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Abstract: Heparan sulfate (HS) is an essential glycosaminoglycan (GAG) as a component of pro-
teoglycans, which are present on the cell surface and in the extracellular matrix. HS-containing
proteoglycans not only function as structural constituents of the basal lamina but also play versatile
roles in various physiological processes, including cell signaling and organ development. Thus,
inherited mutations of genes associated with the biosynthesis or degradation of HS can cause various
diseases, particularly those involving the bones and central nervous system (CNS). Mucopolysaccha-
ridoses (MPSs) are a group of lysosomal storage disorders involving GAG accumulation throughout
the body caused by a deficiency of GAG-degrading enzymes. GAGs are stored differently in different
types of MPSs. Particularly, HS deposition is observed in patients with MPS types I, II, III, and VII,
all which involve progressive neuropathy with multiple CNS system symptoms. While therapies are
available for certain symptoms in some types of MPSs, significant unmet medical needs remain, such
as neurocognitive impairment. This review presents recent knowledge on the pathophysiological
roles of HS focusing on the pathogenesis of MPSs. We also discuss the possible use and significance
of HS as a biomarker for disease severity and therapeutic response in MPSs.

Keywords: heparan sulfate; mucopolysaccharidoses; lysosomal storage disorders; cerebrospinal
fluid; biomarker; blood-brain barrier

1. Introduction

Heparan sulfate (HS), a glycosaminoglycan (GAG), is a linear sulfated polysaccharide
consisting of a simple structure of repeating disaccharides, namely, N-acetylglucosamine
(GlcNAc) and glucuronic acid or iduronic acid [1–3]. HS functions as a component of
proteoglycans (heparan sulfate proteoglycans, HSPGs) on the cell surface and in the ex-
tracellular matrix of the basement membrane [1–3]. Based on their different locations and
molecular features, HSPGs are classified into three groups: syndecans, having a single
transmembrane domain; glypicans, anchored by glycosylphosphatidylinositol (GPI) to the
plasma membrane, and secreted proteoglycans, including perlecan, agrin, and collagen
XVIII [1–4].

The biosynthesis of HS, which occurs in the endoplasmic reticulum and Golgi appa-
ratus, is initiated by the O-linked attachment of xylose to serine residues of core proteins
followed by the linkage of two galactose residues and glucuronic acid (tetrasaccharide
linkage region) to extend the repetitive disaccharide chain (Figure 1A). The chain elonga-
tion reaction begins with the linking of GlcNAc to the tetrasaccharide linkage region by
the EXTL2/EXTL3 enzyme. Then, glycosyltransferase EXT1/EXT2 sequentially links the
disaccharide chain. During these processes, the polysaccharide chain undergoes concurrent
modifications, such as N-deacetylation/N-sulfation, C5-epimerization, and O-sulfation,
which results in the structural diversity of HS chains (Figure 1B) [2,3,5,6].
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Figure 1. Schematic representation of heparan sulfate (HS) biosynthesis and modification: (A) HS 
biosynthesis, and (B) modification of the HS chain. The chain sequence is arbitrary to show possible 
modifications. Xyl, xylose; Gal, galactose; GlcA, glucuronic acid; GlcNAc, N-acetylglucosamine; Ser, 
serine; GlcNS, N-sulfated glucosamine; IdoA, iduronic acid. 

HSPGs are involved in several physiological processes, including cell signaling, cell 
adhesion and motility, signaling molecule stabilization and localization in the extracellu-
lar matrix, and membrane trafficking [2]. These functions of HSPGs are largely attributed 
to their HS chains, although the core proteins themselves may affect the biological events 
[7–9]. The consequences of the genetic ablation of enzymes involved in HS metabolism 
have been investigated using gene-modified mouse models to reveal the critical roles of 
HSPGs, especially HS glycans, in many physiological processes [4,6]. Mutations in genes 
that encode the enzyme proteins associated with HS synthesis can cause human diseases. 
For example, deficiencies in XYLT1 and XYLT2, both which encode xylosyl transferases 
and are involved in the linker synthesis, cause Desbuquois dysplasia type 2 and spondy-
loocular syndrome, respectively. Mutations in the genes encoding galactosyltransferases 
(B4GALT7 and B3GALT6) cause spondylodysplastic types of Ehlers–Danlos syndrome 
[10,11]. Loss-of-function mutations in EXT1/EXT2, which encode exostosin glycosyltrans-
ferases, can lead to hereditary multiple exostoses [5,12]. 

In addition to the biosynthesis, degradation of HS is an important biological process, 
which is largely mediated by a series of lysosome-resident enzymes (Figure 2). First, idu-
ronate-2-sulfatase (IDS) catalyzes the removal of C2 sulfate from iduronate-2-sulfate 
(IdoA2S) at the non-reducing end of HS [13]. Second, α-L-iduronidase (IDUA) hydrolyzes 
the terminal α-L-iduronic acid (IdoA) residues of HS [14,15]. Third, N-sulfoglucosamine 
sulfohydrolase (SGSH) catalyzes the removal of sulfate from the amino group of the N-
sulfated glucosamine residues of the HS chain [16,17]. Fourth, acetyl-CoA-acetyltransfer-
ase (HGSNAT) facilitates the acetylation of the terminal glucosamine residues of HS after 
de-sulfation by SGSH [18]. α-N-acetylglucosaminidase (NAGLU) cleaves the terminal 
GlcNac residues from the HS chain [19,20]. Glucuronate-2-sulfatase removes C2 sulfate 
from the 2-O-sulfated glucuronic acid residues of HS [21]. β-glucuronidase (GUSB) hy-
drolyzes the terminal b-D-glucuronic acid residues of HS [22]. N-acetylglucosamine-6-sul-
fatase (GNS) removes C6 sulfate from 6-O-sulfated GlcNac and the glucosamine residues 
of HS [23–25]. 

Figure 1. Schematic representation of heparan sulfate (HS) biosynthesis and modification: (A) HS
biosynthesis, and (B) modification of the HS chain. The chain sequence is arbitrary to show possible
modifications. Xyl, xylose; Gal, galactose; GlcA, glucuronic acid; GlcNAc, N-acetylglucosamine; Ser,
serine; GlcNS, N-sulfated glucosamine; IdoA, iduronic acid.

HSPGs are involved in several physiological processes, including cell signaling, cell
adhesion and motility, signaling molecule stabilization and localization in the extracellular
matrix, and membrane trafficking [2]. These functions of HSPGs are largely attributed to
their HS chains, although the core proteins themselves may affect the biological events [7–9].
The consequences of the genetic ablation of enzymes involved in HS metabolism have
been investigated using gene-modified mouse models to reveal the critical roles of HSPGs,
especially HS glycans, in many physiological processes [4,6]. Mutations in genes that
encode the enzyme proteins associated with HS synthesis can cause human diseases. For
example, deficiencies in XYLT1 and XYLT2, both which encode xylosyl transferases and are
involved in the linker synthesis, cause Desbuquois dysplasia type 2 and spondyloocular
syndrome, respectively. Mutations in the genes encoding galactosyltransferases (B4GALT7
and B3GALT6) cause spondylodysplastic types of Ehlers–Danlos syndrome [10,11]. Loss-of-
function mutations in EXT1/EXT2, which encode exostosin glycosyltransferases, can lead
to hereditary multiple exostoses [5,12].

In addition to the biosynthesis, degradation of HS is an important biological process,
which is largely mediated by a series of lysosome-resident enzymes (Figure 2). First,
iduronate-2-sulfatase (IDS) catalyzes the removal of C2 sulfate from iduronate-2-sulfate
(IdoA2S) at the non-reducing end of HS [13]. Second, α-L-iduronidase (IDUA) hydrolyzes
the terminal α-L-iduronic acid (IdoA) residues of HS [14,15]. Third, N-sulfoglucosamine
sulfohydrolase (SGSH) catalyzes the removal of sulfate from the amino group of the N-
sulfated glucosamine residues of the HS chain [16,17]. Fourth, acetyl-CoA-acetyltransferase
(HGSNAT) facilitates the acetylation of the terminal glucosamine residues of HS after de-
sulfation by SGSH [18]. α-N-acetylglucosaminidase (NAGLU) cleaves the terminal GlcNac
residues from the HS chain [19,20]. Glucuronate-2-sulfatase removes C2 sulfate from the
2-O-sulfated glucuronic acid residues of HS [21]. β-glucuronidase (GUSB) hydrolyzes the
terminal b-D-glucuronic acid residues of HS [22]. N-acetylglucosamine-6-sulfatase (GNS)
removes C6 sulfate from 6-O-sulfated GlcNac and the glucosamine residues of HS [23–25].
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Figure 2. Sequential degradation of heparan sulfate (HS) and the catalyzing enzyme in each reac-
tion. The type of mucopolysaccharidosis (MPS) caused by genetic defects is indicated in parentheses 
under the corresponding enzyme. 

Defects in HS degradation can also cause human diseases. Since the degradation of 
proteoglycans occurs in lysosomes, the diseases are generally characterized by the accu-
mulation of undigested GAGs in the lysosomes throughout the body, which are called 
mucopolysaccharidoses (MPSs) [26]. MPSs are a group of rare inherited metabolic disor-
ders caused by the genetic mutations of lysosomal enzymes involved in GAG degrada-
tion. HS deposition is observed in MPSs I, II, III, and VII [27–37]. The causative gene mu-
tation for each MPS has been identified (Figure 2). 

This review presents recent knowledge on the physiological and pathophysiological 
roles of HS, especially focusing on the pathogenesis of MPSs. It also discusses the use and 
significance of HS as a biomarker for disease severity and therapeutic response in MPSs. 

  

Figure 2. Sequential degradation of heparan sulfate (HS) and the catalyzing enzyme in each reaction.
The type of mucopolysaccharidosis (MPS) caused by genetic defects is indicated in parentheses under
the corresponding enzyme.

Defects in HS degradation can also cause human diseases. Since the degradation
of proteoglycans occurs in lysosomes, the diseases are generally characterized by the
accumulation of undigested GAGs in the lysosomes throughout the body, which are called
mucopolysaccharidoses (MPSs) [26]. MPSs are a group of rare inherited metabolic disorders
caused by the genetic mutations of lysosomal enzymes involved in GAG degradation. HS
deposition is observed in MPSs I, II, III, and VII [27–37]. The causative gene mutation for
each MPS has been identified (Figure 2).

This review presents recent knowledge on the physiological and pathophysiological
roles of HS, especially focusing on the pathogenesis of MPSs. It also discusses the use and
significance of HS as a biomarker for disease severity and therapeutic response in MPSs.
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2. Physiological Roles of HS

HS presents and acts as a part of proteoglycans (HSPGs), namely, the transmembrane
syndecans, the GPI-anchored glypicans, and secreted types of agrin, perlecan, and collagen
XVIII [1–4]. The well-known roles of HSPGs include the regulation and modification of
cell signaling as co-receptors. Cell-surface HSPGs are required for the formation of the
FGF2-FGF receptor complex and for signal transduction [38,39]. HSPGs are involved in
Wnt signaling and promote the interaction between Wnt and Frizzled receptors [40,41].
The Hedgehog, BMP, and VEGF signaling pathways are also regulated by HSPGs [42–46].
In addition to functioning as signaling co-receptors, HSPGs regulate morphogen gradient
and movement [47,48]. Binding to HSPGs restricts the diffusion of morphogens along the
cell surface to prevent extraordinal signal input to the cell in other layers [43]. Moreover,
cell adhesion matrix proteins, such as fibronectin, vitronectin, and laminins, bind to cell
surface HSPGs through their heparin-binding domains during cell adhesion and cell shape
determination [49]. Accordingly, HS and HSPGs play critical roles in the morphogenesis
of developing tissues and in the maintenance of normal cell functions of the body and
intercellular communication throughout the body.

Particularly, the correct formation of mammalian brain structures requires HS expres-
sion, as evidenced in the patterning defects and severe errors in midline axon guidance
exhibited by mice lacking the HS-polymerizing enzyme Ext1 [50]. The disruption of the
HS-modifying enzyme N-deacetylase and N-sulfotransferase 1 (Ndst1) results in severe
developmental defects in the forebrain and forebrain-derived structures [51]. Additionally,
the loss of enzymes responsible for the biosynthesis of the linkage region or HS chain can
induce defects in bone growth and skeletal deformities [52–57], demonstrating that HS also
has crucial roles in bone formation and skeletal development.

3. Diseases Caused by Ablation of HS Metabolism

Some human disorders are caused by mutations in genes associated with HS syn-
thesis. Mutations in the xylosyltransferase (XYLT1) gene encoding an enzyme involved
in the formation of the linkage region leads to Desbuquois dysplasia type 2 (Phenotype
MIM number: 615777), which is characteristic of skeletal abnormalities, including pre- and
postnatal growth retardation, advanced carpal ossification, and short limb bone with a
prominent trochanter in the femur [10,11,58,59]. A gene mutation of XYLT2, the isoform
of XYLT1, results in spondylo-ocular syndrome (MIM: 605822), which is characterized
by bone fragility, cataracts, and hearing defects [60,61]. Genetic defects in the galactosyl-
transferase genes B4GALT7 and B3GALT6 are associated with Ehlers–Danlos syndrome
spondylodysplastic type 1 (MIM: 130070) and spondyloepimetaphyseal dysplasia with joint
laxity type 1 (MIM: 271640) or Ehlers–Danlos syndrome spondylodysplastic type 2 (MIM
615349), respectively. These disorders have overlapping features, such as short stature
and osteopenia [62–67]. Multiple hereditary exostoses types 1 and 2 (MIM: 133700 and
133701) are caused by loss-of-function mutations in EXT1 and EXT2, which encode proteins
that form a heterooligomeric complex that catalyzes HS polymerization [68]. Multiple
hereditary exostoses are autosomal dominant disorders characterized by multiple projec-
tions of bone capped by cartilage, resulting in deformed legs, forearms, and hands [69].
Defects in HS–modifying enzyme HS6ST1 can result in hypogonadotropic hypogonadism
15 with or without anosmia, which is characterized by absent sexual maturation and low
circulating levels of gonadotropins and testosterone [70]. In addition, hyperglycemia in
diabetes enhances HS degradation or affects the synthesis of HSPGs, consequently altering
the HSPG structure and contributing to diabetic blood vessel complications, including
retinopathy [71,72].

Because HS degradation is sequentially catalyzed by lysosomal enzymes, genetic
defects in any of the enzymes can cause MPS (Figure 2). The details of MPSs are described
in the next section.
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4. Pathophysiological Roles of HS in MPSs

The impaired GAG degradation in MPSs is due to the deficiency or absence of lysoso-
mal enzymes involved in the catabolism of GAGs, leading to the intracellular and extracel-
lular accumulation of GAGs. GAG storage materials in MPSs are varied and include HS,
dermatan sulfate, chondroitin sulfate, keratan sulfate, and hyaluronic acid, depending on
the defective enzyme. Although the typical clinical features of patients with MPSs include
skeletal and joint deformation, cardiovascular dysfunction, respiratory defects, and hearing
and vision loss, neurological manifestations with intellectual or cognitive disability are ob-
served only in particular types of MPSs where HS is accumulated [27,73]. Among the types
of MPS, HS deposition is observed in patients with MPS I (MIM: 607014/607015/607016),
II (MIM: 309900), IIIA (MIM: 252900), IIIB (MIM: 252920), IIIC (MIM: 252530), IIID (MIM:
252940), and VII (MIM: 253220). The causative genes are IDUA, IDS, SGSH, NAGLU,
HGSNAT, GNS, and GUSB, respectively [28–37]. The most likely causes of the various
symptoms in different MPS types are the different distribution patterns of GAG species
throughout the body. The accumulation of HS but not other GAGs is found in virtually all
cell types, including neuronal cells, and may be linked to the phenotypes of neuronopathic
MPSs [74].

The accumulation of HS, as well as of other GAGs, directly affects lysosomal morphol-
ogy, causing hypertrophy and increasing the number of lysosomes in cells. These changes
also impact lysosomal function, thereby leading to abnormal membrane compositions
and the secondary storage of different materials, impaired intracellular vesicle trafficking,
impaired autophagy, mitochondrial dysfunction, and intracellular ionic imbalance, which
causes cell function dysregulation and inflammation [75,76] (described in detail subse-
quently). Additionally, decreased HS degradation in the lysosomes limits the recycling of
HSPGs, causes the accumulation of membrane-bound cell-surface HSPGs, and dysregulates
morphogen/growth factor–receptor interactions and signal transduction [27]. Since HS
and HSPGs are crucial in the development of many tissues and organs, especially in central
nervous system (CNS) and musculoskeletal development, the final consequences of the
pathogenic accumulation of HS caused by genetic defects affecting HS-degrading enzymes
are CNS and skeletal abnormalities in patients with certain types of MPSs [26].

4.1. Lysosomal Dysfunction in MPSs

The lysosome is a critical organelle that contains the enzymes required for catabolizing
macromolecules and processes the clearance/recycling of intra- and extracellular mate-
rials under acidic conditions through the endosomal-autophagic-lysosomal system [77].
Lysosomes are involved in several distinct pathways of degradation: macroautophagy, the
most prevalent autophagic pathway for degrading intracellular components involving the
fusion of autophagosomes to lysosomes [78]; endosomal degradation, which begins with
the endocytosis of extracellular substances and ends in the fusion of late endosomes to
lysosomes for the breakdown of the substrates [77]; microautophagy, an autophagic path-
way involving lysosomal pinocytosis of cytosolic materials [79]; and chaperone-mediated
autophagy, a lysosome-dependent proteolytic pathway responsible for degrading one-third
of cytosolic proteins [80]. A deficiency of lysosomal enzymes in MPSs immediately leads to
the accumulation of numerous autolysosomes and endolysosomes containing many par-
tially digested macromolecules and old/damaged organelles in cells. The abovementioned
autophagic and endosomal degradation pathways may be simultaneously impaired, which
in turn may result in the loss of the cellular quality control system maintaining cell and
organelle homeostasis.

4.2. Secondary Storage of Gangliosides

Gangliosides are glycosphingolipids abundant in the CNS and lipid raft domains
in the plasma membrane and play important roles in cell proliferation, differentiation,
adhesion and signaling, and in cell–cell communication [81]. GM2 and GM3 ganglioside
levels are increased in the brains of patients with MPSs [82–84]. Evidence has shown
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that accumulated GAGs inhibit the activity of ganglioside-degrading enzymes [85–88].
The accumulation of GM2 ganglioside induces ectopic dendrite growth [89]. Ganglioside
accumulation could also disrupt Ca2+ homeostasis and induce endoplasmic reticulum
stress, resulting in neural cell apoptosis [90]. Since changes in the composition of the lipid
raft can affect the functions of many ion channels and transporters, the accumulation of
gangliosides is thought to be responsible, at least partly, for neural cell dysfunction and
death [91]. All these neuronal responses to the abnormal accumulation of gangliosides
secondary to GAG deposition are likely associated with brain pathology in MPSs.

4.3. Mitochondrial Dysfunction

The turnover (clearance/recycling and biogenesis) of mitochondria, as well as of other
organelles, is regulated by autophagy for the maintenance of normal cellular function [92].
As discussed above, the pathological accumulation of GAGs, including HS, in MPSs im-
pairs the autophagic–lysosomal system, leading to the impaired clearance/recycling of
damaged mitochondria and subsequent mitochondrial dysfunction. Mitochondria generate
ATP by oxidative phosphorylation and function in the maintenance of intracellular Ca2+

homeostasis, oxidative stress regulation, and lipid metabolism [93,94]. These processes
are particularly important for neuronal physiology because neurons largely depend on
oxidative phosphorylation for energy production and on the precise regulation of intra-
cellular Ca2+ concentrations for optimal neuronal signaling [95]. Therefore, mitochondrial
dysfunction is one possible mechanism leading to the neurodegeneration characteristic of
certain types of MPSs [96,97].

5. Therapies for MPSs through the Reduction of GAGs

Therapies for MPSs include enzyme replacement therapy (ERT) and hematopoietic
stem cell transplantation (HSCT). Both therapies are based on the exogenous replacement
of enzymes missing in patients with MPSs. In ERT, enzymes are administered directly into
circulation by intravenous (in some cases intracerebroventricular or intrathecal) injection,
whereas HSCT provides enzymes through their production and release from engrafted
cells. Lysosomal enzymes are incorporated into cells mediated by mannose-6-phosphate re-
ceptors to be delivered to lysosomes where they degrade the corresponding substrates [98].
ERT is currently available for MPS types I, II, IVA, VI, and VII [99] and is mostly effective
for some somatic disorders. However, it cannot address CNS disorders because the blood–
brain barrier (BBB) interferes with the delivery of enzymes administered intravenously to
brain tissues.

The treatment of CNS manifestations in MPSs has been a critical but unmet need.
However, a BBB-crossing technology based on the physiological mechanism of receptor-
mediated transcytosis has been pioneered by Pardridge and colleagues [100–104] and paved
the way for addressing this research gap. Recently, pabinafusp alfa, a BBB-penetrating
fusion protein consisting of an anti-human transferrin receptor (TfR) antibody and IDS, was
approved in Japan for the treatment of patients with all, including neuronopathic, forms
of MPS II [105–114]. Nonclinical studies have shown that pabinafusp alfa is distributed
in the brain parenchyma of monkeys (Figure 3A) and mice and reduces HS levels in
both peripheral and CNS tissues of MPS II mice [105–108]. The clearance of HS from the
brain was accompanied by reduced neurodegeneration and neurobehavioral impairments
(Figure 3B–E) [106,107]. These findings suggest that HS deposition in the brain is closely
associated with the pathogenesis of neurological manifestations in MPS II and that brain
HS is a critical therapeutic target in neuronopathic MPS II.
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Figure 3. Central nervous system (CNS) distribution and efficacy of pabinafusp alfa. (A) CNS dis-
tribution of pabinafusp alfa in cynomolgus monkeys after a single intravenous administration at 5 
mg/kg. Individual values are plotted. Bars indicate the mean. Except for retina data, the graphs were 
reproduced from the article by Sonoda et al. [105]. Copyright© 2018 licensed under Creative Com-
mons Attribution License (CC BY-NC-ND 4.0). (B–E) Heparan sulfate (HS) concentrations in the 
brain, brain histopathology, and neurological function of mucopolysaccharidosis (MPS) II mice in-
travenously administered with pabinafusp alfa at indicated dosages for 36 weeks. (B) HS concen-
trations in the brain. Values are expressed as mean ± SEM (n = 5). *** p < 0.001 versus KO control 
(Dunnett’s test). (C) Brain samples stained with hematoxylin and eosin. Arrows indicate vacuolation 
or swelling of neuronal cells. Scale bars, 20 mm. (D) Rate of spontaneous alterations representing 
the immediate working memory assessed by Y-maze test. Values are mean ± SEM (n = 11–14). * p < 
0.05 between KO and the treatment group (Dunnett’s test). (E) Goal latency as spatial learning ability 
evaluated using the Morris water maze test. Values are means ± SEM (n = 11–15). ** p < 0.01, *** p < 
0.001 versus day 1 within each group (paired t-test). WT, wild-type mice; KO, vehicle-treated MPS 
II mice. Reproduced from the article by Morimoto et al. [107]. Copyright© 2022 licensed under Cre-
ative Commons Attribution License (CC BY-NC-ND 4.0). 

As mentioned previously, musculoskeletal abnormalities are common features of 
MPSs. Patients with MPS III in which HS is the only primary accumulated substance show 
less severe skeletal manifestations than other types of MPSs. However, joint stiffness or 
contractures are frequently observed in such patients [115,116], indicating that HS depo-
sition is involved, at least in part in the pathogenesis of musculoskeletal abnormalities in 
MPSs. Furthermore, ERT may have a limited effect on musculoskeletal symptoms, prob-
ably due to the low distribution of the drugs to the bone and cartilage. Nevertheless, 

Figure 3. Central nervous system (CNS) distribution and efficacy of pabinafusp alfa. (A) CNS
distribution of pabinafusp alfa in cynomolgus monkeys after a single intravenous administration at
5 mg/kg. Individual values are plotted. Bars indicate the mean. Except for retina data, the graphs
were reproduced from the article by Sonoda et al. [105]. Copyright© 2018 licensed under Creative
Commons Attribution License (CC BY-NC-ND 4.0). (B–E) Heparan sulfate (HS) concentrations
in the brain, brain histopathology, and neurological function of mucopolysaccharidosis (MPS) II
mice intravenously administered with pabinafusp alfa at indicated dosages for 36 weeks. (B) HS
concentrations in the brain. Values are expressed as mean ± SEM (n = 5). *** p < 0.001 versus KO
control (Dunnett’s test). (C) Brain samples stained with hematoxylin and eosin. Arrows indicate
vacuolation or swelling of neuronal cells. Scale bars, 20 mm. (D) Rate of spontaneous alterations
representing the immediate working memory assessed by Y-maze test. Values are mean ± SEM
(n = 11–14). * p < 0.05 between KO and the treatment group (Dunnett’s test). (E) Goal latency as spatial
learning ability evaluated using the Morris water maze test. Values are means ± SEM (n = 11–15).
** p < 0.01, *** p < 0.001 versus day 1 within each group (paired t-test). WT, wild-type mice; KO,
vehicle-treated MPS II mice. Reproduced from the article by Morimoto et al. [107]. Copyright© 2022
licensed under Creative Commons Attribution License (CC BY-NC-ND 4.0).

As mentioned previously, musculoskeletal abnormalities are common features of MPSs.
Patients with MPS III in which HS is the only primary accumulated substance show less severe
skeletal manifestations than other types of MPSs. However, joint stiffness or contractures
are frequently observed in such patients [115,116], indicating that HS deposition is involved,
at least in part in the pathogenesis of musculoskeletal abnormalities in MPSs. Furthermore,



Int. J. Mol. Sci. 2022, 23, 11724 8 of 20

ERT may have a limited effect on musculoskeletal symptoms, probably due to the low
distribution of the drugs to the bone and cartilage. Nevertheless, several clinical studies have
shown that early ERT initiation can prevent bone deformities to some extent in patients with
MPSs [117]. Animal studies using MPS II mice have also revealed the potential efficacy of
ERT in mitigating skeletal malformation (Figure 4) [118,119].
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mice after a 36-week treatment with pabinafusp alfa. (A,B) Three-dimensional X-ray micro-computed
tomography imaging analysis was performed to measure bone morphological parameters of the
trabecular (A) and cortical (B) bones of the femur. The top images present the regions of interest for
the analysis. (C) Mice skulls were exposed after removing the scalp and immersed in 70% ethanol
for a few days. After cleaning the remaining scalp, the width of the anterior base of the zygomatic
arch (double-headed arrow in the photo on the left) was measured using a caliper. Bone samples
obtained from a 36-week repeated dose study were analyzed [107] (our unpublished results). Values
are mean ± SEM (n = 5). # p < 0.05, ## p < 0.01, and ### p < 0.001, WT vs. KO; * p < 0.05, ** p < 0.01,
and *** p < 0.001, KO vs. each treatment group (Dunnett’s test). NS, not significant; WT, wild-type
mice; KO, vehicle-treated MPS II mice; Tb.BV/TV, trabecular bone volume fraction; Tb.Th, trabecular
thickness; Tb.BMD, trabecular bone mineral density; Cr.Ar, cortical area; Cr.Th, cortical thickness;
Cr.TMD, cortical tissue mineral density.
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Alterations in HS synthesis or degradation are also responsible, at least partly, for
retinal dysfunction in diabetes [71,72]. Retinopathy is also observed in patients with MPSs,
including MPS II [120]. However, conventional ERT does not alleviate retinopathy [121],
probably because the blood-retinal barrier, which structurally resembles the BBB [122],
interferes with drug penetration into the retina. While pabinafusp alfa was detected in
the eyes and retina of monkeys after intravenous administration (Figure 3A) [108], its
efficacy against HS deposition in the retina and retinopathy in MPS II animals needs
further elucidation.

6. HS as a Biomarker for MPSs
6.1. Elevation of HS Levels in Patients with MPSs

Since HS is the primary storage material in MPS types I, II, III, and VII [28–37], its
accumulation may reasonably be used as a hallmark of these diseases. Indeed, patients
with these MPS types show elevated HS levels in the blood and urine [123–125], which
reflect the level of HS accumulation, mainly in peripheral tissue and organs. However,
as the measurement of HS accumulation in the CNS, which is likely associated with
brain pathology and neurological manifestations, by brain biopsy is ethically unacceptable
and unpractical due to the high invasiveness and infectious risk. Animal studies using
MPS II mice have provided variable information in this regard, demonstrating that HS
concentrations in the cerebrospinal fluid (CSF) were closely correlated with brain HS
concentrations (Figure 5) [106,126] and suggesting that CSF HS could indicate the level
of HS accumulation in the brain. Clinical studies have shown that HS concentrations
in the CSF of patients with MPS types I, II, and III were higher than in those without
MPS [109,127–133], probably reflecting the elevation of HS levels in the brain of the patients.
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6.2. HS Concentrations in the CSF and Disease Severity in MPSs

MPS I includes Hurler (severe type: MPS IH), Hurler–Scheie (intermediate type:
MPS IH/S), and Scheie (attenuated type: MPS IS) syndromes and features a continuous
spectrum of disease severity. Patients with MPS IH exhibit neurological, cardiovascular,
and respiratory deficiencies resulting in early childhood death, whereas in MPS IS, disease
progression is gradual, and patients have no neurocognitive impairment [134,135]. The
genotype–phenotype relationship seems unclear, and the differences in CSF HS levels
across the subtypes of MPS I have not been examined.

MPS II is divided into two types, a rapidly progressive severe type and a slowly
progressive attenuated type. Patients with the severe type show normal development until
3–4 years of age when cognitive functions deteriorate, whereas patients with the attenuated
type have less severe clinical symptoms and no CNS involvement in general but sometimes
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present with neurological symptoms at an advanced stage of the disease [30,136]. The
disease severity of MPS II may depend on the type of IDS mutation [31]. Additionally, the
mean CSF HS concentrations of patients with the severe type were higher than those of
patients with the attenuated type with minimal overlapping [110,137,138]. These results
suggest that levels of CSF HS levels are associated with disease severity and have a certain
threshold level for distinguishing between the severe and attenuated types.

Among the four subtypes of MPS III, MPS IIIA, which is caused by SGSH muta-
tions, is the most common subtype. MPS IIIA is clinically classified into a rapidly or
slowly progressive form based on the diagnosis, severity, and mutation of the causative
gene [135]. A prospective study reported that pediatric patients with rapidly progressive
MPS IIIA reached a plateau in development by 30 months of age and regressed rapidly
after 40–50 months of age, whereas children with the slowly progressive form exhibited a
more prolonged course [139]. CSF HS levels in the rapidly progressive group were elevated
compared with those in the slowly progressive group, although some overlapping values
were noted [139], suggesting an association between CSF HS levels and disease severity in
MPS IIIA.

Clearly, the pathological changes in the brains of patients with the abovementioned
MPS types are initiated by HS accumulation in neural and glial cells, as indicated by CSF
HS levels. However, the definitive correlation of disease severity in individual patients
with CSF HS levels has yet to be fully elucidated in humans, likely because of a wide
variation in patients’ background, such as age and complications, as well as the rarity of
the disease. Additionally, the pathways from the initial event of HS deposition in CNS
tissues to the resultant neurological symptoms are interdependent and complex, making
the precise prediction of disease severity difficult if based merely on the CSF HS level at a
single specific time point (also see the discussion in Section 6.4). Even in this case, however,
HS deposition in the brain could be used as a biomarker of neurodegeneration resulting in
CNS manifestations, which may be assessed using CSF HS levels as a surrogate biomarker.

6.3. Measuring Therapeutic Response Using CSF HS Concentration

HSCT is considered the primary treatment for MPS IH and can increase the life span
of patients, especially at below two years of age and prior to the onset of cognitive impair-
ment [140–142]. HSCT decreases HS and DS concentrations in the blood and urine [143],
but CSF HS concentrations after HSCT have not been evaluated. However, post-HSCT in-
trathecal ERT with a recombinant iduronidase decreases CSF HS concentrations in patients
with MPS IH, and the percent decrease in a certain species of HS was positively associated
with the percent change in IQ score from baseline to two years, indicating a link between
the treatment response of CSF HS and neurocognitive outcomes in MPS IH [132].

BBB-penetrating ERT for MPS II is available for clinical use in Japan and is being
evaluated in clinical trials in many other countries [109–111,114]. Pabinafusp alfa, a BBB-
penetrating and TfR-targeting antibody fusion enzyme, decreased CSF HS concentrations
in patients with MPS II and exerted positive effects on neurocognitive developments in
most participants (21/28) of a 52-week phase II/III clinical trial in Japan [110]. The results
of a phase II study in Brazil also showed decreased CSF HS levels after treatment with
pabinafusp alfa along with positive neurocognitive changes despite a short study period
of 26 weeks [111]. Idursulfase, a recombinant IDS that does not cross the BBB, failed to
decrease CSF HS concentrations and provided no neurocognitive benefits in patients with
MPS II [144,145]. Intriguingly, CSF HS levels in the patients that participated in the clinical
study increased after switching from pabinafusp alfa treatment to idursulfase treatment
as standard therapy in the interim period but decreased again with the resumption of
pabinafusp alfa in the next trial (Figure 6) [145]. The results demonstrate the capacity
of pabinafusp alfa to reduce CSF HS concentrations via drug delivery through the BBB
into the brain. Although a linear relationship between the decrease in CSF HS levels and
neurocognitive improvement has not been established, the results from clinical studies
nevertheless consistently confirm it.
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participants in both phase I/II and phase II/III clinical trials of pabinafusp alfa. Reproduced from
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Creative Commons Attribution License (CC BY).

Notably, the intrathecal administration of idursulfase to patients with MPS II or recom-
binant sulfamidase to patients with MPS IIIA decreased GAG/HS concentrations in the
CSF but was hardly effective for cognitive function in most cases [146–150], casting doubt
on the use of CSF HS as a surrogate biomarker for brain HS deposition and neurological
dysfunction. In this regard, the biodistribution of enzymes by direct injection into the
lumbar spine may well vary from that via intravenous administration of BBB-penetrating
enzymes. BBB-penetrating enzymes can be delivered to most regions of the brain because
the BBB exists in the capillaries throughout the brain. Conversely, while intrathecally
administered enzymes may be able to enter the brain, wide distribution in the brain cannot
be expected because the diffusion of large molecules through the brain parenchyma is
extremely limited [151]. Therefore, as a biomarker, CSF HS should be cautiously used to
evaluate the therapeutic response, considering the route of administration and distribution
property of the drug. Nevertheless, since HS is a direct target of defective gene products in
certain types of MPS, CSF HS may be a more reliable and sensitive biomarker for treatment
response to BBB-penetrating ERT for CNS disorders than other candidate marker molecules
associated with neuroinflammation and neurodegeneration.

6.4. Lessons Learned from Animal Studies

Results from animal studies provide valuable insight into the pathophysiological roles
of HS and the use of HS measurement in MPSs. Unlike human participants, experimental
inbred mouse models have uniform genetic backgrounds for which numerous siblings
can be generated, thereby ensuring more robust pathological analyses and enabling the
conduct of therapeutic intervention studies with minimal variation in their age, duration of
disease, and disease severity. Our murine MPS II model is introduced as a typical example.

Ids-KO mice recapitulate many features found in patients with MPS II, including
loss of IDS enzyme activity, GAG accumulation throughout the body, skeletal deformities,
walking disturbance, and neurological impairment [106,107,152]. We have established and
used Ids-KO mice expressing human TfR (hTfR-KI/Ids-KO mice) as a murine model of
MPS II for the pharmacological evaluation of anti-human TfR antibody fusion IDS [105].
The MPS II mice showed elevated HS/DS levels in peripheral and CNS tissues [106,107].
Brain HS concentrations in the MPS II mice increased rapidly with age but did not change
substantially after 20 weeks of age. However, disease symptoms worsened progressively
even after HS concentrations in the brain plateaued [106], suggesting that a temporal factor
is also involved in the progression of neurological impairments. Therefore, we hypothesized
that the cumulative exposure of the brain to HS is associated with neurodegeneration and
cognitive abnormalities [106]. In other words, a continuous elevation in the brain HS
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concentration increases the risk of neural damage and neurological disorders (Figure 7).
HS deposition in the brain induces neuroinflammation, which may precede neural cell
damage [153,154]. A sustained exposure of glial cells and neurons to elevated HS levels
could induce neurodegeneration and neurocognitive impairment and eventually result in
irreversible CNS damage (neural cell death). Theoretically, however, a decrease in brain HS
concentration can decrease the slope of the curve for cumulative HS exposure, which could
prevent or at least slow disease progression or onset (Figure 7, pink dashed curves). The
reduction in brain HS levels may also reverse neurological symptoms before irreversible
damage to neuronal cells occurs. If our model is applied in clinical practice, we can
speculate that early treatment can increase the chance of preventing neurological symptoms
in patients with MPS II, which is a generally accepted idea. In fact, a study found that two
sibling patients with MPS II who had the same IDS mutation showed markedly divergent
developmental trajectories following ERT [138]. One sibling who was diagnosed at two
years of age and subsequently received conventional ERT with idursulfase developed MPS
II-related CNS signs and symptoms thereafter. The other (younger) sibling was diagnosed
prenatally, and conventional ERT was started at one month of age. However, he was
switched to BBB-penetrating ERT with pabinafusp alfa at one year and eleven months. The
younger sibling showed normal development at three years and eleven months, along with
a significant reduction in CSF HS levels [138]. This case report provides a representative
example of the importance of the early initiation of CNS HS clearance therapy in patients
with neuronopathic MPS II.
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Figure 7. Conceptual diagram of the association between the cumulative exposure of the brain to
heparan sulfate (HS) and neurological impairments. The cumulative exposure levels estimated from
the actual brain HS concentrations in mucopolysaccharidosis (MPS) II mice increase with age (blue
curve). Vertical arrows are the presumed times of onset of neurological events. Horizontal arrows
are the postulated levels of cumulative exposure of the brain to HS when corresponding neuronal
events occur. Values of the y-intercepts are tentative. The pink dashed curves indicate the presumed
cumulative exposures to HS if HS-decreasing treatment for the brain was started at different weeks of
age. Note that this graph is simplified to help understand the role of cumulative exposure of the brain
to HS over time. Other factors associated with age may be involved in the development of central
nervous system (CNS) disorders, but these are not under consideration here. Reproduced from the
article by Morimoto et al. [106]. Copyright© 2021 licensed under Creative Commons Attribution
License (CC BY-NC-ND 4.0).

Results from pharmacological studies on the treatment of MPS II mice with the BBB-
penetrating IDS pabinafusp alfa support the notion of an association between HS deposition
in the brain and progression of neurological impairment. Treatment of MPS II mice with
pabinafusp alfa decreased HS concentrations in the brain, as well as in peripheral tis-
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sues, in a linear dose-dependent manner [106,107]. A similar dose-dependent response
was observed in histopathological changes in most regions of the mouse brain [107]. Ad-
ditionally, improvements in performance on neurological function tests were also dose-
dependent [107]. Intriguingly, performance scores for a spatial-learning ability test were
correlated with CSF HS concentrations (Figure 8) [107]. These results provide nonclinical
evidence that justifies the use of CSF HS as a surrogate biomarker for the early assessment
of BBB-penetrating ERT response in neuronopathic MPS II. However, caution should be
taken when applying it in the clinical setting (as mentioned above). This concept may be
extended to other types of MPS with CNS manifestations.
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Figure 8. Correlation of cerebrospinal fluid (CSF) heparan sulfate (HS) levels with performance on a
spatial-learning ability test. The Morris water maze test was performed in a 36-week repeated-dose
study on mucopolysaccharidosis (MPS) II mice. (A) The performances of mice were classified as
good, fair, or poor based on the goal latency response of WT and KO mice on trial day five, as shown
in Figure 3. (B) Correlation of the performance score with CSF HS concentration. The performance in
the water maze test was scored as 1 (poor), 2 (fair), or 3 (good). The curve was fitted using non-linear
least squares regression, as indicated in the figure. WT, wild-type mice; KO, vehicle-treated MPS II
mice. Reproduced from the article by Morimoto et al. [107]. Copyright© 2022 licensed under Creative
Commons Attribution License (CC BY-NC-ND 4.0).

7. Conclusions

HS, as a component of HSPGs, plays many critical roles in development and mainte-
nance processes in the body, especially in the CNS and skeletal tissues. Maintaining the
balance between the biosynthesis and degradation of HS is important. Once the balance is
broken, the regulation of the development and maintenance of tissue homeostasis is dis-
rupted, increasing the risk of disease development. Several diseases are caused by defects
in molecules involved in HS biosynthesis or degradation. Of these, MPSs are inherited lyso-
somal storage disorders in which enzymes for GAG degradation are deficient or inactive.
The pathological accumulation of HS is observed in some types of MPSs and leads to neuro-
logical manifestations with cognitive disability in severe cases. Animal studies have shown
that HS deposition in the brain causes neurodegeneration and neurological manifestations
through multiple mechanisms and that CSF HS concentrations are significantly correlated
with those in the brain. Additionally, CSF HS levels after BBB-penetrating ERT could predict
improved neurological function in MPS II mice. Although clinical evidence suggests that
CSF HS levels are also associated with disease severity in humans, an argument against this
notion has been proposed based on the finding that CSF HS levels do not increase despite
disease progression. This discrepancy may be due to the underestimation of the temporal
factor in HS exposure. Our hypothesis on the relationship between the cumulative HS
exposure level in the brain and brain pathology and neurological symptoms can explain
this discrepancy. Disease onset and progression may be closely tied to the cumulative HS
exposure levels in the brain; therefore, a substantial amount of time is needed for CNS
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disorders to manifest from the accumulation of substrates (Figure 7). Conversely, consid-
erable time is required to produce beneficial clinical outcomes from the reduction of HS
levels in the CNS through treatment with BBB-penetrating ERT. Although the correlation
between CSF HS concentrations and CNS symptoms needs to be conclusively validated
in long-term clinical studies, CSF HS is a potential biomarker for the early assessment of
therapeutic response in CNS diseases associated with MPSs.
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