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Abstract: Predicting the soluble solid content (SSC) of peaches based on visible/near infrared
spectroscopy has attracted widespread attention. Due to the anisotropic structure of peach fruit,
spectra collected from different orientations and regions of peach fruit will bring variations in the
performance of SSC prediction models. In this study, the effects of spectra collection orientations
and regions on online SSC prediction models for peaches were investigated. Full transmittance
spectra were collected in two orientations: stem-calyx axis vertical (Orientation1) and stem-calyx
axis horizontal (Orientation2). A partial least squares (PLS) method was used to evaluate the spectra
collected in the two orientations. Then, each peach fruit was divided into three parts. PLS was
used to evaluate the corresponding spectra of combinations of these three parts. Finally, effective
wavelengths were selected using the successive projections algorithm (SPA) and competitive adaptive
reweighted sampling (CARS). Both orientations were ideal for spectra acquisition. Regions without
peach pit were ideal for modeling, and the effective wavelengths selected by the SPA led to better
performance. The correlation coefficient and root mean square error of validation of the optimal
models were 0.90 and 0.65%, respectively, indicating that the optimal model has potential for online
prediction of peach SSC.

Keywords: nondestructive detection; rapid detection; full transmittance spectra; multipoint sampling;
zone combination method; nectarine

1. Introduction

Peach is in favor with customers for its rich nutrition. Flavor of peach is the decisive
factor that has direct effects on acceptance of market and customers’ willingness to pay.
Soluble solid content (SSC) is one of the factors that influence the flavor of peach, and it is the
most commonly used criterion for assessing the flavor. Traditional SSC tests are destructive,
time consuming and complex [1]. Hence, advanced SSC detection technologies with
noninvasive manners for peach fruit are needed to realize massive and industrial detection.

Nondestructive detection can be applied to industrial fruit sorting as an ideal tech-
nology, meeting the demands for being rapid, efficient and simple [2]. It detects quality
utilizing the optical, electromagnetic, acoustic, and chemical properties of fruits. There
is a series of nondestructive detection methods, such as image processing, near-infrared
spectroscopy, magnetic resonance imaging, ultrasonic methods, and electronic nose. The
most frequently used method is near-infrared (NIR) spectroscopy. It detects the internal
and external qualities of fruit by optical waves whose wavelengths are located in the
near-infrared region (780–2500 nm) of electromagnetic spectra. NIR spectroscopy is used
to study the absorption, emission, scattering, reflection, and diffuse-reflection properties
of materials [3]. Absorption spectra appear frequently in the research on fruit quality.
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Researchers usually establish relationships between absorption spectra and fruit quality by
methods of chemometrics.

Researchers on SSC prediction based on NIR spectroscopy have achieved great success
with different fruits such as blueberry [4], pear [5], banana [6], durian [7], and grape [8].
Increasing researchers have turned their focus to the factors affecting the performance
of SSC prediction models. The robustness of an SSC prediction model was discussed
using samples from different cultivation environments [9]. Liu et al. [10] applied nonlinear
modeling and achieved higher accuracy when compared with linear modeling. However,
the performance of SSC prediction models was affected by spectra collection orientations
and regions, and previous investigators did not consider these kinds of effects. Orientation
is the direction in which a selected part of the fruit is facing. There are variances in
spectra collected from different orientations. Similarly, there are also variances in spectra
collected from different regions of the fruit. Some research on predicting SSC in pear [11]
and apple [12] concluded that performance of SSC prediction models was affected by
the spectra collection orientations. Nevertheless, according to the final results of both
works above, the optimal spectra collection orientations were different between [11,12].
Hence the optimal spectra collection orientation needs specific discussion according to
specific fruits. In addition, some researchers suggested that fruit had a natural asymmetric
structure and uneven SSC distribution [13–15], resulting in variances in spectra from
different collection regions. Some related works confirmed this conclusion by comparing
the SSC prediction models built by spectra from different collection regions [16,17]. Online
detection automatically predicts the SSC of fruits on a working grading line without the
involvement of manual work. The fruits move on the grading line in the process of online
detection. For online prediction of fruit SSC, considering spectra collection orientations
and regions is helpful and necessary but seldom discussed.

Online SSC prediction for fruits based on NIR spectroscopy generally applies re-
flectance and transmittance modes [18]. However, original spectra in reflectance mode are
affected by stray light, and only superficial information on fruits can be acquired under
reflectance mode. These disadvantages decrease the accuracy of online SSC prediction
models. On the contrary, transmission mode has the advantages of collecting the internal
fruit information and higher prediction accuracy in comparison with reflectance mode.
Research indicated that transmission mode was proper for online SSC prediction [19]. Full
transmission is one of the transmission modes. All of the internal information on fruit can
be acquired under full transmission mode, and part of the internal information on fruit can
be acquired under semi-transmission mode. Some studies have achieved excellent results
for online SSC detection with full transmission spectra [17,20]. Therefore, full transmission
spectra have promising potential for online SSC prediction.

State-of-the-art studies about prediction of peach fruit SSC have proposed feasible
methods and considered key factors concerning prediction accuracy. Li et al. proposed a
modeling method combining different regions of interest (ROI) in hyperspectral images
to develop SSC prediction models [1]. Nascimento et al. considered the effects of harvest
season and developed a robust SSC prediction model based on NIR spectroscopy to avoid
the influence of harvest season [21]. Effects of preharvest factors were discussed for
prediction of peach fruit SSC [22]. Minas et al. added new variables (crop load and canopy
position during growth) to develop accurate an internal quality prediction model using NIR
spectroscopy [23]. Additionally, light absorption and reduced scattering coefficients were
also used to predict the SSC of peach fruit [24]. However, online SSC prediction, which
is meaningful for practical application, was rarely discussed. Liu et al. [25] developed an
online SSC prediction model for peach fruit under different storage temperatures, but their
work did not consider the effects of spectra collection orientations and regions.

Previous studies concerned with SSC prediction for peach fruit considered the effects
of preharvest factors, postharvest factors, the optical properties of the peach fruit, etc.
However, few studies took the influences of spectra collection orientations and regions
into consideration in online SSC prediction for peach fruit and also rarely applied full
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transmission mode. Hence, the objectives of this study were: (1) to collect the original
full transmission spectra in different spectra collection orientations and measure SSC
values; (2) to build SSC prediction models using the final mean spectra of different spectra
collection orientations and compare the performances of the built models; (3) to divide the
original spectra of every single sample into three parts that corresponded to different parts
of the sample and build SSC prediction models using the final mean spectra of the different
combinations of parts for comparison; and (4) to select the effective wavelengths from the
final mean spectra of optimal combined parts for SSC prediction and develop the optimal
online SSC prediction models for peach fruit.

2. Materials and Methods
2.1. Samples

A total of 150 Aoyou peaches were collected on 17 July 2021, from Pinggu, Beijing,
China. All of the peach fruits were bagging nectarine. The samples were collected from
different positions in the canopies of different peach trees. A total of 110 individual collected
samples were mature, and the rest were immature. The two levels of maturity were distinct
enough to be distinguished by naked eyes; peach fruits with different levels of maturity
contain variability that drives a wide range of SSC. Then, the samples were numbered
individually. In this study, peach fruit samples were randomly assigned into a calibration
set or a validation set. A total of 100 samples were assigned to the calibration set, and the
remaining 50 samples were assigned to the validation set.

2.2. Spectrum Collection

The NIR spectra of samples were collected by a full-transmittance spectrum scanning
system. A sketch of the system is shown in Figure 1. The system consisted of 6 components:
(1) a motor-driven conveyor belt that was used to load the peach fruits continuously for
online SSC detection; (2) a frame consisting of a casing and shelters that was used to fix the
other devices of the system and shield the interference of stray light; (3) a halogen lamp
(FUJI, JCR, 150 W, 15 V) that was used as light source; (4) a high-sensitivity spectrometer
(Imes 10, NIRECO Corporation, Tokyo, Japan) with a spectral range of 560–1071.75 nm
(each spectrum was measured with 0.25 nm intervals); (5) a position sensor that consisted
of a photoelectric switch that was used to detect the passing peach fruits and launch the
collection of spectra; and (6) a computer that was used to control the system and store the
spectral data.
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In this study, the effects of two fruit orientations (Orientation1 and Orientation2) were
discussed, and the sketches of the two modes are shown in Figure 2.
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Figure 2. Sketches of the spectra-collecting process in the two orientations for a single sample. Sketch
of the placement of samples are shown in the leftmost column (a). Sketch of spectra measurement
areas (red points) are shown in the middle column, where the red dashed lines are the sketch of
the division mode of the peach fruit (b). Multiple original transmittance spectra are shown in the
rightmost column (c) with different colors.

Orientation1: fruit stem-calyx axis vertical; irradiated from the equator position by the
halogen lamp and detected from the opposite equator position by the spectrometer; fruit
stem is facing the ground.

Orientation2: fruit stem-calyx axis horizontal; irradiated from the calyx position by
the halogen lamp and detected from the stem by the spectrometer; fruit stem is facing the
spectrometer.

The spectra of peach fruit were measured on the two different orientations. Each
sample was manually placed on a fruit cup. Then, the fruit cup with the sample in it was
placed on the conveyor belt. The belt moved continuously at a velocity of 480 mm/s. When
the front end of the sample reached the spectrometer, the incident light passed through the
sample. The incident light that passed through the sample was received by the spectrometer
as an original transmittance spectrum of the single sample (Traw) in a contact-free manner.
The integration time of Traw was 5 ms. As the sample passed through the spectrometer
continuously, a series of Traw was recorded one by one at intervals of 5 ms. As a result,
each sample had multiple corresponding Traw, shown in Figure 2b. The number of Traw
was determined by sample diameter. The start and the end of the spectra acquisition were
determined by the position sensor. Once the front end of the sample reached the position
sensor, a trigger signal was sent to the system, and when the back end of the sample left the
position sensor, another trigger signal was sent to the system. Combined with the speed of
the conveyer belt, the system knew when to start the spectra acquisition and when to end.
The sketches of spectra collecting process in the two orientations are shown in Figure 2.

2.3. SSC Measurement

A conventional destructive method was applied to determine the SSC after the spec-
trum collection. For each sample, all the flesh of the peach fruit was cut off. Then the flesh
was wrapped in a piece of gauze and fed into a juicer to extract juice. The squeezed juice
was deposited into a clean beaker and shaken well. The next step was dripping droplets of
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the juice on a digital refractometer (PAL-1, ATAGO, Tokyo, Japan, resolution 0.1%, accuracy
±0.2%) to measure SSC value.

2.4. Spectra Preprocessing

It is necessary to preprocess the spectra for a reliable, accurate and stable SSC predic-
tion model. Moving average smooth is a common technique used in the preprocessing of
spectra. It can reflect the long-term trends of sequences and eliminate the random fluctua-
tion of sequences. Standard normal variate (SNV) transform is one of the most common
normalization techniques in NIR spectroscopy analyses [26]. It is an efficient approach for
eliminating the interferences of scatter and particle size [27]. Formula (1) illustrates the
process of SNV in detail:

TSNV =
T − µ

σ
(1)

where T represents the spectrum that need to be preprocessed; µ is the mean of T; σ is the
standard deviation of T; TSNV represents the spectrum that was processed by SNV.

In this paper, the original transmittance spectra of each sample were first preprocessed
by method 1 for comparison of spectrum collection orientations.

In method 1, the original transmittance spectra of each sample were first averaged to
calculate the mean spectrum. Then, the mean spectrum of each sample was truncated for
denoising, and the part in the range of 652.25–1026.25 nm was retained. After truncation,
the retained part was first preprocessed by moving average smooth with the window
length of 9, followed by the preprocessing of SNV. At last, the final mean spectrum of each
sample was obtained.

Second, the original transmittance spectra of each sample were preprocessed by
method 2 for comparison of spectrum-collection regions.

In method 2, each peach fruit was artificially divided into three approximately equal-
width parts along the equator. One of the three parts contains the peach pit and the other
two parts do not contain the peach pit. The part that contains the peach pit was named
S2. The other parts were named S1 and S3. A sketch of this division mode was shown in
Figure 2b. Then, the three parts of the peach fruit were used to form different combinations.
The specific combinations were S1 and S3 (S1–S3), S2 (S2), S1 and S2, and S3 (S1-S2-S3). The
last combination S1-S2-S3 was the whole peach fruit.

Correspondingly, the original transmittance spectra of each sample were also divided
into three parts that corresponded to S1, S2, and S3. The number of spectra for each part
was calculated by Formulas (2) and (3):

NS1= NS3 =

[
Nraw

3

]
(2)

NS2= Nraw − NS1 − NS3 (3)

where Nraw represents the number of original transmittance spectra for each sample; NS1
represents the number of original transmittance spectra corresponding to S1; NS2 represents
the number of original transmittance spectra corresponding to S2; NS3 represents the
number of original transmittance spectra corresponding to S3; and

[
Nraw

3

]
means applying

the round up function to the result of Nraw
3 .

Then, the mean spectra of each combination case were calculated using the three parts
of the original transmittance spectra. For example, for calculating the mean spectrum of
S1–S3 for a single sample, the original transmittance spectra that corresponded to S1 and S3
of the single sample were averaged. Afterward, all the mean spectra for each combination
case were truncated, and the parts in the range of 652.25–1026.25 nm were retained. After
truncation, the retained parts were first preprocessed by moving average smooth with the
window length of 9, followed by the preprocessing of SNV. At last, the final mean spectra
of each combination case were obtained.
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2.5. PLS and Model Evaluation

Partial least squares (PLS) is one of the conventional statistical methods for NIR
spectroscopy analysis. It is used for building the relationships between measured sample
spectra and measured sample indexes [28]. PLS uses a designed new space that has lower
dimensions to approximate the response-related space of the measured sample spectra [29].
The response-related space of the measured sample spectra is related to the measured
sample indexes. The designed new space consists of latent variables (LVs). The LVs are
determined iteratively using the measured sample indexes and the measured sample
spectra. In addition, PLS is more robust in comparison with multiple linear regression and
the principal component regression methods.

In this paper, the original transmittance spectra collected from Orientation1 and Orien-
tation2 were first preprocessed by method 1 for the comparison of the spectrum-collection
orientations. For the preprocessed original transmittance spectra at each orientation, the
calibration set was used for building the peach fruit SSC prediction models by PLS, and the
validation set was used to validate the models for each orientation. The results of calibra-
tion and validation for each orientation were compared to determine the best spectrum-
collection orientation.

Second, the original transmittance spectra collected from Orientation1 and Orien-
tation2 were preprocessed by method 2 for the comparison of the spectrum-collection
regions. For the preprocessed original transmittance spectra of each combination case at
each orientation, the calibration set was used for building the peach fruit SSC prediction
models by PLS, and the validation set was used to validate these models. The results of
calibration and validation for each combination case at each orientation were compared to
determine the optimal spectrum-collection regions.

In the process of modeling by PLS, cross-validation was applied and implemented
10 times in order to determine the optimal number of LVs and the optimal model base
on the minimum root mean square error of the 10-fold cross-validation (RMSECV). The
maximum number of LVs was limited to 20. The determined optimal model was the same
SSC prediction model as that from the PLS modeling. The results show the minimum
RMSECV values accompanied by the corresponding correlation coefficient RCV.

The PLS regression was implemented in Matlab2019a with libPLS toolbox, available
at http://www.libpls.net/ (accessed on 24 February 2022).

In this study, the performance of SSC prediction models was evaluated by the following
evaluating indicators: the correlation coefficient (R) and the root mean square error (RMSE).
The calculations of R and RMSE are defined by Formulas (4) and (5):

R =
∑n

i=1 (ymi − ym)(ypi − yp)√
∑n

i=1 (ymi − ym)2
√

∑n
i=1 (ypi − yp)

2
(4)

RMSE =

√
1
n

n

∑
i=1

(
ypi − ymi

)2
(5)

where ypi is the predicted SSC of sample i; ymi is the measured SSC of sample i; ym and
yp are the mean measured SSC and predicted SSC, respectively; and n is the number of
samples that were used for model evaluation. A good model should have a higher R and a
lower RMSE.

When evaluating the performance of the model in this study, the evaluating indicators
of the calibration set (RC, RMSEC) and the validation set (RP, RMSEP) were considered in
total, as was the optimal number of LVs.

2.6. Effective Wavelength Selection

Eliminating the redundant information and collinear variables in the spectra we used
for the modeling required effective wavelength selection. In addition, effective wavelength
selection would also simplify the calculation of calibration and validation. The successive

http://www.libpls.net/
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projections algorithm (SPA) and competitive adaptive reweighted sampling (CARS) are
widely applied effective wavelength selection algorithms in NIR spectra analyses. The latter
is always combined with PLS regression in practical applications and called CARS-PLS.

SPA applies projection operations and forward selection to acquire subsets of variables
that have the minimum collinearity. SPA is appropriate for analyzing NIR spectroscopy
with high collinearity [30,31]. CARS has the characteristic that it can extract statistical
information from large quantities of sub-models. It is a general strategy that can be used for
data analyses in other fields, such as genomic, proteomic and metabolomic studies [30,32].

In this study, CARS and SPA were applied to select the effective wavelengths when
the optimal spectrum-collection regions were determined. Then, the selected wavelengths
were used for modeling, evaluation, and comparison. Finally, according to the results of
evaluation and comparison, the optimal online SSC prediction model for peach fruit was
defined.

3. Results and Discussion
3.1. Original Full Transmittance Spectra and Measured SSC

The full transmittance spectra of a single sample are shown in Figure 2. These spectra
were collected in Orientation1 and Orientation2. Though the trends of the spectra collected
in Orientation1 and Orientation2 are similar, in the range of 560–1071.75 nm, it can be
seen that there are obvious differences between the spectra collected at the two different
orientations. The peak of the spectra collected in Orientation2 was higher and more obvious
at around 760 nm. The measured SSC values for the calibration set and the validation set
are shown in Table 1.

Table 1. Distributional property of measured SSC values.

Data Set Number of Samples Min/(%) Max/(%) Mean/(%) Std/(%)

Calibration 100 7.40 14.50 10.70 1.54
Validation 50 7.40 13.5 10.53 1.47

3.2. Result of Preprocessing

All of the final mean spectra for the S1-S2-S3 combination, namely, the original trans-
mittance spectra for each sample preprocessed by method 1, are shown in Figure 3. It can
be observed that all spectra have the same trend.
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3.3. Results of Comparing Spectrum-Collection Orientations and Regions

The results for evaluating the models to predict SSC, built based on the final mean
spectra at the different spectrum-collection orientations and different combinations of
spectrum-collection regions, are presented in Table 2.

Table 2. Evaluating results of the models that were built with the final mean spectra for the different
combinations of different parts of peach fruit at both Orientation1 and Orientation2.

Orientation Combination LVs Rcv RMSECV Rc RMSEC Rp RMSEP

Vertical
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For Orientation1, the model built with the preprocessed spectra of S1-S3 displayed 
the greatest predictive capacity (RC = 0.93, RMSEC = 0.56%, RP = 0.90, RMSEP = 0.65%), 
with results similar to those provided by the model built with the preprocessed spectra of 
S1-S2-S3 (RC = 0.93, RMSEC = 0.55%, RP = 0.89, RMSEP = 0.69%), and the model built 
with the preprocessed spectra for S2 displayed the lowest predictive capacity (RC = 0.96, 
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The models built with the preprocessed spectra of S1-S2-S3 and S1–S3 have better and 
similar performance, and the model built with the preprocessed spectra of S2 was unsat-
isfactory. In general, the spectra collected from the region that contains peach pit have few 
effects on the performance of the online SSC prediction model. Spectra collected from re-
gions that contain peach pit were not applicable to the modeling. Meanwhile, flesh tissue 
such as S1–S3 dominates the performance of the model. Therefore, S1–S3 is the optimal 
combination for SSC prediction. 

The spectrum-collection region in peach fruit also has effects on the performance of 
the online SSC prediction model. According to the results, the spectra collected from S1–
S3 are suitable for modeling. This may be caused by the structure of anisotropy. The pen-
etration capability of the light in fruit largely relies on the chemical composition and struc-
tural properties of the fruit tissue. Spectra collected from the region that contains peach 
pit have higher scattering and less information related to SSC, which is supported by re-
lated works [17,33]. Therefore, it is an efficient way to collect spectra from the regions that 
does not contains peach pit for building online SSC prediction models. 

In addition, it is remarkably effective to apply full transmittance mode to collecting 
spectra of fruit using an online system because spectra containing more information re-
lated to internal quality of fruit can be collected in full transmittance mode. Additionally, 
applying full transmittance mode can also simplify the loading mechanism, revealing its 
promising potential for online detection. 

Briefly, in comparison with current studies about online prediction of SSC in peach 
fruit [25] (Rp = 0.819, RMSEP = 0.841%), this paper took spectrum-collection orientation 
and region into consideration. Hence, the modeling method applied in this paper was 
more comprehensive, and the accuracy of our model was higher. This method achieved 
success in our previous work with apple, which belongs to pome [17], and the feasibility 
of applying it to peach, which belongs to drupe, has been confirmed in this paper. Hence, 
we have reason to infer that the method has the potential for extension to other fruits such 
as pear, plum, cherry, and apricot. Minas et al. [23] proposed multivariate NIRS-based 
prediction models that used a handheld NIRS sensor. The developed models could esti-
mate the SSC of peach fruit accurately (Rp = 0.96, RMSEP = 0.58%), but they could not be 
used for massive online detection. Nascimento et al. [21] discussed the effects of maturity 
stage and harvest season on the prediction models of peach fruit. However, the results 
were not ideal (Rp = 0.45, RMSEP = 1.04%), and the developed models also could not be 
used for online detection. Li et al. [1] selected wavelengths in the range of 700–1000 nm 
for SSC prediction of peach fruit, and a similar range of selected wavelengths was applied 
in this paper (700–1000 nm). Li et al., Nascimento et al. [1,21] and Liu et al. [25] all adopted 
reflectance mode and diffuse transmittance mode for spectra collection. In comparison, 
this paper applied full transmittance mode to acquire the spectra. More internal infor-
mation on the peach fruit can be acquired in full transmittance mode. Hence, the accuracy 
of prediction in full transmittance mode was higher than that in reflectance mode or dif-
fuse transmittance mode. In summary, the effects of spectrum-collection orientations and 
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For S1-S2-S3, the model built by preprocessed the spectra at Orientation1 displayed
better predictive capacity (RC = 0.93, RMSEC = 0.55%, RP = 0.89, RMSEP = 0.69% for
Orientation1 versus RC = 0.95, RMSEC = 0.48%, RP = 0.89, RMSEP = 0.67% for Orientation2).
Less difference can be found between the evaluation indicators for Orientation1 and
Orientation2. For S1-S3 and S2, the models built with the spectra at Orientation1 have
approximate performance to that of the models built with the spectra at Orientation2.
Hence, both Orientation1 and Orientation2 are suitable spectral collection orientations for
SSC prediction. This conclusion is different from the works about online prediction of apple
SSC [17,18]. This can be attributed to differences in fruit structure and composition, as well
as in the sizes of seeds. Hence, it is essential to discuss the effects of spectrum-collection
orientations for different fruit varieties.

For Orientation1, the model built with the preprocessed spectra of S1-S3 displayed
the greatest predictive capacity (RC = 0.93, RMSEC = 0.56%, RP = 0.90, RMSEP = 0.65%),
with results similar to those provided by the model built with the preprocessed spectra
of S1-S2-S3 (RC = 0.93, RMSEC = 0.55%, RP = 0.89, RMSEP = 0.69%), and the model built
with the preprocessed spectra for S2 displayed the lowest predictive capacity (RC = 0.96,
RMSEC = 0.43%, RP = 0.78, RMSEP = 0.92%). For Orientation2, there are similar results. The
models built with the preprocessed spectra of S1-S2-S3 and S1–S3 have better and similar
performance, and the model built with the preprocessed spectra of S2 was unsatisfactory.
In general, the spectra collected from the region that contains peach pit have few effects on
the performance of the online SSC prediction model. Spectra collected from regions that
contain peach pit were not applicable to the modeling. Meanwhile, flesh tissue such as S1–
S3 dominates the performance of the model. Therefore, S1–S3 is the optimal combination
for SSC prediction.
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The spectrum-collection region in peach fruit also has effects on the performance of the
online SSC prediction model. According to the results, the spectra collected from S1–S3 are
suitable for modeling. This may be caused by the structure of anisotropy. The penetration
capability of the light in fruit largely relies on the chemical composition and structural
properties of the fruit tissue. Spectra collected from the region that contains peach pit
have higher scattering and less information related to SSC, which is supported by related
works [17,33]. Therefore, it is an efficient way to collect spectra from the regions that does
not contains peach pit for building online SSC prediction models.

In addition, it is remarkably effective to apply full transmittance mode to collecting
spectra of fruit using an online system because spectra containing more information related
to internal quality of fruit can be collected in full transmittance mode. Additionally,
applying full transmittance mode can also simplify the loading mechanism, revealing its
promising potential for online detection.

Briefly, in comparison with current studies about online prediction of SSC in peach
fruit [25] (Rp = 0.819, RMSEP = 0.841%), this paper took spectrum-collection orientation
and region into consideration. Hence, the modeling method applied in this paper was
more comprehensive, and the accuracy of our model was higher. This method achieved
success in our previous work with apple, which belongs to pome [17], and the feasibility
of applying it to peach, which belongs to drupe, has been confirmed in this paper. Hence,
we have reason to infer that the method has the potential for extension to other fruits such
as pear, plum, cherry, and apricot. Minas et al. [23] proposed multivariate NIRS-based
prediction models that used a handheld NIRS sensor. The developed models could estimate
the SSC of peach fruit accurately (Rp = 0.96, RMSEP = 0.58%), but they could not be used for
massive online detection. Nascimento et al. [21] discussed the effects of maturity stage and
harvest season on the prediction models of peach fruit. However, the results were not ideal
(Rp = 0.45, RMSEP = 1.04%), and the developed models also could not be used for online
detection. Li et al. [1] selected wavelengths in the range of 700–1000 nm for SSC prediction
of peach fruit, and a similar range of selected wavelengths was applied in this paper
(700–1000 nm). Li et al., Nascimento et al. [1,21] and Liu et al. [25] all adopted reflectance
mode and diffuse transmittance mode for spectra collection. In comparison, this paper
applied full transmittance mode to acquire the spectra. More internal information on the
peach fruit can be acquired in full transmittance mode. Hence, the accuracy of prediction in
full transmittance mode was higher than that in reflectance mode or diffuse transmittance
mode. In summary, the effects of spectrum-collection orientations and regions on an online
SSC prediction model were considered in this study, and the developed models can be used
for online SSC prediction of peach fruit.

3.4. Effective Wavelength Selection

After the optimal spectra-collection regions were determined, CARS and SPA algo-
rithms were applied for selecting effective wavelengths. The final mean spectra of S1-S3
collected from both Orientation1 and Orientation2 were used for effective wavelength
selection, modeling, and evaluation.

SPA selected 10 wavelengths for both Orientation1 and Orientation2, and CARS
selected 38 wavelengths and 18 wavelengths, respectively, for the two orientations. Specific
selected effective wavelengths are shown in Table 3. The selected wavelengths were mainly
distributed in the range of 700–1000 nm, where absorbance was mainly related to the
second and third overtones of oxygen-hydrogen (O-H) stretching, and the third and fourth
overtones of carbon-hydrogen (C-H) stretching of the organic molecules. Other works also
suggested that SSC was related to the absorbance in this range [34,35].

Evaluation results for the models built by the wavelengths selected by CARS and
SPA are shown in Table 4. For Orientation1, RC, RMSEC, RP, and RMSEP of the model
built using the wavelengths selected by SPA are 0.90, 0.64%, 0.90, and 0.65%, and the
corresponding values for Orientation2 are 0.90, 0.63%, 0.86, and 0.74%, both respectively.
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Figure 4 shows the wavelengths selected by CARS and SPA for both Orientation1 and
Orientation2. Scatter diagrams in Figure 5 show the evaluation results in Table 4.

Table 3. Results for the selected effective wavelengths.

Orientation Combination Algorithm Selected Effective Wavelengths (nm)

Vertical
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The figures clearly demonstrate that the models built with the wavelengths selected
by SPA have more stable performance and less overfitting because there is less difference
between calibration and validation in SPA-based models. RP and RMSEP are more ap-
proximate to RC and RMSEC. Additionally, SPA selects fewer wavelengths, significantly
reducing the amount of calculation in the process of SSC prediction and suggesting that
SPA is more efficient. Therefore, SPA is the more effective wavelength selection algorithm.
The model in Figure 4b is the optimal SSC prediction model.

4. Conclusions

In this study, full transmittance spectra of peach fruit were collected at different
orientations (Orientation1 and Orientation2). Then, the effects of spectrum-collection
orientation and spectrum-collection region on the performance of online SSC prediction
models for peach fruit were discussed. Average moving smooth combined with SNV was
applied for preprocessing. The optimal selections of both orientations and regions were
discussed. The results suggested that both Orientation1 and Orientation2 were ideal for
spectrum collection and the S1-S3 was the better spectrum-collection region. Lastly, the
effective wavelengths were selected from the final mean spectrum of S1-S3 by applying
CARS and SPA. According to the results, wavelengths selected by SPA were more suitable
for building the optimal online SSC prediction model of peach fruit. As a result, the
developed model built using the full transmittance spectra has the potential for online
SSC prediction. In terms of practical application, the developed model would simplify
the feed mechanisms and fruit cups, decreasing the costs of detection. In addition, the
discussion about spectra collection region in this study will be beneficial for improving
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the performance of the prediction model, enhancing the market competitiveness of the
detection scheme.

Considering the robustness of the online SSC prediction model, the factors that were
referred to above need further independent validation to confirm the relationships between
them and SSC in peach fruit. Moreover, efficient model transfer technologies are necessary
for actual use and for eliminating the adverse effects of different instruments, times, etc.
such as in [36]. In addition, more factors that will affect the accuracy of SSC prediction
should be taken into consideration in subsequent studies.
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