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ABSTRACT The last few years have seen the advancement of high-throughput ex-
perimental techniques that have produced an extraordinary amount of data. Bioin-
formatics and statistical analyses have become instrumental to interpreting the infor-
mation coming from, e.g., sequencing data and often motivate further targeted
experiments. The broad discipline of “computational biology” extends far beyond
the well-established field of bioinformatics, but it is our impression that more
theoretical methods such as the use of mathematical models are not yet as well in-
tegrated into the research studying microbial interactions. The empirical complexity
of microbial communities presents challenges that are difficult to address with in
vivo/in vitro approaches alone, and with microbiology developing from a qualitative
to a quantitative science, we see stronger opportunities arising for interdisciplinary
projects integrating theoretical approaches with experiments. Indeed, the addition of
in silico experiments, i.e., computational simulations, has a discovery potential that is,
unfortunately, still largely underutilized and unrecognized by the scientific commu-
nity. This minireview provides an overview of mathematical models of natural eco-
systems and emphasizes that one critical point in the development of a theoretical
description of a microbial community is the choice of problem scale. Since this choice is
mostly dictated by the biological question to be addressed, in order to employ the-
oretical models fully and successfully it is vital to implement an interdisciplinary
view at the conceptual stages of the experimental design.
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Theoretical biology is a very broad field where mathematical and physical concepts
are used to describe biological systems. Computational models are being widely

applied in the investigation of biological phenomena, and their potential goes well
beyond simply reproducing and validating experimental data. To achieve predictive
power, however, a theoretical model needs to be fully integrated into the experimental
design. Indeed, modeling techniques are very diverse and their efficacy is highly
specific to the problem scale and the objective of the study. The selection of the most
appropriate method for the question at hand depends not only on the intuition and
experience of the modeler but also on the type and quality of the data available (1). This
is why it is crucial that modelers and experimentalists come together at the conceptual
stages of a project to jointly plan experiments, measurements, and data management.
An experimental protocol design that ignores the modeling aspect is set up to obtain
data that would most likely be suboptimal for modeling.

The research interest in microbial communities is gaining momentum, and we think
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that now is the time for setting new standards in the scientific methods for under-
standing and potentially engineering such complex systems. It is our impression that
rapid technological advances in experimental techniques providing high-throughput
data are not accompanied by proportional advances in the theoretical methods to
interpret them systematically. Interdisciplinary studies of microbial consortia are be-
coming more common (2) but are still exceptions rather than the norm, especially if
compared to the fields of ecology (3) and metabolism (4), where mathematics has since
long been integrated. In this minireview, we want to provide a glimpse of the broad
ranges of available mathematical models. We use the example of marine ecosystems
with their wide variation of complexity scales to highlight how experiments and theory
can be successfully paired, with the goal of motivating scientists to engage in a
multidisciplinary approach for understanding microbial interactions.

MATHEMATICAL MODELS FROM THE OCEAN TO THE PHYCOSPHERE

Classical terminology defines an ecosystem as a community of living organisms
interacting with one another and with the physical environment. Covering approxi-
mately 70% of Earth’s surface and contributing to one-half of global primary production
(5, 6), the ocean is the largest biome on our planet and provides illustrative examples
of ecosystems exhibiting spatial and temporal heterogeneity. With an estimated 104

to 106 cells per milliliter (7), marine microbes make up the vast majority of oceanic
biomass but have historically been ignored by oceanographers (8). We have only
recently begun to understand their importance in fundamental phenomena such as
biogeochemical cycling and primary productivity which play vital roles in the ability of
animals and plants to exist and thrive on Earth. Members of the plankton ecosystem
(viruses, bacteria, archaea, protists, and metazoans) have recently been systematically
collected in their natural habitats (9) to explore ecosystem dynamics at the ocean scale.
However, much is still unknown about how these microorganisms interact with one
another (Table 1 provides examples of marine microbial interactions).

TABLE 1 Types of marine microbial interactions

Relationship Diagram Example References

Mutualism

A Sulfitobacter species promoted cell division of a coastal diatom,
Pseudo-nitzschia multiseries, via secretion of the auxin
phytohormone indole-3-acetic acid synthesized by the
bacterium using diatom-secreted tryptophan

10, 11

Competition

Competition for “free” orthophosphates in the predominantly
nutrient-limited marine biome; marine bacteria are better
competitors for phosphorus than eukaryotic algae at low
ambient nutrient concentrations

12–15

Parasitism

Lytic viral infection of other single-celled organisms by
attachment of virus to a host cell and injection of its nucleic
acid into the cell, directing the host to produce numerous
progeny viruses; these are released by fatal bursting of the cell,
allowing the cycle to begin again

16–18

Predation
Ciliated bacteriovores in marine environments such as aloricate

oligotrichous ciliates graze on bacteria
19–21

Commensalism
Certain bacteria found in the algal sheath where they look for

carbon and shelter with no effect on the algal host
22, 23

Amensalism
Marine bacteria such as Kordia algicida and Pseudoalteromonas sp.

strain A28 can secrete enzymes capable of lysing diatoms
24–26

Neutralism

A debated phenomenon, often suggested to rarely exist in natural
communities but possibly occurring in ecosystem structures where
two species are too far apart spatially; industrial examples exist;
e.g., the population densities of a Lactobacillus sp. and a
Streptococcus sp. grown in continuous culture were observed to
be similar in mixed cultures and in individual cultures

27–29
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A wide range of theoretical modeling techniques has been developed to address
different temporal and spatial scales. The flexibility of a model, combined with rigorous
mathematical thinking, allows the translation of working hypotheses into reproducible
in silico experiments. In this way, mechanistic insights into fundamental processes as
diverse as evolution and metabolism can be gained. The relatively low cost of gener-
ating copious amounts of simulated data enables testing of an assortment of hypoth-
eses with a freedom not achievable with in vivo/in vitro experiments. With this freedom,
however, comes the risk of deviating from biologically meaningful results, and it is
therefore necessary to plan a continuous and reciprocal integration of simulations and
experiments. In this section, we provide a short overview of mathematical methods
used to model microbial communities with a focus on ocean-wide systems, biofilms,
and the phycosphere. The reader interested in more extended reviews of mathematical
modeling of microbes is referred to references 27 and 30.

DIFFERENT UNITS FOR DIFFERENT QUESTIONS

A general rule when developing a mathematical model is that one should keep it “as
simple as it can be, but not simpler” (words attributed to Albert Einstein by the writer
and composer Roger Sessions in 1950). As simple as it sounds, this remains one of the
main challenges in modeling, as a “combinatorial explosion” of the number of variables
and parameters can easily occur. This is particularly true in natural microbial ecosys-
tems, where diversity levels are high and countless cell-to-cell and cell-to-environment
interactions can be considered. Ranging from meters to kilometers in size, large marine
ecosystems include relatively permanent systems such as coral reefs and salt marshes
but also temporary phenomena such as algal blooms (31). Spanning meters to milli-
meters, marine biofilms are found on mineral macrostructures (e.g., rocks) and man-
made infrastructures (e.g., ships) but also on small-scale organic and inorganic matter
in oceans (“marine snow”) (87). Biofilms are the result of growth and aggregation of
microbial organisms and their exudates, particularly extracellular polymeric substances,
on a surface (32, 33). Zooming in to the micro- and nanometer scale, cell-to-cell
relationships include interactions that occur in the phycosphere, a term coined by Bell
and Mitchell in 1972 (34) to denote the region extending outward from the microalgal
cell in which bacterial growth is stimulated by extracellular products of the eukaryote.

Different levels of abstraction can be defined, determined by the community
dynamics at the core of the research question. Figure 1 illustrates examples of the
scales at which systems of the marine biome can be investigated independently of their
actual size. Starting from single-cell resolution, we can first average individuals as a
whole population (species) and then further reduce the complexity by considering
functional groups (also called guilds) of species performing the same role in the
ecosystem and finally define a single superorganism interacting with the environment.
The choice of problem scaling is determined by the research question and is not
directly related to the physical size of the biological system. For example, effective
models can be built of oceanic ecosystems at the cell level and of a bacterial culture as
a single superorganism. A similar argument holds for temporal scales, with the differ-
ence being that the time scale is an intrinsic characteristic of the phenomenon being
addressed. Indeed, the same ecosystem can be investigated at the biochemical level or
in an evolutionary perspective, a choice that will set the time constants at the order of
fractions of seconds or centuries, respectively.

POPULATION MODELS

Population-scale models were among the earliest applications of mathematical
models, dating back to 1838 when the mathematician Verhulst developed the equation
that describes logistic growth (35). Almost a century later, Lotka (36) and Volterra (37)
independently described the oscillatory behavior of multispecies populations with a
system of ordinary differential equations (ODEs), developing one of the first ecosystem
models. ODEs describe the temporal change of a variable (e.g., a population) as a
function of other dynamic variables as well as of parameters that define external (e.g.,
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environmental) factors. One variable may positively (if it causes an increase) or nega-
tively (if it causes a reduction) influence another variable. ODEs do not include spatial
inhomogeneities, but these can be described by partial differential equations (PDEs).
Due to their versatility and ease of implementation, differential equations (38) are
among the tools most widely used in kinetic modeling methods and have been applied
to understand phenomena in fields such as economics, hydrodynamics, and bio-
chemistry.

Table 1 illustrates how microbial interactions can be classified into positive, nega-
tive, and neutral actions. Deciphering the interplay between the microbial population
and the physicochemical environment is a critical step to further understanding and
predicting phenomena related to ecological succession (39). In 1946, Gordon Arthur
Riley was arguably the first to describe the phytoplankton annual cycle with mathe-
matical models based on concentrations of dissolved nutrients, solar radiation, and
other environmental factors (40, 41). Recent advancements in network inference tech-
niques have allowed the reconstruction of interaction networks from co-occurrence
patterns in time series of metagenomic sequencing data (42). Such networks are used
to build generalized Lotka-Volterra (gLV) models, where each species is parameterized
with a growth rate and a strength of interaction with other community members (43).

Hoffmann et al. (44) developed a gLV model to describe the dynamics of marine
phages preying on bacteria (45). They tested different population distributions to
explain metagenomics data from shotgun experiments performed on natural marine
phage communities and found a modified gLV model to fit the data best. The equation
form of the model is interpreted as a cooperation mechanism for phage predation and

FIG 1 Schematic representation of different choices of temporal (top) and spatial (bottom) scales for the
same ecosystem (center). PDE, IBM, and CBM methods are represented with red, blue, and yellow lines,
respectively. Smriga et al. (80) used PDE to model a phycosphere community at the species level (picture
from Smriga et al. [80]). Taffs et al. (74) used CBM to model a biofilm at the guild and superorganism
levels (the picture of thermophilic bacteria in Mickey Hot Springs, Oregon, is from https://en.wikipedia
.org [contributed by Amateria1121]). Clark et al. (53) used IBM plus PDE to model an ocean system at the
single-cell level (the ocean picture is from the SeaWiFS instrument [https://svs.gsfc.nasa.gov/]).
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predicts that the community follows kill-the-winner dynamics where blooming periods
are followed by rapid decay. As was demonstrated in gLV models of gut bacteria
communities (46), other effects such as environmental perturbations can be also
introduced.

INDIVIDUAL-BASED MODELS

Conventionally, mathematical models based on differential equations are determin-
istic and do not capture effects of stochastic processes. Individual-based models (IBMs)
(47)—sometimes referred to as “agent-based models”—implement Monte Carlo tech-
niques to introduce the randomness required to model the dynamics of single indi-
viduals. In these discrete models, each unit temporally evolves to the next stage
according to probabilistic rules, making them ideal for describing the single-cell level.
High degrees of complexity can be introduced to account for interaction mechanisms
as well as individual variability, parameterized as metabolic states and mutation rates,
to name two. IBMs are widely used in diverse disciplines and can be successfully
applied to describe different temporal and spatial resolutions (47, 48).

A comprehensive review by Costerton et al. (49) reports that biofilms predominate,
numerically and metabolically, in virtually all nutrient-sufficient ecosystems. Under-
standing the metabolic cooperation dynamics is fundamental, and the bacterial com-
position (relative abundance and spatial distribution of the species) of a biofilm is
mainly determined by three processes that take place within the film: (i) conversion of
substrates by bacteria, (ii) volume expansion of biomass, and (iii) transport of substrates
by molecular diffusion. Early models of biofilm development used a set of mass balance
PDEs (50, 51), and IBMs (adding individual variability factors) and PDEs (describing
molecular diffusion) have been extensively combined over the last decade. Within a
model, however, different scales have to be carefully integrated in a theoretically
justified manner. For example, processes occurring over shorter time scales can be
considered to be in a quasi-steady state in comparison to processes occurring over
longer time scales. This is the case in the framework proposed by Lardon et al. (52),
where solute diffusion and reaction dynamics are considered to be in a quasi-steady
state with respect to biomass growth. They investigated individual metabolic switching
in response to environmental changes in a community of denitrifying bacteria and
identified a tradeoff between cost and response time, explaining the maintenance of
different denitrifying strategies in fluctuating environments.

Despite the correlation between increasing system size and computational “cost,”
Clark et al. (53) implemented IBMs to model an ocean-scale system. The authors
developed a trait-based model where a single agent represents individuals with
identical traits. An ocean PDE model discretized into cell grids provides the envi-
ronmental conditions (temperature, salinity, and diffusion of dissolved nutrients), and
agents are mixed between the spatial units. By performing simulations on an evolu-
tionary time scale, it was demonstrated that different environments select for different
traits such as cell size in phytoplankton.

METABOLIC NETWORK MODELS

By correctly assigning metabolic functions to the enzymes encoded in a whole
genome, it is possible to obtain a genome-scale metabolic network model (54, 55). This
reconstruction is close to becoming an automated process (56, 57), but it still requires
careful manual curation thereafter, because incomplete or inaccurate genome anno-
tations can lead to unreliable models (58). Various mathematical methods have been
developed to analyze metabolic network models. Network expansion (59) is an error-
tolerant qualitative method useful to infer minimal nutrient requirements (60) and to
classify organisms by lifestyle based on their metabolic capabilities (61). Christian et al.
(62) demonstrated how the range of possible biosynthetic products increases if two or
more organisms cooperate on a metabolic level, illustrating the potential of synergistic
interactions of organisms (including bacteria). Stoichiometric models (4, 63, 64) are
mathematical representations of metabolic networks in the form of a matrix with the
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stoichiometric coefficients of the reactions present as elements. At the steady state, the
requirement of mass balance translates into a mathematical system of equations whose
solutions represent feasible metabolic fluxes. Because the solution is not unique,
constraint-based models (CBMs) (65–67) impose biophysically motivated boundary
conditions with respect to reaction rates in order to reduce the space of possible flux
distributions. Elementary mode analysis (EMA) (68, 69) identifies all minimal subnet-
works that allow a steady-state solution, thus reducing the complexity of the original
network. The widely used flux balance analysis (FBA) (88) method finds a unique
solution by defining an objective function to be optimized with linear programming.
“Optimality” is, however, a rather subjective concept, and what optimality means for an
organism is debatable (70), particularly in considering not only single organisms but
also diverse communities. An extended list of examples of CBMs of microbial systems
is nicely summarized in reference 89.

The typical application of CBMs is at the species level or at a higher abstraction level
(Fig. 1), with the flux distribution of a single model representing the average metabolic
state of a population. Examples of CBMs taking into account interspecies interactions
include lumping the metabolic networks of different organisms together into a single
superorganism (71) or treating different species as separate compartments, where
metabolite sharing is simulated as intracompartment fluxes (72, 73). In their theoretical
work, Taffs et al. (74) used EMA to study a biofilm community of sulfate-reducing
bacteria, cyanobacteria, and filamentous anoxygenic phototrophs, modeled both as
compartmentalized functional guilds and as a superorganism. Compared to measured
data on bacterial abundances, their models offer insights into fundamental ecological
questions on community composition and robustness. In particular, the identification of
interguild classes of metabolic interactions associated with many elementary modes
suggests the importance of such interactions to stabilization of the community.

INTEGRATION OF MODELS, EXPERIMENTS, AND DIFFERENT SCALES

Figure 1 illustrates the key concept that the same ecosystem can be approached at
different temporal and spatial scales. The integration of different methods and scales
has to be theoretically justified. In dynamic FBA (dFBA) (75), for example, metabolism
is considered to occur faster than external metabolite concentration changes and it is
modeled with CBMs at a quasi-steady state, whereas the slower external dynamics are
modeled as differential equations. dFBA has been used on compartmentalized com-
munity models (76–78), and Harcombe et al. (79) coupled these temporal dynamics
with spatial discretization in a modeling framework that integrates dFBA and PDEs.
Simulations of cross-feeding bacterial communities could predict cooperation and
competition dynamics emerging from the spatial distribution of colonies and nutrients,
followed by experimental verification.

Smriga et al. (80) studied how oligotrophic (nonmotile) and copiotrophic (motile)
bacteria compete for dissolved organic matter (DOM) (organic material that is �0.7 �m
in size) (90) in the phycosphere. It is estimated that up to 50% of carbon fixed via
phytoplankton-mediated photosynthesis is utilized by marine bacteria (81), mainly as
DOM. DOM from phytoplankton originates either from live cells or from recently lysed
or grazed cells, and the quality of DOM available shapes the bacterial community in the
phycosphere (82, 83). Using time-lapse microscopy, Smriga et al. measured the spatio-
temporal distribution of bacteria in the phycosphere. These data were used to develop
a PDE model quantifying how DOM production and consumption select for bacterial
chemotaxis traits. Their results offer insights into mechanisms that can drive larger-
scale ecological succession. Such a model could be, in principle, coupled to approaches
like Klitgord and Segrè’s (84), where CBMs are used to investigate environmental
conditions driving commensalism and mutualism for different pairs of bacteria.

CONCLUSIONS AND PERSPECTIVES

Most of our current understanding of the natural world comes from meticulous
ecological and physiological studies, more recently complemented by modern high-
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throughput techniques such as metagenomics surveys. As this knowledge was largely
driven by successful exploratory approaches, we strongly believe that it is time to develop
more extensively hypothesis-driven methods to advance the field from a purely descriptive
representation to a sound biological theory. This minireview presents examples of math-
ematical models developed to address specific biological questions related to microbial
communities. We argue that modelers and experimentalists must work together from the
conceptual phases of the project design to ensure correct integration of theory and
experiments. In this way, a common interdisciplinary language will be developed that will
aid in the unraveling of mechanisms that lie at the heart of complex natural phenomena
such as microbial interactions.
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