closely with
TGCT than other the gynecological cancer types.
These findings indicate that, at the level of matri-
some gene expression, gynecological cancers do
not exhibit a unified phenotype.
These differences were further explored through

principal component analysis (PCA) and Uniform
Manifold Approximation and Projection (UMAP).
PCA largely failed to clearly separate
subpopulations (Fig. 2C, Fig. S1), likely because
of its inability to perform non-linear
transformations. To remedy this, we applied
UMAP [68], which can capture non-linear
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information in its approach to dimensionality reduc-
tion. Again, gynecological cancers were first com-
pared to only each other, then compared to non-
gynecological cancers. UMAP further demon-
strated that matrisome gene expression was highly
distinct between gynecological cancer types. While
there was evidence of small subgroup overlaps,
overall, the different gynecological cancer cohorts
formed quite distinct clusters (Fig. 2D). Though
the distances between subpopulations identified
by UMAP are not directly interpretable due to the
nature of the algorithm, CESC samples clustered
rather tightly and were mostly separated from the
other gynecological cancers while UCEC and
UCS had a large amount of overlap. Like CESC
samples, OV samples clustered mostly among
themselves, but overlaps were observed with
UCEC samples (Fig. 2D). UMAP was then used to
compare the matrisome gene expression of the
gynecological cancers to non-gynecological can-
cers BRCA, COAD, TGCT, and PRAD (Fig. 2E).
Again, we observed that there was significant over-
lap and contiguity between UCS and TGCT. Addi-
tionally, similar to the UMAP analysis of
gynecological cancers alone, a small subgroup of
UCEC samples overlapped with OV samples and
several UCS samples were interspersed among
the UCEC cohort (Fig. 2D, E). Importantly, breast
cancer was as visually distinct from gynecological
cancers as prostate and colon cancers (Fig. 2E,
Fig. S1). The fact that breast cancer samples clus-
ter so tightly away from gynecological cancer sam-
ples while testicular cancer samples have
surprising contiguity with uterine carcinosarcoma
samples implies that matrisome gene expression
reveals key similarities and differences between
how tissues experience cancer invasion which
might be missed using traditional sex-based health
approaches to cancer analysis. Also, given that
ECM is highly tissue-specific, the overlapping sub-
groups may represent instances in which the
respective cancers have remodeled or dedifferenti-
ated ECM tissues in a similar way. Taken together,
these data demonstrate that there are instances
where the matrisome gene expression patterns of
gynecological cancers may be more similar to
non-gynecological cancers than each other, and
that, while overlapping subpopulations are observ-
able, the gynecological cancers form distinct
clusters.

Univariable and multivariable analysis to
assess inferential significance for cancer
stage and patient survival

We developed a multi-faceted approach to
investigate the relationship of individual matrisome
gene signatures to cancer stage and patient
survival in each gynecological cancer, using FIGO
stage and patient survival as stratification
variables. Analyses were performed using the
unified gene expression data (Q. [98] paired with



Fig. 2. Matrisome heterogeneity across gynecological cancers. Correlative hierarchical clustering heatmaps of
matrisome genes (rows) and samples (columns) using 25 representative samples from (A) gynecological (gyn)
cancers only and (B) gynecological and non-gynecological (non-gyn) cancers together. (C) Scatterplot of principal
components 1 and 2 (14% and 9.3% variance explained, respectively) for gynecological and non-gynecological
cancers. UMAP dimensionality reduction performed on (E) gynecological cancers only and on (F) gynecological and
non-gynecological cancers together.
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TCGA clinical data. For analyzing FIGO stage-gene
relationships, three approaches were used in each
cohort: 1) gene-wise point-biserial correlation
between genes and each FIGO stage [51,53], 2)
6

pairwise differential gene expression analysis
between samples from the different FIGO stages,
and 3) multivariable L1 penalized multinomial
regression [85,34] to create parsimonious models
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(inferentially significant models with minimal param-
eters) which yielded subsets of matrisome genes
with explanatory power for tumor progression. A
similar approach was used for exploring survival-
gene relationships. Here the three techniques
included: 1) gene-wise censored time screening
[24,53], 2) a gene-wise union of Kaplan-Meier and
Cox proportional hazards (Cox PH) analysis
[47,24], and 3) multivariable L1 penalized Cox PH
[37,88], which, like the FIGO L1 penalized multino-
mial regressors, created parsimonious models
which yielded explanatory subsets of matrisome
genes but this time with respect to patient survival.
Within the FIGO stage and survival analyses,

each modeling approach asked a subtly different
question, so the union of their respective results
represents a more holistic set of matrisome genes
which are important with respect to FIGO stage or
patient survival. The pairwise FIGO stage
differential expression analysis utilized all gene
counts for cancer patients, and computed results
were filtered down to only those genes contained
within the matrisome. All other analyses utilized
the VST cancer patient expression data for the
matrisome genes. Matrisome genes which were
found to have significance in terms of descriptive
or inferential value via these methods were filtered
based on DEMG status and then deemed model
significant. We used the DEMGs as a filtration
mechanism since we were primarily interested in
those matrisome genes which are dysregulated in
cancer overall and hold significance in some other
respect (e.g., stage or survival significance). We
did not pre-filter by DEMG status before our
analyses to avoid biasing the results of those
models which used global information (e.g.,
differential expression or L1 penalized models), or
artificially decrease p- and q-values by reducing
the number of tests. DEMGs which held
univariable and/or multivariable significance with
respect to FIGO stage were termed stage model
significant while those which held univariable and/
or multivariable significance with respect to patient
survival were termed survival model significant
(Table S3). Model significant DEMGs are
matrisome genes which hold the most information
about cancer stage and/or patient survival, and
which may also serve as proxies for the impacts
of co-expressed matrisome genes not captured
through these analyses.
A stark difference was observed between CESC

and the other two gynecological cancer cohorts
with respect to multivariable FIGO stage analyses.
L1 multinomial regression yielded a large set of
stage model significant DEMGs for CESC
(n ¼ 105), while it yielded much smaller sets in
UCEC and UCS (n ¼ 13 and n ¼ 38, respectively)
(Table S3). The number of univariable significant
DEMGs was more similar between the cohorts.
This could point to a more diffuse relationship
between matrisome genes and cancer stage in
7

CESC, with many different groups of genes
impacting cancer stage in different ways, rather
than a few key drivers/proxy genes. In our survival
analysis, all gynecological cancers yielded a
similar number of multivariable results. For
univariable survival analysis, however, CESC had
far more significant DEMGs than UCEC or UCS –
for example, univariable Kaplan-Meier and Cox
PH analysis yielded 19 significant DEMGs in
CESC, but only 1 and 2 in UCEC and UCS,
respectively (Table S3).
For stage model significant DEMGs, no genes

were shared by all cancers, but we did identify 14
genes shared between CESC and UCEC, 12
genes between CESC and UCS, and 7 genes
between UCEC and UCS. Though no stage model
significant DEMGs were shared between all three
cancers, we did note the presence of SERPIN-
family members in results for each of the three
cancer cohorts. Further, CESC and UCEC share
a strong presence of immunomodulatory cytokines
and chemokines which have previously been tied
to cancer progression in several cancer types
[65,64,13]. However, the results for the three
cohorts were more distinct than similar. CESC
demonstrated the most depth (quantity of genes
within the same family) of dysregulation across
the gene families which were found among stage
model significant DEMGs. CESC stage model sig-
nificant DMEGs were enriched for genes related
to hedgehog signaling (HHIP, IHH, and SHH), and
the mucin family of O-linked glycoproteins
(MUC2/3A/5AC/6/12). Several ECM protease fami-
lies were also highly enriched among these genes –
the ADAM family (ADAM11/20/22/29/8), MMPs
(MMP7/8/9/10/13/17/25/27), and ELANE, which
codes for neutrophil elastase. In contrast, UCEC
demonstrated little depth or breadth of family repre-
sentation, though stage model significant DEMGs
were observed to contain multiple ECM binding reg-
ulators (HRG,OTOG, andPCOLCE2) and extracel-
lular enzymes (HYAL3 and PLG). We also noted
that UCEC exhibited a unique overrepresentation
of members of the TGF-b super family, specifically
towards the growth differentiation factor subfamily.
UCS showed a large breadth of family representa-
tion, but little depth within families. Stage model sig-
nificant DEMGs were found within the cystatins
(CST6 andCSTB),S100 family of Ca2+-binding pro-
teins (S100A7/8/9/14 and S100B/P), and the
glycosaminoglycan-binding proteins NCAN,
NELL2, and ECM2. Together, these data suggest
that no singular DEMGs or set of DEMGs are con-
stitutively tied to FIGO stage, but rather tissue-
specific mechanisms employed by each cancer
subtype may modulate oncogenesis and increasing
FIGO stage.
For survival significant DEMGs, we identified a

single gene with overlap between CESC and
UCEC (RSPO2, a member of the WNT signaling
pathway). No other genes were shared among the
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three cancers. CESC again demonstrated the most
depth and breadth of represented gene families
among DEMGs in this category. CESC was
characterized by survival model significant
DEMGs largely related to immune recruitment and
immunomodulatory signaling (CCL25, CSF2,
CXCL2/3, IL-1b, LIF, TNF, TNFSF15, and
TGFB1) as well as regulators of matrix protein
processing (MMP1/3, TLL1, and PLOD2). UCEC
survival model significant DEMGs were
characterized by less depth and breadth than the
stage model significant DEMGs and lacked clear
overrepresentation of a specific gene family.
Survival model significant DEMG sets for UCEC
included ECM components (CSPG4, COL11A1,
FREM3) alongside representation for genes
ascribed to regulation WNT signaling (RSPO2 and
WIF1) and immune cell adhesion (CLEC12B,
MEGF10, MUC2). For survival, UCS had the least
depth and breadth, but demonstrated
dysregulation and prognostic value within mucins
(MUC12/17) and ECM regulation/organization
(TIMP4, COL5A3, HAPLN2, and NCAN). These
data support a framework in which genes that hold
inferential significance for patient survival are
cancer-specific and not preserved amongst the
various gynecological tissues of origin.

Weighted gene correlation network analysis

To examine clusters of co-expressed genes that
were significantly related to tumor stage and
patient survival, we used weighted gene
correlation network analysis (WGCNA) (Fig. 3).
WGCNA uses unsupervised clustering on
topological overlap measures (TOMs) between
genes to construct gene modules which correlate
with sample traits of interest, which for our study
were either FIGO stage or patient survival [53].
TOM is a measurement which is often used to
approximate gene co-expression [107], and
module-trait relationships are typically assessed
by correlating module eigengenes – the first princi-
pal component of a gene module – with the trait of
interest [53].
WGCNA was performed on the VST unified

matrisome expression data within each
gynecological cancer cohort and separate tests
were conducted identify modules and their
constituent matrisome genes which were
significantly correlated with FIGO stage or survival
(Student asymptotic q < 0:05). The purpose of
this analysis was to identify co-expressed
matrisome genes that held hold inferential
significance for FIGO stage or patient survival. We
also explored the overall TOM profiles of the
matrisome in all three gynecological cancers to
compare the gene-gene interactions of the
cancers. CESC matrisome gene expression
demonstrated mean matrisome gene-wise TOMs
far exceeding those observed in UCEC or UCS,
implying that matrisome gene co-expression is
8

more broadly distributed among matrisome genes
in CESC compared to UCEC or UCS (Fig. S2 and
Table S4). This, along with the results from the
univariable and multivariable analyses, implied
that CESC is characterized more by large
matrisome gene ensemble behavior than
expression levels of a few genes serving as
proxies for other co-expressed genes.
For each cancer, the matrisome genes within

FIGO stage significant network modules were
filtered by the significance of their correlation with
their respective module eigengenes (Student
asymptotic p < 0:05), and then filtered based on
whether they had been identified as DEMGs.
These DEMGs were deemed stage network
significant. In the CESC, UCEC, and UCS
cohorts, 140, 159, and 129 DEMGs were shown
to be stage network significant, respectively
(Table S5). WGCNA did not identify any network
modules with eigengenes significantly related to
patient survival in any of the gynecological
cancers examined (log-rank test q < 0:05).
WGCNA revealed differences between cohorts in

terms of the most connected DEMGs within their
respective WGCNA modules. In CESC, the most
connected DEMGs in the three significant
modules were: 1) serine (SERPINs) and cysteine
(cystatins; CSTs) protease inhibitors, S100-family
immune modulators, and annexins; 2) mucins; 3)
immunomodulatory factors (S100 family, LIF,
CXCLs, CCLs, TNFSF13, and IL17C) and
additional ECM protease inhibitors (CST3, ITIH4,
SERPINs, SLPI, and TIMP1) (Figs. 3, S3A). In
UCEC, the most connected DEMGs in the four
significant modules were: 1) proteases (ADAMTS
family and HABP2) and protease inhibitors
(SERPINs, ITIH2, and PZP); 2) hormones
regulating growth and metabolism (CSH1/2,
INSL3, and GH2) as well as numerous factors
associated with fibrin clot formation and
hemostasis; 3) TGF-b superfamily members and
mediators of SMAD signaling; and 4) both
structural collagens and mediators of ECM
assembly/turnover (Fig. S3B). UCS had three
significant modules where the most connected
DEMGs were: 1) Members and mediators of
WNT, FGF, and TGF-b family signaling; and 2)
ADAM and cathepsin protease families in addition
to Ca2+-binding immunoregulatory factors from the
S100 and annexin families. The third module in
UCS did not provide any novel insights but did
further reinforce trends seen in other modules
including WNT, FGF, and TGF-b growth factor
signaling, protease inhibitors, and hormone
signaling (Fig. S3C).

Significant matrisome gene overlaps

The primary results produced by our analyses
were sets of DEMGs which were either FIGO
stage or survival significant (Fig. 4A, Table S6). All
cohorts had high levels of overlap between



Fig. 3. Weighted gene correlation network analysis. Representative visualization of a weighted gene correlation
network analysis (WGCNA) module. This module represents DEMGs that were significantly correlated with FIGO
stage in CESC. These genes were filtered, scaled, and shaded based on their connectivity as compared to the
connectivity of their module’s hub gene, the most connected DEMG in the module. For visualization purposes, module
DEMGs which were below the 30th percentile of connectivity is not pictured, though they were utilized in our analyses.
Module DEMGs which were in the 90th percentile of connectivity to the other module genes are shaded darker than
those below the 90th percentile. Hub genes are shaded darkest. Connectivity was determined by the row-wise (gene-
wise) sum of the module’s adjacency matrix.
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DEMGs and both stage significant and survival
significant matrisome genes. Additionally, for all
cohorts, the univariable and multivariable analyses
yielded very different gene results than our
network analyses. Only 42, 22, and 14 matrisome
genes were found to be significant among both
model and network significant DEMGs in CESC,
UCEC, and UCS, respectively. While unsurprising,
this demonstrates the value of combining findings
from several univariable and multivariable analysis
approaches with results network analyses, as they
have complementary strengths and weaknesses.
We also observed that focusing on the overlap of
matrisome genes that were differentially
expressed in tumor versus normal and either
model or network significant genes dramatically
narrowed the number of matrisome genes of
interest (Fig. 4B). With respect to tumor stage
9

significance, we were primarily interested in
matrisome genes which were dysregulated in
gynecological tumors overall and were implicated
in tumor progression, and this method enabled
that analysis.
Heterogeneity between the gynecological cancer

cohorts in terms of stage or survival significant
DEMGs was then visualized (Fig. 4C). A striking
amount of inter-cancer overlap was observed with
respect to DEMGs, with 340 of 839 unique
DEMGs shared between all gynecological cancer
cohorts. However, the amount of overlap with
respect to stage significant DEMGs was much
smaller, with only 19 out of 476 unique matrisome
genes shared by all cohorts. Survival significant
DEMGs had limited overlap among the 76 unique
survival significant DEMGs, with UCS having no
overlap with the other two cohorts, and CESC and
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UCEC sharing only one survival significant DEMG,
RSPO2, a member of the R-spondin protein family
which codes for a ligand involved in Wnt signaling.
Interestingly RSPO3, another member of the R-
spondin protein family which codes for a protein
linked to Wnt signaling regulation, was also
shared by CESC and UCEC among stage
significant DEMGs. These overlap summaries
imply that the underlying mechanisms for tumor
progression in the three cohorts are distinct yet
have significant overlap, while the underlying
mechanisms impacting patient survival are highly
distinct.
DEMGs that were stage significant in all three

gynecological cancer types included PRL
(prolactin, critical to mammary gland development
and lactation through regulation of estrogen
receptors [61]; upregulated in CESC and UCEC,
but downregulated in UCS), CCL28 (promotes
angiogenesis in response to hypoxia [28]; upregu-
lated in all cancers), ADAMTSL4 (positively regu-
lates fibrillin-1 which regulates latent TGFb
sequestration [4]; downregulated in all three
cohorts), and MUC13 (shares EGFR domain with
MUC1, which promotes MUC1-bCat interaction
[78]; upregulated in all three cohorts). Families of
genes that were among the stage significant
DEMGs in each cancer type included those related
to immune signaling, ECM modification/regulation,
growth factor signaling, and cell adhesion regula-
tion. Some pair-wise overlaps of interest among
stage significant DEMGs include the following: 1)
transcripts encoding laminins and growth differenti-
ation factor family members (TGF-b superfamily
proteins) were significant in both UCS and UCEC,
2) MMPs, FGFs, and cytokines/chemokines(IL/
CCL/CXCL transcripts) were found to be significant
in CESC and UCS, and 3) SERPIN, C3 & PZP, and
ITIH protease inhibitor families as well as c-type
(CLEC) and galactoside-binding (LGALS) lectins
were found to be significant in CESC and UCEC.
Functional enrichment analysis

Lastly, we performed functional enrichment
analysis, resulting in cellular component, biological
process, and molecular function gene ontology
(GO) classifications that were enriched among the
Fig. 4. Significant matrisome gene overlaps. (A) Visualiz
matrisome genes (DEMGs), stage significant matrisome g
(Survival) for each gynecological cancer cohorts. Stage or su
by univariable, multivariable, or network analysis to be signifi
overlap between differentially expressed (DE) and stage si
matrisome category for each gynecological cancer cohort
univariable or multivariable analysis or by network analysis
were not identified as differentially expressed between tumo
differentially expressed between tumor and normal tissue
network analysis. (C) Visualization of the overlaps between g
matrisome genes (DEMGs), stage significant DEMGs, and

3
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genes found by our analyses [36]. We identified
GO terms which were enriched among stage or sur-
vival significant DEMGs and sorted them by q-value
(Fig. 5). For stage significant DEMGs (Fig. 5A), out
of the top 10 most significantly enriched GO terms
in each cohort (14 unique GO terms total), 7 were
shared by all cohorts (extracellular matrix organiza-
tion, extracellular structure organization, collagen-
containing extracellular matrix, receptor ligand
activity, signaling receptor activator activity, cyto-
kine activity, and growth factor activity), a 50 % full
overlap. Examining all 974 GO terms that were sig-
nificantly enriched in one or more cohort across all
stage significant DEMGs, 221 were significantly
enriched in all cohorts, a 23 % overlap. The
observed overlap indicates that despite the specific
genes differing, the three cancers approach several
of the same endpoints through different means.
For survival significant DEMGs (Fig. 5B), out of

the top 10 most significantly enriched GO terms in
each cohort (25 unique GO terms total), only 1
(cytokine activity) was shared by all cohorts, a
4 % full overlap. Examining all 457 GO terms that
were significantly enriched in one or more cohort
across all survival significant DEMGs, only 8 were
shared by all cohorts, a <2 % full overlap. Taken
together, these data indicate that the GO terms
enriched among DEMGs related to patient survival
are broadly distinct between CESC, UCEC, and
UCS.
The GO classifications of DEMGS identified as

stage significant using either univariable or
multivariable analysis were then compared to
those identified using network analysis. Among
stage model significant DEMGs identified through
univariable or multivariable analysis in CESC, the
most highly enriched GO terms were related to
ECM structure, ECM organization, ECM
deposition and remodeling, cytokine activity,
receptor binding, growth factor activity,
glycosaminoglycan binding, and receptor ligand
activity. Examining matrisome genes within FIGO
stage significant network modules, CESC module
1 showed enrichment of collagen ECM and
negative regulation of peptidase/endopeptidase/ser
ine-type endopeptidase activity, along with
enrichment of calcium-dependent protein binding
and enzyme inhibition. In module 2, innate
ation of the overlaps between differentially expressed
enes (Stage), and survival significant matrisome genes
rvival significant refers to all of the genes that were found
cant with respect to tumor stage. (B) Visualization of the
gnificant matrisome genes (Stage sig.) broken down by
. Stage sig. only refers to matrisome genes found by
to be significant with respect to tumor stage, but which
r and normal tissue. DE only refers to matrisome genes
but not identified as significant through univariable or
ynecological cohorts in terms of differentially expressed
survival significant DMEGs.



Fig. 5. Functional enrichment of FIGO stage and survival significant DEMGs for all gynecological cancer types. Top
10 most significantly enriched gene ontology terms (sorted by q-value) in each cancer cohort with respect to (A) FIGO
stage significant differentially expressed matrisome genes (DEMGs) and (B) survival significant DEMGs. Value of
�log10 qð Þ > 1:3 indicates significance (q < 0:05).
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immune response, O-glycan processing and
protein O-linked glycosylation, and stimulation of
the C-type lectin receptor signaling pathway were
significantly enriched. The most enriched GO
terms in CESC module 3 were related to
chemokine and cytokine activity, as well as
neutrophil and granulocyte movement. Overall,
CESC was characterized by widespread
dysregulation in the ADAM/TS/TSL and MMP
protein families which contribute to the enrichment
of the metalloendopeptidase GO term.
Among stage model significant DEMGs in UCEC,

the most highly enriched GO terms were related to
ECM structure, RAGE receptor binding, negative
regulation of ECM remodeling, glycosaminoglycan
binding, and calcium-dependent protein binding.
Examining matrisome genes within FIGO stage
significant network modules, the four significant
network modules in UCEC had some overlap but
were also quite distinct in terms of enriched GO
terms. In UCEC module 1, collagens with collagen
ECM and peptidase/endopeptidase/serine-type
endopeptidase inhibition were highly enriched.
Analysis of module 2 identified enzyme inhibition,
blood microparticles, collagen ECM,
glycosaminoglycan binding, peptidase/endopepti
dase/serine-type endopeptidase inhibition, and
12
glycosaminoglycan binding as highly enriched.
Among the genes in module 3, tumor necrosis
factor receptor binding, cell adhesion, cytokine
activity, and growth factor activity were all
significantly enriched, as were BMP-related GO
terms. In UCEC module 4, the most enriched GO
terms were related to ECM organization/collagen
and metallopeptidase/metalloendopeptidase
activity. Overall, UCEC dysregulation, in contrast
to CESC, was characterized by growth factor
signaling – components of the FGF (FGF10/12),
TGF-b superfamily (TGF-b/GDF/BMP signaling;
TGFb1, LTBP3, GDF6, GDF7, BMP5, BMPER),
IGF (IGF1, IGFBP2/6), and WNT (WNT10A,
WNT11, RSPO2) were all well represented.
Among stage model significant DEMGs identified

through univariate or multivariate analysis in UCS,
the most highly enriched GO terms were related
to ECM structure, ECM organization, ECM
deposition and remodeling, enzyme inhibition,
growth factor activity, cytokine activity, and
negative regulation of proteolysis were the most
enriched. Examining matrisome genes within
FIGO stage significant network modules, module
1 showed enrichment of ECM structure/
organization, semaphorin/plexin signaling,
keratinocyte migration, and regulation of
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transmembrane receptor proteins. Module 2
showed significant enrichment of ECM collagen/str
ucture/organization, cytokine activity, and growth
factor activity. UCS module 3 showed significant
enrichment of S100 protein binding, semaphorin
receptor binding, glycosaminoglycan binding, and
negative regulation of chemotaxis. Overall, UCS
was characterized by matrix modifying enzymes
(LOXL3, MMP1/9/21/23B, CELA2A/B, CELA3A/
B), cell-surface proteoglycans (mucins
MUC2/13/15 and glypicans GPC1/2/3/6), and
ECM structural components (collagens
COL19/20/22/23/25/28/A1 and laminins
(LAMA2/3, LAMB3, LAMC2).
As there were no survival network significant

modules identified using WGCNA, the survival
model significant DEMGS identified through
univariate or multivariate analysis were explored in
relation to only the other types of cancers. Overall,
survival significant DEMGs were characterized by
a less diverse set of enrichments. In CESC,
immunomodulatory cues were dominant, with
MMPs and collagen processing proteins such as
PLOD2 and ITIH1 also showing noteworthy levels
of representation. In UCEC, enriched GO terms
were characterized by heparin binding proteins
and mediators of WNT pathway activation and
signaling. Lastly, UCS enrichments were
predominantly composed of glycosaminoglycan
binding proteins with a bias towards hyaluronic
acid and heparin binding factors.

Discussion

In summary, we demonstrated that thematrisome
is more dysregulated in gynecological cancer than
genes at large and is highly critical for
characterizing gynecological cancers. We
reinforced the fact that gynecological cancers are
highly heterogeneous and distinct from breast
cancer at the matrisome level. Through a
combination of statistical and machine learning
methods, we identified differentially expressed
matrisome genes and used univariable and
multivariable modeling as well as network analysis
to subcategorize these into those which were
descriptively or inferentially significant with respect
to either tumor stage or patient survival. We then
determined GO terms which were significantly
enriched within each of those sets of genes.
Finally, the results of our individual gene and gene
network analyses as well as our enrichment
analyses were used for two tasks. First, within
each gynecological cancer cohort, we contrasted
the genes and GO terms found to be significant
with respect to stage to those found to be
significant for survival. Second, we contrasted the
matrisome genes and GO terms significant in
each cohort with those in other cohorts, identifying
similarities and differences between the
gynecological cancers in terms of dysregulated
13
and inferentially significant genes as well as
dysregulated groups of GO terms. We propose
that the variety of approaches in our multi-faceted
analysis pipeline ameliorates the weaknesses of
each constituent approach, yields informative sets
of significantly dysregulated matrisome genes and
enriched GO terms, and produces metrics which
allow for sophisticated analyses of the relationship
between matrisome gene expression and
pathology.
Although the similarities between gynecological

cancers are often the focal point of bioinformatics
studies [9,59,75], our analyses demonstrate that
at the matrisome level the transcriptomic profiles
of these diseases are highly distinct from one
another. Additionally, while gynecological cancers
have been grouped with breast cancer in large
pan-cancer studies [100,86,9,81], the matrisome
expression signatures of gynecological cancers
were highly distinct from breast cancers. This is
similar to findings from pan-cancer global andmatri-
some analyses, that found that breast cancer clus-
tered distinctly away from gynecological cancers
[73,42]. Overall, when compared to non-
gynecological cancers, the matrisome transcrip-
tome of gynecological cancers correlated more clo-
sely with non-gynecological cancers than with each
other, indicating that the transcriptional matrisome
characteristics of the gynecological cancers exam-
ined were more different than they are similar.
It has been widely demonstrated that a large

proportion of genes are differentially expressed
between normal and cancer tissues. In our work,
we observed that this is especially true at the
matrisome level, and even more pronounced for
core-matrisome genes, which are less tissue-
specific than ECM-related genes [70]. Specifically,
ECM GO terms were significantly enriched among
the differentially expressed genes and a machine
learning model trained on the matrisome transcrip-
tome could almost perfectly distinguish normal from
tumor tissue within each cancer type. Furthermore,
in each of the three gynecological cancers evalu-
ated, 65–75 % of collagens and proteoglycans
and 60–65 % of ECM glycoproteins present in the
dataset were dysregulated. Taken together, these
results suggests that for future work seeking to
characterize different types of cancer, the matri-
some could be the most informative focal point.
However, as with most large transcriptomic studies,
there are limitations to our analyses. The data we
used are observational and no direct causal links
can be established between the genes, gene net-
works, or gene sets and disease progression or
patient survival using our findings. Furthermore, dif-
ferential expression at the RNA level does not
always translate to significant differences at the pro-
tein level. This is in part due to the fact that many
proteins in the matrisome undergo extensive post-
translational modifications before being integrated
into mature ECM. Therefore, the transcriptomic
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profile and its interpretation might not reflect the
ECM composition at the protein levels [52]. Thus
in vitro or in vivomechanistic studies should be per-
formed to follow up on these observations.
Evaluating both univariable and multivariable

models revealed key distinctions between
gynecological cancer cohorts. Examining stage
significant DEMGs revealed that CESC was
characterized by diffuse gene ensemble behavior
– many genes with weaker inferential significance
for tumor stage – whereas UCEC and UCS had
smaller ensembles of key genes acting together
and serving as proxies for other tightly correlated
genes. For patient survival, both univariable and
multivariable analysis yielded several genes of
interest in CESC, while patient survival results in
UCEC and UCS were not easily characterized by
individual DEMG expression levels. In UCEC, only
WIF1 was significant using DEMG-filtered
univariable survival analysis. In UCS, only
TNFSF14 (linked to T cell proliferation, tumor cell
apoptosis, and angiogenic normalization) and
CST1 (an inhibitor of cysteine proteinase found in
several body fluids) were found to be significant
via DEMG-filtered univariable survival analysis.
WGCNA helped to fill in the gaps left by
univariable and multivariable approaches in finding
DEMGs significantly related to cancer stage,
yielding several modules in each cohort which
were significantly related to cancer stage. Within
each gynecological cancer cohort, network
modules yielded distinct GO terms. Taken
together, these results indicate that analyses
which seek to characterize cancer progression
and patient survival should use both univariable
and multivariable models along with network
analysis, otherwise important gene markers will
likely be overlooked.
Across FIGO stage significant DEMGs,

differences between the cancers were
observed, but many of the same downstream
processes were impacted across cohorts.
Results in CESC skewed towards immune
regulation, underscored by widespread
representation of cytokines and chemokines,
likely due to the fact that over 90 % of
cervical cancer cases in the US are caused by
HPV [15,83,17]. In contrast, UCEC and UCS
results were biased toward ECM constituents
and stromal signaling factors, without the same
level of emphasis on immune regulation. All
three cohorts had stage significant DEMGs
linked to stromal signaling, cell growth, and
structural ECM. The most prevalent stage signif-
icant DEMGs in all cohorts were proteases and
protease inhibitors, collagen-containing ECM
components, cytokines, immunomodulatory pro-
teins, growth factor signaling proteins, and mem-
bers of the semaphoring and plexin receptor-
ligand families. Overall, dysregulation of ECM
remodeling was common among all three
14
gynecological cancer cohorts. In CESC and
UCS, Cystatin E (CST6), which has been shown
to contribute to cervical tumor growth and hyper-
activation of cathepsin L when downregulated
[96], was a stage significant DEMG. Proteases
responsible for regulating core ECM components
such as elastin, collagen, and fibronectin were
also highly FIGO stage significant across
cohorts. Specifically, MMPs were highly signifi-
cant in all cohorts, cathepsins were significant
in both CESC and UCEC, and the
chymotrypsin-like elastase family was significant
in UCS. While MMPs have previously been
associated with FIGO stage in CESC via histol-
ogy [60], this is the first work to demonstrate
in silico that MMP expression is associated with
FIGO stage in endometrial cancer and uterine
sarcoma. Given that protease activity is critical
for ECM remodeling and tumor cell invasion
and migration [102], it is unsurprising that we
observed a strong presence of such enzymes
among FIGO stage significant DEMGs in all
cohorts. Numerous genes in the ADAMTS fam-
ily, which coordinate pathophysiological ECM
remodeling and regulate processes like inflam-
mation and angiogenesis [44], were stage signif-
icant DEMGs in each of the three cancers.
These genes target the members of the Von
Willebrand Factor (VWF) family [44,89], which
were also stage significant DEMGs in each can-
cer. The presence of both ADAMTS and VWF
family proteins suggests a shared connection
between FIGO stage and the formation of provi-
sional ECM, likely as a means of promoting
angiogenesis to support/sustain tumor growth
[31]. These results indicate that matrisome dys-
regulation related to tumor progression has com-
mon manifestations between cancer types, but
significant distinctions are also apparent.
With respect to survival significant DEMGs, fewer

similarities were observed between cancer cohorts.
In CESC, many of the survival significant DEMGs
were involved in immune modulation and
regulation of immune cell binding. This builds
upon previous work that demonstrates that an
increase in tumor associated macrophages is
associated with poor prognosis in cervical cancer
patients [19]. With respect to all cohorts, GO terms
enriched among survival significant DEMGs were
associated with processes which allow the cancer
to evade the immune response and propagate in
non-native tissues. While MMPs were shown to be
significant among survival significant DEMGs in
CESC, we did not identify any MMPs as survival
significant in either UCS or UCEC. These results
are similar to a separate study that evaluated which
genes held predictive power for patient survival in
ovarian cancer [97]. Overall, given the small num-
ber of death events in the data set (CESC: 66,
UCEC: 24, UCS: 27), statistical power was limited,
and survival significant genes were more difficult



C.J. Cook, A.E. Miller, T.H. Barker, et al. Materials Biology 15 (2022) 100117
to identify than stage significant genes. As more
survival data become available, future studies could
potentially identify additional matrisome genes that
are survival significant.
Generally, notable similarities and distinctions

were observed among stage significant DEMGs
between the three gynecological cancer cohorts,
while survival significant DEMGs were largely
different between the cohorts. Additionally, stage
significant DEMGs among all three gynecological
cancers contained more depth and breadth of
gene family representation than survival significant
DEMGs. Again, the small number of survival
significant DEMGs is likely due to the small
number of patient death events in the data and
the impact of this on statistical power. One key
finding in all three cohorts was the presence of
FIGO stage and survival significant DEMGs
involved in the WNT signaling pathway. WNT
signaling is highly activated in all cancers [108],
and is modulated by changes in the ECM [7]. In
UCEC and CESC specifically, it has been associ-
ated with increased aggressiveness and cancer cell
proliferation [101,106]. In CESC, we observed that
metalloproteinases such as SERPINs and MMPs,
along with ECM assembly enzymes such as matri-
lins and lysyl oxidase (LOX)-family members, all of
which are induced by WNT signaling [103,28,82],
were prevalent among both stage and survival sig-
nificant DEMGs. This is intuitive, as proteases pro-
mote ECM remodeling, tumorigenesis, and
metastasis [102]. MMP-9 activity has been shown
to be significantly related to patient survival in cervi-
cal cancer patients, and our data further support this
observation while also demonstrating that MMP-9
expression can be significantly related to CESC
FIGO stage as well [58]. Overall, stage and survival
significant DEMGs in CESC were closely tied to
ECM remodeling and immune signaling. UCEC
stage and survival significant DEMGs consisted lar-
gely of genes involved in WNT signaling, which is
often dysregulated in endometrial cancers [29]. In
UCEC, we found that stage significant DEMGs
were often within the WNT signaling pathway itself,
whereas survival significant DEMGs were often
upstream regulators of WNT signaling. There is a
large body of evidence ascribing a role for WNT
family signaling and dysregulation of the planar cell
polarity pathway in oncogenic transformations
through altered proliferation and pro-epithelial-to-
mesenchymal transition behavior [95]. In low-
grade endometrial cancers specifically, loss of
epithelial apical polarity appears to drive prolifera-
tion and cancer cell migration [101]. In UCS, stage
and survival significant DEMG sets each shared
an overrepresentation of the cystatin family of cys-
teine inhibitors as well as the mucin family, both of
which are regulated by the WNT pathway [56,74].
While little research exists on the role of these pro-
teins in UCS, mucins appear to be elevated in ovar-
ian carcinomas and are currently being investigated
15
as a diagnostic candidate [10]. With regard to genes
directly involved in WNT signaling, UCS may be
characterized less by dysregulation of these com-
ponents due to its mesenchymal tissue origin,
meaning there is a reduced need for the tumor tis-
sue to undergo epithelial-mesenchymal transition.
Taken together, our results confirm the importance
of theWNT signaling pathway across all three gyne-
cological cancer cohorts investigated. Furthermore,
our results identified key similarities and differences
between stage and survival significant matrisome
dysregulation, and support and expand upon previ-
ous findings in the literature. Though our results
point to many contrasts between the cancer
cohorts, it should be noted that the unified dataset
used in this study, while corrected for batch effects,
likely retains some variance attributable to combin-
ing data from different data sources.
Our findings have immediate relevance to the

fields of cancer tissue engineering. The role of
regulators of ECM turnover/remodeling versus
physical constituents in each cancer should be
further investigated to determine influence on
tumor progression. Engineered tissue systems
often utilize hydrogels coated with a single ECM
protein (e.g., collagen I, fibronectin) or synthetic
polymers possessing adhesion peptides, but we
show in this work that the key drivers of tumor
progression and patient mortality are not the
adhesion peptides or structural proteins of the
ECM, but rather the proteins which dynamically
regulate ECM turnover. Though there was a
notable amount of overlap between each of the
three cancer cohorts in terms of stage and
survival DEMGs, the matrisome gene signatures
unique to each cohort could be utilized to inform
biomaterial constructs aimed at studying tumor
progression or studying cancer cell behavior in
environments deterministic of low survival rates.
For example, extracellular proteases were
frequently found among stage significant DEMGs
in each of the three gynecological cancers.
Therefore, incorporating protease cleavable sites
into a synthetic material construct, such as MMP-
cleavable peptide sequences, similar to the work
done by Valdez et al. [94], could be useful for study-
ing ECM turnover and cancer cell invasion. Like-
wise, the inclusion of heparin or cleavable
heparin-binding sites that sequester soluble factors
such as TGF-bwould enable controlled release dur-
ing matrix remodeling. Techniques for controlled
delivery of heparin-binding growth factors during tis-
sue regeneration are discussed at length by Joung
et al. [45]. Information gleaned from our study could
also be used to create novel material constructs for
each cancer comprised of distinct features specific
to either tumor stage or patient survival. We previ-
ously noted that DEMGs significant for patient sur-
vival in CESC favored regulation of immune
signaling and recruitment whereas those significant
in UCS and UCEC were biased towards stromal
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signaling factors. This information could be applied
to engineering 3D in vitro models with spatially dis-
tinct regions of adhesive peptides and tethered
growth factors. In vitromodels of CESC could incor-
porate gradients of various, pro-tumorigenic cytoki-
nes identified in our results, such as IL-17, which is
associated with tumor growth [112]. Similarly, we
noted an overrepresentation of laminins and vari-
ous proteoglycan-associated proteins among stage
significant DEMGs in UCS and UCEC. This over-
representation may imply a role for incorporating
DEMGs associated with a pro-invasion basement
membrane into a tissue model system. Finally, the
presence of collagens and various collagen pro-
cessing components in both stage and survival sig-
nificant DEMG sets across all cancers further
underscores the role for collagen organization and
density as deterministic of cancer aggressiveness
[1]. Taken together, our results support the consid-
eration of biophysical cues such as stiffness, con-
trolled release of soluble factors, and inclusion of
protease cleavable sites when designing in vitro
constructs to study gynecological cancers. Further-
more, our results identify key pathways that should
be considered when designing disease-specific
in vitro models.
The results of this work can provide an atlas for

further matrisome gene expression research in the
context of the gynecological cancers studied.
While these diseases are wide-spread and deadly
for women worldwide, concerted efforts to broadly
characterize their similarities and distinctions,
especially at the matrisome level, are not
prevalent. Our research contributes to a better
understanding of the matrisome pathways that are
dysregulated in gynecological cancers. These
pathways can be further investigated with clinical
samples, in vivo models, or 3D in vitro models.
Furthermore, our findings identify disease-specific
dysregulated pathways that can be investigated
as potential therapeutic targets.
Methods

Data sources and preprocessing

All data preprocessing was done using the R [79]
andPython programming languages. The terms “tu-
mor” or “tumor sample” refer specifically to primary
tumor samples from the given dataset.
Unified dataset

The un-normalized unified RNA-Seq dataset of
The Cancer Genome Atlas (TCGA) gynecological
tumor samples and Genotype Tissue Expression
(GTEx) database samples created by Wang et al.
was accessed and downloaded from the
Figshare scientific data sharing website
(https://figshare.com/articles/dataset/Data_record_
1/5330539) (Q. [98] on 7/20/2020. TCGA is a repos-
itory of several petabytes of publicly available
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cancer data, hosted on the Genomic Data Com-
mons portal [91]. While large numbers of tumor
samples are available from TCGA, normal (healthy)
samples are lacking. GTEx is a public repository
with a wealth of gene expression data generated
from normal tissue samples [2], making it an ideal
source for additional data to pair with TCGA. The
unified dataset created by Wang et al. combines
the TCGA and GTEx data (for cancer types with
both tumor and normal samples present in the
TCGA RNA-seq database) and processes them
uniformly, removing batch effects. The raw data
were used for differential gene expression (DGE)
analysis. For other analyses of these data, we
employed the varianceStabilizingTransofrmation
function from the DESeq2 [63] package to reduce
the amount of heteroskedasticity in the gene
expression count data. We refer to these data as
the variance-stabilizing transformed (VST) unified
data. Unfortunately, due to the lack of normal ovar-
ian tissue samples present in the TCGA dataset,
the ovarian cohort was not included by Wang
et al. and is used by us only for the investigation
of tumor heterogeneity in our analyses (since it can-
not be subjected to DGE analysis without any nor-
mal tissue samples).
TCGA count & clinical data

TCGA HTSeq count data [72] and the corre-
sponding clinical data (e.g., demographics, FIGO
stage, survival) were downloaded from TCGA via
the TCGABiolinks package [23] on 2020/09/15.
The gene expression count data (normalized using
the varianceStabilizingTransofrmation function
from DESeq2) were used for our heterogeneity
analysis, while the clinical data were matched with
corresponding data from the unified dataset for
use in our other analyses. For the heterogeneity
analysis, we downloaded data corresponding to
breast invasive carcinoma (BRCA), cervical squa-
mous cell carcinoma and endocervical adenocarci-
noma (CESC), colon adenocarcinoma (COAD),
ovarian serous cystadenocarcinoma (OV), prostate
adenocarcinoma (PRAD), testicular germ cell
tumors (TGCT), uterine corpus endometrial carci-
noma (UCEC), uterine carcinosarcoma (UCS).
The matrisome database

The humanmatrisome database was constructed
by Naba et al. using a combination bioinformatic
protein domain sweeps and manual curation [70].
The humanmatrisome database was retrieved from
the online repository of The Matrisome Project
(http://matrisomeproject.mit.edu/other-resources/
human-matrisome) on 7/21/2020. We filtered out
the “retired” genes in this database, yielding a mas-
ter list of 1027 genes, 1008 of which were present in
the unified dataset used in our analyses. The 1027-
gene master list consisted of core matrisome
(n ¼ 274) and matrisome-associated (n ¼ 753)

https://figshare.com/articles/dataset/Data_record_1/5330539
https://figshare.com/articles/dataset/Data_record_1/5330539
http://matrisomeproject.mit.edu/other-resources/human-matrisome
http://matrisomeproject.mit.edu/other-resources/human-matrisome
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genes. Matrisome categories included: collagens,
ECM glycoproteins, ECM regulators, ECM-
affiliated proteins, proteoglycans, and secreted fac-
tors (Table S7). Of these, 270 core matrisome and
738 matrisome-associated genes (1,008 total) were
present in our dataset (Table S7).
Correlative hierarchical clustering

To visualize the overall heterogeneity of
matrisome expression among gynecological
cancers, correlative hierarchical clustering was
performed on select cancer types in TCGA. This
was achieved using the pheatmap function from
the pheatmap package in R [49]. We selected 25
representative samples from each cancer cohort
by first computing centroids for each cohort (gene-
wise median expression values) and selected the
25 tumor samples which were closest (asmeasured
by L1 distance) to these centroids. This procedure
can be summarized by the expression.

x1:25 ¼ argminx1:25
kx i � ck1

where x1:25 denotes the 25 samples with minimal L1

distance from the cohort centroid, c. This sample pre-
selection was done to ensure that the samples being
compared via clustering were as representative of the
cancer types to which they belonged as possible.
Clustering was performed using the hclust function
from stats package in R [79]. The distance metric used
was 1� r ij , where r ij is the correlation coefficient for

the i th and j th genes (or samples). Pearson correlation
was used for gene-wise correlation, while Spearman cor-
relation was used for sample-wise correlation. This clus-
tering was done on the TCGA HTSeq count data,
normalized using the varianceStabilizingTransformation
function from DESeq2.
Dimensionality reduction

Dimensionality reduction was performed for the
TCGA HTSeq count data, normalized using the
varianceStabilizingTransformation function from
DESeq2. PCA was performed using the prcomp
function from R’s stats package. UMAP [68] dimen-
sionality reduction was performed using the umap
function from the umap package in R [50]. While
UMAP analysis is predominantly used in single cell
RNA-Seq data analysis [8], we applied it to bulk
RNA-Seq data to visually stratify cancer type sub-
populations in 2-dimensional plots.
Tumor versus normal tissue stratification by
machine learning

Elastic net logistic regression models [3] were
trained on the VST unified matrisome expression
data for each gynecological cancer cohort. These
models were trained to classify, in each cohort,
observations as tumor samples or normal samples
to demonstrate the power of matrisome expression
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profiles in characterizing cancers. Elastic net
regression utilizes the objective function.

JEN bð Þ ¼ J bð Þ þ k1kbk1 þ k2kbk2
where J bð Þ is a simpler loss function and the parameters
k1 and k2 control the proportion of L1 (lasso) and L2

(ridge) regression penalization. The performance of
these models was measured using balanced
classification accuracy [12]. This scoring method utilizes
observation weights defined according to.

wc ¼ n

C � nc

where wc is the weight assigned to observations from
class c, n is the total number of observations, C is the
total number of classes (factor levels of the response),
and nc is the number of observations in class c [76].
The weights sum to 1 and ensure that the sum of the
weighted observations of each class are the same,
penalizing models which only perform well on the most
common class(es) in the data set. These models were
trained using 5-fold cross validation and hyperparame-
ters were optimized using sequential model-based opti-
mization [40]. The scikit-learn implementation of elastic
net logistic regression was used [76], and sequential
model-based optimization was performed using the
gp_minimize function in scikit-optimize [38].
Differential gene expression analysis

Differential gene expression (DGE) analysis was
conducted on the full unified data set using the
DESeq2 package in R [63]. All genes with expres-
sion counts of 0 in more than one third of samples
were considered to be lowly expressed genes and
filtered out prior to performing the differential gene
expression analysis. Using the recommended two-
step procedure [62], the DESeq function was called
with default arguments, followed by the results func-
tion with alpha set to the significance threshold,
a ¼ 0:05, and sample condition modeled as tumor
versus normal. Genes were deemed differentially
expressed based on two commonly used criteria:
1) q-value less than the significance threshold
(a ¼ 0:05) and 2) absolute log fold-change of 1
[67]. While the Benjamini-Hoschberg option was
used when calling the DESeq function, we deter-
mined differential expression based on results from
the more sophisticated qvalue function from the
WGCNA package in R [53]. In the case of UCS
and UCEC, the same normal uterine tissue sam-
ples, were used for determining differential
expression.
Univariable statistical analyses

Several large statistical analyses were performed
on the unified gene expression data (tumor samples
only). Aside from the pairwise FIGO differential
gene expression analysis, which utilized count
data for all genes, the VST expression data for the
matrisome genes was used. Once again, q-values
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were computed by adjusting p-values using the
WGCNA package’s qvalue function. For analyses
involving FIGO stage, all sub-stages were
condensed into stages I-IV (for example, Stage IA
and Stage IB would be replaced by Stage I) and
observations with missing FIGO data were
removed. For analyses involving censored survival
time, samples with missing survival time or status
(alive or deceased) or survival time of 0 days were
filtered out.
Pairwise FIGO differential expression analysis

Differential expression analysis was performed
pairwise between tumor samples from all different
FIGO stages. The following contrasts were used
(numbers correspond to FIGO stages): 2 vs 1, 3
vs 1, 4 vs 1, 3 vs 2, 4 vs 2, and 4 vs 3. Results
were combined and filtered to include only
matrisome genes. Significance was determined by
Benjamini-Hochberg adjusted p-values
(padj < 0:01) and absolute log fold-change of 1 or
more. A matrisome gene was required to meet
both the adjusted p-value and log fold-change
threshold in at least one contrast to be considered
significant. Our motivation for using stricter false
discovery rate controls than in the earlier tumor
versus healthy tissue differential expression
analysis was to create more parsimonious lists
with lower risk of type I error rate. This is because,
1) the analysis was performed on all genes and
results were filtered to include only matrisome
genes, creating the potential for a mismatch in
intended and achieved FDR among the target
population and 2) the individual genes discovered
in this analysis would be used for detailed
downstream analysis and high confidence in the
results was desired. These analyses were
completed using the DESeq function with
parameter alpha set to 0.01, the intended
significance threshold.
Point-biserial correlation

Point-biserial correlation is mathematically
equivalent to the Pearson correlation between a
continuous and dichotomous variable [51]. The
FIGO stage of each sample was transformed using
a one hot encoding and gene-wise point-biserial
correlations were computed for each FIGO stage.
Genes were deemed significant if their Student
asymptotic q-values [53] were below the signifi-
cance threshold (q < 0:05) for at least one FIGO
stage. Student asymptotic p-values were computed
using the corPvalueStudent function from the
WGCNA package and then adjusted.
Censored time screening

The standardScreeningCensoredTime function
from the WGCNA package was used to test
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whether any matrisome genes were significantly
related to patient survival (log-rank test q < 0:05).
The authors describe this method as fitting gene-
wise univariable Cox PH models and performing
log-rank tests [53].

Univariable Kaplan-Meier and Cox PH

Each matrisome gene was related to survival via
the union of Kaplan-Meier and univariable Cox PH
models [47,24]. For Kaplan-Meier analysis, a gene
expression cutoff first had to be set for each gene,
so that they could be divided into high and low
expression groups. This cutoff was found by fitting
a two component Gaussian mixture model to the
VST expression data each gene and setting the cut-
off to be equal to the expression value at which the
two Gaussian densities most closely overlapped,
similar to the method described by Budczies et al.
[14]. Gene-wise Kaplan-Meier modeling was then
performed on these stratified expression groups.
Gene-wise Cox PH models were fit to the unstrati-
fied VST expression data. Genes were classified
as significant based on their Kaplan-Meier q-
values (Chi-squared test q < 0:05) or Cox PH q-
values (likelihood ratio test q < 0:05). While use of
gene-wise univariable Cox PH in this method may
seem redundant with respect to the censored time
screening, the two methods employed different
hypothesis tests and did not have perfectly overlap-
ping results, so both were included.

Machine learning-based feature selection

L1 penalized multivariable machine learning
models were fit to the VST unified matrisome data
for tumor samples in each gynecological cancer
cohort. The purpose of these models was to
identify relationships between matrisome genes
and both FIGO stage and patient survival. The
same pre-filtering that was used for the
univariable statistical FIGO and survival analyses
was repeated here. In both cases, an L1 penalized
model was fit to the data using the glmnet
package in R [34,88]. The models were optimized
for parsimony, which is done by tuning the value
of k in the L1 penalty objective function.

JL1 bð Þ ¼ J bð Þ þ kkbk1
where J bð Þ is some simpler loss function
(misclassification rate, for example) and kbk1 is the L1

norm of the model parameters. FIGO and survival
models were fit in each gynecological cohort using
cross validation and a 1-dimensional grid search over
values of k. The performances of the worst FIGO
model and survival model were used as caps for the
models in the other cohorts. This procedure consisted
of identifying (for both FIGO models and survival
models) the best score within each cohort and then
selecting the worst of these (i.e., the worst-of-the-best);
this score was then used to select the first model which
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achieved a comparable (to 3 decimal places) score in
each of the other cohorts (Fig. S4). This was done for
two reasons; first, since model results would be
compared between cancer cohorts, it was desirable to
compare results from models of similar predictive
power. Second, the lowest performing models were
also the least parsimonious, so employing this
restriction had the effect of bounding how parsimonious
any model could be – to avoid, for example, comparing
models which selected 300 features to those which
selected 3. Values of k were searched in increasing
order during model fitting, where 1000 evenly spaced
values of k were searched on a log scale in the range

e�5; e0½ � (Fig. S4).
FIGO multinomial regression

Four-class multinomial regression was used to
select genes which were related to FIGO stage,
since FIGO stage classification was a four-level
classification problem. The poorest performance
was observed in the CESC cohort (Table S8). The
multinomial regressors were fit and assessed
using 5-fold cross validation (10-fold cross
validation was counter-indicated because 10
observations were not present for every level of
FIGO stage in every cohort) by using the cv.
glmnet function in the glmnet package with
arguments family set to “multinomial”,
type.multinomial set to “grouped” to ensure
coefficients at the same indices (for the same
genes) would be retained for each level of the
response, and type.measure set to “class”
meaning classification error was used. Balanced
class-weighting (as in the tumor/normal
stratification models) was used to ensure models
did not favor performance in any FIGO stage. This
balanced class-weighting was critical since FIGO
stages I-IV were highly imbalanced.
Survival Cox proportional hazards

Multivariable Cox PH regression was used to
select genes which were related to survival. The
poorest performance was observed in UCS
(Table S8), which was unsurprising since this was
the smallest cohort. The Cox PH regressors were
fit and assessed using 10-fold cross validation
using the cv.glmnet function in the glmnet
package with arguments family set to “cox” and
type.measure set to “C” for Harrel’s concordance
measure [90].
Weighted gene correlation network analysis
(WGCNA)

WGCNA was performed according to the
instructions provided by the package authors [54].
First, a topological overlap matrix was constructed
over the matrisome genes using a soft power which
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yielded a sufficient scale free topological overlap
metric (TOM) [109]. This matrix of TOMs represents
the gene-wise similarity of expression values for
each matrisome gene, with more similar genes
having larger topological overlap values. Thismatrix
was then used to perform hierarchical clustering,
where modules were merged if they achieved a cor-
relative distance threshold of 0:25 (i.e., module cor-
relation of 0:75). Modules were then related to two
traits: censored survival time and FIGO stage.
Module-trait significance was determined by corre-
lating the module eigengeneswith the traits of inter-
est. Matrisome genes were determined to be
significant if 1) they belonged to amodule with a sig-
nificant FIGO correlation for at least one FIGO
stage (Student asymptotic q < 0:05) and 2) their
module membership was significant (Student
asymptotic p < 0:05). All WGCNA was performed
using R code and functions from theWGCNA pack-
age in R [53].
Enrichment analysis

Gene set and pathway enrichment analysis were
performed using the R package, clusterProfiler
[104]. For gene set (functional) enrichment analy-
sis, the function enrichGOwas used to find enriched
gene ontologies (GO) among significant genes [36].
For pathway enrichment analysis, the function en-
richKEGG was used to find KEGG pathways which
were enriched among significant genes [46]. The
significance of each enriched gene function or path-
way was determined based on the reported q-value
(q < 0:05).
Qualitative analysis of FIGO and Survival-
significant gene lists

Identification and overall relevancy of
overrepresented gene families were identified
using STRING database queries within Cytoscape
(v3.8.0) software. To compare both within and
between FIGO stage/survival significant genes for
each cancer, lists of transcripts were compared on
a gene-by-gene (e.g., MMP3) and family-by-family
(e.g., Mucins) basis.
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