
Combining Multi-Agent Systems and
Subjective Logic to Develop Decision

Support Systems

César González-Fernández(B), Javier Cabezas, Alberto Fernández-Isabel,
and Isaac Mart́ın de Diego

Data Science Laboratory, Rey Juan Carlos University,
c/ Tulipán, s/n, 28933 Móstoles, Spain

{cesar.gonzalezf,javier.cabezas,alberto.fernandez.isabel,
isaac.martin}@urjc.es

http://www.datasciencelab.es

Abstract. Nowadays, the rise of the interconnected computer networks
and the increase of processed data have led to producing distributed sys-
tems. These systems usually separate multiple tasks into other simpler
with the goal of maintaining efficiency. This paradigm has been observed
for a long time in different animal organisations as insect colonies and fish
shoals. For this reason, distributed systems that emulate the biological
rules that govern their collective behaviour have been developed. Multi-
Agent Systems (MAS) have shown their ability to address this issue.
This paper proposes Ant Colony based Architecture with Subjective Logic
(ACA-SL). It is a bio-inspired model based on ant colony structures.
It makes use of MAS to distribute tasks and Subjective Logic (SL) to
produce Decision Support Systems (DSS) according to the combination
of individual opinions. A system implementation based on the proposed
architecture has been generated to illustrate the viability of the pro-
posal. The proposed architecture is intended to be the starting point for
developing systems that solve a variety of problems.

Keywords: Multi-Agent system · Subjective Logic · Bio-inspired
system · Distributed organisation · Decision Support System

1 Introduction

In recent times, the heyday of the Internet and the advance of technology have
produced tons of data which are processed by several systems [1]. These systems
apply the strategy of separating data into simpler and smaller pieces in order to
process them efficiently. Thus, the information extraction task and the generation
of knowledge are simplified. This issue has led to the resurface of distributed
systems.

Multi-Agent Systems (MAS ) [2] are a specific case of distributed systems.
They use agents that are software abstractions able to perform tasks and to sat-
isfy the associated goals interacting with the environment around. These agents
c© Springer Nature Switzerland AG 2020
M.-J. Lesot et al. (Eds.): IPMU 2020, CCIS 1237, pp. 143–157, 2020.
https://doi.org/10.1007/978-3-030-50146-4_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50146-4_12&domain=pdf
https://doi.org/10.1007/978-3-030-50146-4_12


144 C. González-Fernández et al.

present desirable features as: autonomy [3], flexible behaviour to react to changes
in the environment in a timely fashion [4], and dynamic interaction between them
[5].

Nevertheless, these systems have some shortcomings. The organisation to
solve specific situations is one of the most typical challenges [6]. In this regard,
bio-inspired mechanisms are one of the most used self-organisation solutions [7].
Thus, they can adapt some social animal behaviour to solve specific situations.
Typical instances of these mechanisms are insect colonies [8], fish shoals [9] and
mammals packs [10], where the solution of a complex problem is achieved by the
individuals solving simpler issues.

This paper proposes Ant Colony based Architecture with Subjective Logic
(ACA-SL), a novel architecture based on bio-inspired MAS and Subjective Logic
(SL) [11] to develop distributed Decision Support Systems(DSS ) [12]. These
latter are able to produce evaluation according to a specific topic or domain
according to a previously obtained knowledge. ACA-SL has been developed as
part of the SABERMED project, which is funded by the Spanish Ministry of
Economy and Competitiveness. ACA-SL emulates the behaviour of ant colonies
to execute distributed jobs. The way in which jobs are defined exhibits a high
degree of flexibility for multiple application scenarios. For this purpose, there
will be several agents assuming the same role as workers in ant colonies. Jobs
are defined as the combination of very diverse tasks which may hold some depen-
dencies among them. This fact provides agents with the capability to work on
the same job at the same time. The architecture combines the opinions generated
by following the rules, and methodologies defined in the SL.

A system based on ACA-SL has been implemented to show the viability
of the proposal. It has been used to analyse websites and generate an opinion
concerning the degree of trust applicable to them. The created opinions are
the result of processing related information extracted from the websites under
analysis (e.g. domain and Whois).

The remainder of the paper is structured as follows. Section 2 situates the pro-
posal in the domain and make comparisons with previous approaches. Section 3
details ACA-SL and its components. Section 4 presents the experiments. Finally,
Sect. 5 concludes and proposes future guidelines.

2 Background

This section introduces the foundations of ACA-SL. It overviews the concept
of MAS (see Sect. 2.1), both by defining it and also by providing some details
on the current state of art. Secondly, insect colonies and their internal organi-
sational procedures are introduced (see Sect. 2.2). Finally, SL foundations and
most common applications are presented (see Sect. 2.3).

2.1 Multi-Agent Systems

Agents can be defined as intelligent autonomous entities able to act, partially
perceive the environment they live in, interact with it and communicate with



Combining MAS and Subjective Logic to Develop DSS 145

other agents [13]. They take part in an organised activity in order to satisfy
the particular goals they were designed to, both by executing a set of skills and
by interacting with other agents. These goals are evaluated by a mental state.
The mental state acts as the brain of the agents, containing steps and rules.
Therefore, agents show pro-activeness (they exhibit goal-directed behaviour by
taking initiative), reactivity (they perceive their environment and respond in a
timely way to changes that may occur in the environment) and social awareness
(they cooperate with other agents in order to accomplish their tasks) [14].

MAS [15] are a loosely coupled set of agents situated in a common environ-
ment that interact with each other to solve complex problems that are beyond
the individual capacities or knowledge of each agent [16]. These systems are
found in a wide spectrum of heterogeneous applications such as simulations [17],
optimisation problems [18] and computers games [19]. MAS have been also used
in the literature with the purpose of distributing very demanding tasks [20]. They
are able to use agents that perform simple tasks in order to generate a more com-
plex and demanding one. Fields of application where these kind of approaches
are considered are road traffic [21] and communication networks [22].

There are multiple frameworks available to implement software based on
MAS. Many of them respond to the restless evolution and unremitting devel-
opment occurring both in the industry and in the scientific community. JADE
(Java Agent Development framework) [23], FIPA-OS (Foundation for Intelli-
gent Physical Agents Operating System) [24] and SPADE (Smart Python Agent
Development Environment) [25] exemplify some of the existing options at dis-
posal of the user.

MAS can be designed by using Agent-Based Modelling (ABM) [26] and
Agent-Oriented Software Engineering (AOSE) techniques [27]. These ones are
considered by solid methodologies to simulate relationships and communica-
tion channels between agents. Instances of well-known agent methodologies are
INGENIAS [28] and Tropos [29].

ACA-SL models a MAS that identifies agents as workers belonging to an
ant colony. Notice that at this point, these workers are only modelled through a
finite state machine, instead of defining explicitly goals and mental states. The
implementation achieved to validate the proposal has been developed using the
SPADE framework.

2.2 Insect Colonies

Many species of social insects exhibit the division of labour among their mem-
bers. This behaviour can be observed in bumblebee colonies [30], termites
colonies [31] and wasp colonies [32]. The specific task allocation can be deter-
mined by multiple features. The age of the individual [33], the body size [34] or
the position held in the nest [35] are some instances of these features. Several
works concentrate on these behaviours in order to propose new task allocation
strategies in artificial systems [36].

Regarding the task allocation method used by individuals, it can be modelled
by using response thresholds [37]. These thresholds refer to individual tendency



146 C. González-Fernández et al.

to react to task-associated stimuli. For the specific case of ants, it is considered
that every task can exert certain level of influence over them. Thus, if the stim-
ulus that a task exerts on an ant is higher than its response threshold, the ant
engages to this task. This leads to considering the existence of castes in which
individuals may have different response thresholds. In the case of artificial sys-
tems, the use of these response thresholds to solve labour division have been
used to enhance response times and load balancing issues [38].

ACA-SL uses a model based on two different types of ants according to a
specific response threshold. The architecture provides a specific definition to the
measure of the stimuli and the response threshold level.

2.3 Subjective Logic

SL [11] is a type of logic that allows playing with subjective beliefs. These ones
are modelled as opinions. The opinions represent the probabilities of a proposi-
tion or an event with a certain degree of uncertainty. SL defines a set of opera-
tions that can be applied to the opinions. Typical instances of these operations
are: addition, subtraction, cumulative fusion and transitivity.

SL extends the traditional belief function model [39]. This logic is also dif-
ferent from Fuzzy logic [40]. While Fuzzy logic uses vague propositions but pro-
vides accurate measurements, SL works with clear propositions and uncertain
measures.

Given a binomial variable (true or false) representing a proposition x, and
a source of opinions A, an opinion provided by A about x, wA

x , is represented
by a quadruple of values as follows:

wA
x = {bx, dx, ux, ax}, (1)

where bx is the mass belief (belief supporting that x is true), dx is the disbelief
mass (belief supporting that x is false), ux is the uncertainty mass and ax is
the atomicity rate.

Regarding the features of SL, they have made this logic suitable for apply-
ing it to multiple projects covering different knowledge areas. Thus, in general,
it can be used to build frameworks for DSS [41]. More specifically, SL can be
used in Trust Network Analysis to calculate the trust between different parts of
the network where trust measures can be expressed as beliefs [42]. Analogously,
in mobile networks, SL can be used to calculate the reputation of the commu-
nication nodes [43]. SL can be also used in applications independent from the
technology (for instance, legal reasoning [44]).

The proposed architecture makes use of SL to handle the beliefs that can be
generated as a result of the different tasks processed. These beliefs are modelled
as opinions using only a specific subset of operations.

3 Proposed Architecture

This section details ACA-SL. The aim of this architecture is to produce a
design to develop DSS able to make evaluations. It combines bio-inspired MAS



Combining MAS and Subjective Logic to Develop DSS 147

Fig. 1. Components defined by ACA-SL.

Fig. 2. Life cycle of a worker as a finite state machine.

approaches with SL to achieve this issue. Overall jobs are decomposed into mul-
tiple tasks which are assigned to the different agents. Agents take full responsi-
bility on a successful accomplishment of the assigned tasks. Notice that ACA-SL
defines the baselines on how the jobs should be divided into atomic tasks. Indi-
vidual results arising from their internal processes are then combined to obtain
a solution for the global problems.

Figure 1 shows an overview of the proposed architecture. A system based on
this architecture takes responsibility on executing the jobs. These ones corre-
spond to needs that the external systems may require to satisfy.

Next sections address the internal procedures followed by agents, detailing
jobs and their inner structure. They also describe how SL is implemented in the
proposal.

3.1 Multi-Agent System Based on Ant Colonies

Analogous to nature, the proposed architecture presents an environment where
workers live in. The behaviour of workers is represented by a finite state machine
with three states (see Fig. 2).

Delving into the behaviour of workers, the registering of a new job represents
a change happening in the environment. These changes (i.e. new jobs) exert
stimuli that are perceived by workers, which can be influenced by it. To prevent



148 C. González-Fernández et al.

Fig. 3. Instance of a job graph and its tasks.

that some task remains in inconsistent states, only idle workers (those not run-
ning any task) are influenced by jobs. Workers make a decision on whether to
take responsibility on the new jobs created based on this job influence.

Every worker presents an internal threshold which is compared to the job
influence value itself to determine whether the latter presents a higher value and
consequently, a switch to the new job is required. Based on this threshold, the
bio-inspired approach defines two castes of workers [37]: major and minor. Those
workers simulating major ants will show a higher threshold than the one assigned
to the workers representing minor ants. This feature allows reserving workers to
carry out specific jobs. For example, if the influence of a job is calculated based
on its priority, the major workers only perform high-priority jobs. This feature
plays a crucial role in systems where resources availability, response times and
load balancing are critical and very demanding [45].

3.2 The Job Workflow

A job gets represented by directed graphs (see, for instance, Fig. 3). Its com-
ponent tasks can be interpreted as the multiple possible road-maps linking the
start node (i.e. starting point) with the finish (i.e. finishing point). The workers
assigned to a job that are not running any task are placed at the start node.
These workers are continuously checking the status of all tasks connected to
the start node via directed edges. If all connected tasks present are being run
by other worker, then workers wait at the start node. Those tasks connected
to the start node that are not being executed, present themselves as potential
candidates to be selected by workers.

Workers are oriented towards the task selection issue. Thus, there are mea-
sures which provide cost values to the different edges between nodes.

A job is considered to be successfully completed when the worker handling
the last task represented by the finish node completes its duties. Notice that
jobs are independent from each other.

Regarding the intermediate nodes of this graph, they represent the different
tasks in which the job is divided, giving shape to multiple possible paths linking



Combining MAS and Subjective Logic to Develop DSS 149

Fig. 4. a.- State of the path from (start) to (A) before task (1) is completed. b.- State
of the path from (start) to (A) after task (1) is completed.

the start node with the finish node. It may be the case when there is not any
path from the start node to the finish node (e.g. the intermediate nodes have
raised errors). This situation translates into a job finishing with failures during
execution.

Notice that the next tasks available in the path are the next related to the
last completed one (i.e. a completed task is no longer visible as available tasks
for workers). Figure 4 illustrates this point with an example. Let cs−1 be the
cost associated to the edge connecting nodes start and (1). Let c1−A be the cost
between (1) and (A). Figure 4(a) shows one path and one task connected to the
start node along with the cost involved in the different edges. When the task
(1) is completed, it is hidden and the start node gets virtually connected to the
node (A) by establishing a new edge with cost value cs−A equal to the c1−A.

Regarding the tasks, they are considered as atomic. Every worker assigned
to a job is responsible for carrying out just one of the component tasks at a
time. Hence, a one-to-one relationship between workers and tasks is established.
Tasks assigned to workers contain specific prerequisites to be fulfilled. These
preconditions are addressed to ensure correct alignment of workers.

According to these preconditions, tasks are organised into two main groups.
The first group considers the tasks that require the fulfillment of all the prereq-
uisites to be executed (labelled as strict), while the second group includes tasks
executed every time a requirement is satisfied (labelled as soft).

In Fig. 3, the strict tasks are represented by squares, while the soft tasks are
pictured by circles. In this example, task represented by node (JD) cannot be
performed until task (JA) and (JB) are completed. On the other hand, task (JH)
is executed when (JE) or (JF ) are completed. On this way, the requirements can
be only satisfied with the result of an individual previous task.

Tasks follow a specific workflow to manage their own internal state. Five
states are defined in this regard: waiting, running, completed, error and blocked.
Figure 5 shows the dynamic flow and possible relationships between states.

When a new job is created, all component tasks are in waiting state. Once
a worker is in a position to start with a task (i.e. fulfillment of its particular
requirements), the task changes its internal waiting state to running. A successful
completion of the task results in a completed state for it. However, if errors were
found during the process, the task changes to error state. Notice that any other
worker can take responsibility for a task in the error state to seek its completion



150 C. González-Fernández et al.

Fig. 5. Flow diagram of the states of a job.

(a) Cumulative fusion (b) Transitivity

Fig. 6. Graphical representation of the SL operator.

(even the same original worker). However, tasks can also enter into a blocked
state when, after being in error and proceed with retrial, completed state is not
reached. All tasks in blocked state are removed from the pool of available tasks
for workers, which results in not considering neither their nodes nor the edges
connected to them in the graph.

3.3 Combining Opinions with Subjective Logic

The proposed architecture lies in its ability to deal with beliefs. In pursue of that
feature, SL is considered as a methodology to manage these beliefs. The belief
can be the results of the execution of a task.

Considering the fact that ACA-SL currently finds itself at a very early stage,
just binomial opinions are taken into account in the remaining of this section.
Likewise, a reduced subset formed by two operators is contemplated in the pro-
posed architecture (see Fig. 6) : cumulative fusion operator (wA�B

x = wA
x ⊕ wB

x )
and transitivity operator (wA;B

x = wA
x ⊗ wB

x ).
The use of SL enables to manage opinions given by multiples sources. These

opinions can be combined. Furthermore, the sources can have different robustness
levels based on the confidence in each of them. The confidence in a source can
be assigned by manual setup, using rules defined by human experts, or can be
dynamically defined by training the system (e.g. using a previously evaluated
dataset).



Combining MAS and Subjective Logic to Develop DSS 151

Fig. 7. Job graph produced for the experiment.

Table 1. System configurations for the proposed experiments.

#major #minor major th. minor th.

Configuration 1 0 1 – 0

Configuration 2 5 20 5 0

Configuration 3 5 20 10 0

Configuration 4 20 50 5 0

4 Experiments

A DSS based on ACA-SL has been implemented to evaluate the validity of the
proposed architecture. The system purpose is to identify malicious web domains.
Thus, given a domain, the system is capable of generating an opinion about it.
This opinion is based on specific methods gathered from the literature of the
domain. These methods are to query well-known blacklists [46], to check both
the number of dots in the domain [47] and the registration date of the domain
[48].

A job that includes the specific methods has been created to evaluate a
domain. Figure 7 shows the graph of the implemented job. This job is divided
into multiple tasks. (JBLG) and (JBLY ) tasks query the blacklists of Google
and Yandex respectively. (JWHOIS) obtains the Whois, while (JRD) extracts
the registration date from the Whois data, and (JNDOT ) obtains the number
of dots in domain. The objective of these tasks is to retrieve information about
the domain. This information is then used by the following tasks to generate
opinions. (JBLG−w) and (JBLY −w) give an opinion based on blacklists responses,
(JBL−w) combines preceding opinions, (JRD−w) generates an opinion about the
registration date, (JNDOT−w) use the count of dots in the domain to give the
opinion and, finally, (JD−w) combine all of these opinions to provide a final
resulting opinion about the domain.



152 C. González-Fernández et al.

Fig. 8. Time consumed by the jobs.

Fig. 9. Number of tasks carried out by each worker.

Four configurations of workers have been tested. Table 1 shows the param-
eters for each experiment. #major and #minor indicate the number of ants
belonging to each category, while major th. and minor th. reflect their respective
thresholds.

The system has also been customised according to specific settings. First,
when the influence of multiple jobs exceeds the threshold of a worker, the worker
selects the job with the greatest influence. Secondly, Eq. 2 is used to calculate the
influence exerted by a job (Ij). This influence is proportional to the age of the
job (Tj(s)) (i.e. the current time subtracting the initial time the job is registered
in the system) and inversely proportional to the square of the number of workers
(W 2

j ) assigned to it. To avoid a potential division by zero, one is added to the
denominator:

Ij =
Tj(s)

W 2
j + 1

(2)

In this configuration, the two blacklist methods are preferred over the rest
ones. To indicate this preference, the cost of the edges used to form the paths
passing through these tasks is set up with lower values. Finally, given a domain,
not appearing in a blacklist is not sufficient to consider it as trustworthy.



Combining MAS and Subjective Logic to Develop DSS 153

Fig. 10. Number of times each worker change its assigned job.

To test the application, 1000 domains have been processed. For each domain,
a job is registered in the system. Figure 8 shows the number of jobs and their
time consumed until completion according to the selected configurations. Con-
figuration 1 is not depicted because the time consumed is one order of magnitude
higher. Times spent in Configurations 2 and 3 are similar (their jobs take between
1 and 22 seconds to finish). Configuration 4 obtains shorter times. This result
illustrates that the use of several agents had a positive effect in the performance
of the system.

Figures 9 and 10 depict the number of tasks and the number of job changes
each worker performs in both castes respectively. In all configurations, the major
workers perform less tasks than minor workers. Also, the Configuration 3 shows
a larger gap between castes than the rest of the configurations. This fact is a
consequence of the configured thresholds.

This experiment shows how a good selection of the configuration parameters
improves the performance. The time consumed by the jobs varies drastically
depending on the number of workers available. This fact indicates that the job
division and the use of multi-workers are suitable. Finally, the use of different
thresholds has provoked that the number of tasks performed by a major worker
decreased. If needed, the resources associated to these workers can be reserved
by adjusting these thresholds.

5 Conclusions

This paper introduces ACA-SL, a bio-inspired architecture based on ant colony
structures. It combines MAS and SL to correctly manage high distributed DSS.

The architecture makes use of agents taking the role of ant workers. They
deal with registered jobs which are external requests placed to the colony. To
facilitate the parallel processing, these jobs are defined as a set of tasks which
are individually assigned to the different workers. These tasks make up a graph
defining the job. Finally, SL is used to handle the opinions generated during the
process.



154 C. González-Fernández et al.

A basic application has been implemented to validate the proposal. Experi-
ments have been carried out to illustrate that the proposed architecture is truly
feasible. They have shown the importance of defining appropriate settings (i.e.
the edge costs, the job influence equation or the job graph shape).

ACA-SL is in an early stage of development. However, foundations followed
during its design are addressed to establish a good basis for future implementa-
tions. Some instances exemplifying these aspects can be found in the capability
to setup internal parameters to improve offered performance and the division
of jobs in tasks to guarantee correct parallel processing and resources manage-
ment. Some future works will arise from this contribution. In order to facilitate
future implementations based on the proposed architecture, a complete frame-
work development is being considered. This framework will follow the ABM
methodology and the Model Driven Architecture (MDA) guidelines. There is a
plan to extend some of the features already defined, and to increase the number
of castes with the purpose of improving the flexibility of the system. New SL
operators will be also considered in future projects.

Acknowledgments. Research supported by grant from the Spanish Ministry of Econ-
omy and Competitiveness, under the Retos-Colaboración program: SABERMED (Ref:
RTC-2017-6253-1) and the support of NVIDIA Corporation with the donation of the
Titan V GPU.

References

1. Pratap, A.: Analysis of big data technology and its challenges. Int. Res. J. Eng.
Technol. (IRJET) 6, 5094–5098 (2019)

2. Zeghida, D., Meslati, D., Bounour, N.: Bio-IR-M: a multi-paradigm modelling for
bio-inspired multi-agent systems. Informatica 42(3) (2018)

3. Wooldridge, M., Jennings, N.R.: Intelligent agents:theory and practice. Knowl.
Eng. Rev. 10(2), 115–152 (1995)

4. Weyns, D., Omicini, A., Odell, J.: Environment as a first class abstraction in mul-
tiagent systems. Auton. Agent. Multi-Agent Syst. 14(1), 5–30 (2007). https://doi.
org/10.1007/s10458-006-0012-0

5. Sun, R., et al.: Cognition and Multi-agent Interaction: From Cognitive Modeling
to Social Simulation. Cambridge University Press, Cambridge (2006)

6. Horling, B., Lesser, V.: A survey of multi-agent organizational paradigms. Knowl.
Eng. Rev. 19(4), 281–316 (2004)

7. Jean-Pierre, M., Christine, B., Gabriel, L., Pierre, G.: Bio-inspired mechanisms for
artificial self-organised systems. Informatica 30(1) (2006)

8. Fewell, J.H., Harrison, J.F.: Scaling of work and energy use in social insect colonies.
Behav. Ecol. Sociobiol. 70(7), 1047–1061 (2016). https://doi.org/10.1007/s00265-
016-2097-z

9. Ward, A.J., Herbert-Read, J.E., Sumpter, D.J., Krause, J.: Fast and accurate deci-
sions through collective vigilance in fish shoals. Proc. Natl. Acad. Sci. 108(6),
2312–2315 (2011)

10. Muro, C., Escobedo, R., Spector, L., Coppinger, R.: Wolf-pack (canis lupus) hunt-
ing strategies emerge from simple rules in computational simulations. Behav. Pro-
cess. 88(3), 192–197 (2011)

https://doi.org/10.1007/s10458-006-0012-0
https://doi.org/10.1007/s10458-006-0012-0
https://doi.org/10.1007/s00265-016-2097-z
https://doi.org/10.1007/s00265-016-2097-z


Combining MAS and Subjective Logic to Develop DSS 155

11. Jøsang, A.: Subjective Logic. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-319-42337-1

12. He, C., Li, Y.: A survey of intelligent decision support system. In: 2017 7th Inter-
national Conference on Applied Science, Engineering and Technology (ICASET
2017), pp. 201–206. Atlantis Press (2017)

13. Garro, A., Mühlhäuser, M., Tundis, A., Mariani, S., Omicini, A., Vizzari, G.: Intel-
ligent agents and environment. In: Encyclopedia of Bioinformatics and Computa-
tional Biology: ABC of Bioinformatics, p. 309 (2018)

14. Railsback, S.F., Grimm, V.: Agent-Based and Individual-based Modeling: A Prac-
tical Introduction. Princeton University Press, Princeton (2019)

15. Michel, F., Ferber, J., Drogoul, A.: Multi-agent systems and simulation: a survey
from the agent community’s perspective. In: Multi-Agent Systems, pp. 17–66. CRC
Press (2018)

16. Pipattanasomporn, M., Feroze, H., Rahman, S.: Multi-agent systems in a dis-
tributed smart grid: design and implementation. In: 2009 IEEE/PES Power Sys-
tems Conference and Exposition. PSCE2009, pp. 1–8. IEEE (2009)

17. Fernández-Isabel, A., Fuentes-Fernández, R.: An agent-based platform for traffic
simulation. In: Corchado, E., Snášel, V., Sedano, J., Hassanien, A.E., Calvo, J.L.,
Ślȩzak, D. (eds.) Soft Computing Models in Industrial and Environmental Appli-
cations, 6th International Conference SOCO 2011. Advances in Intelligent and Soft
Computing, vol. 87, pp. 505–514. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-19644-7 53

18. González-Briones, A., De La Prieta, F., Mohamad, M.S., Omatu, S., Corchado,
J.M.: Multi-agent systems applications in energy optimization problems: a state-
of-the-art review. Energies 11(8), 1928 (2018)

19. Conati, C., Klawe, M.: Socially intelligent agents in educational games. In: Dauten-
hahn, K., Bond, A., Cañamero, L., Edmonds, B. (eds.) Socially Intelligent Agents.
Multiagent Systems, Artificial Societies, and Simulated Organizations, vol. 3, pp.
213–220. Springer, Boston (2002). https://doi.org/10.1007/0-306-47373-9 26

20. Fernández-Isabel, A., Fuentes-Fernández, R., de Diego, I.M.: Modeling multi-agent
systems to simulate sensor-based smart roads. Simul. Model. Pract. Theory 99,
101994 (2020)

21. Salehinejad, H., Talebi, S.: Dynamic fuzzy logic-ant colony system-based route
selection system. Appl. Comput. Intell. Soft Comput. 2010, 13 (2010)

22. Yan, X., Li, L.: Ant agent-based QoS multicast routing in networks with impre-
cise state information. In: Shi, Z.-Z., Sadananda, R. (eds.) PRIMA 2006. LNCS
(LNAI), vol. 4088, pp. 374–385. Springer, Heidelberg (2006). https://doi.org/10.
1007/11802372 36

23. Bellifemine, F., Poggi, A., Rimassa, G.: JADE: a FIPA2000 compliant agent devel-
opment environment. In: Proceedings of the Fifth International Conference on
Autonomous Agents, pp. 216–217 (2001)

24. Yang, Y.J., Sung, T.-W., Wu, C., Chen, H.-Y.: An agent-based workflow system
for enterprise based on FIPA-OS framework. Expert Syst. Appl. 37(1), 393–400
(2010)

25. Spade: scheduler for parallel and distributed execution from mobile devices
26. Crooks, A.T., Heppenstall, A.J.: Introduction to agent-based modelling. In:

Heppenstall, A., Crooks, A., See, L., Batty, M. (eds.) Agent-Based Models of
Geographical Systems, pp. 85–105. Springer, Dordrecht (2012). https://doi.org/
10.1007/978-90-481-8927-4 5

https://doi.org/10.1007/978-3-319-42337-1
https://doi.org/10.1007/978-3-319-42337-1
https://doi.org/10.1007/978-3-642-19644-7_53
https://doi.org/10.1007/978-3-642-19644-7_53
https://doi.org/10.1007/0-306-47373-9_26
https://doi.org/10.1007/11802372_36
https://doi.org/10.1007/11802372_36
https://doi.org/10.1007/978-90-481-8927-4_5
https://doi.org/10.1007/978-90-481-8927-4_5


156 C. González-Fernández et al.

27. Shehory, O., Sturm, A. (eds.): Agent-Oriented Software Engineering: Reflections on
Architectures, Methodologies, Languages, and Frameworks. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-54432-3

28. Pavón, J., Gómez-Sanz, J.J., Fuentes, R.: The INGENIAS methodology and tools.
In: Agent-Oriented Methodologies, no. 9, pp. 236–276 (2005)

29. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos:
An agent-oriented software development methodology. Auton. Agent. Multi-Agent
Syst. 8(3), 203–236 (2004). https://doi.org/10.1023/B:AGNT.0000018806.20944.
ef

30. Goulson, D.: Bumblebees: Behaviour, Ecology, and Conservation. Oxford Univer-
sity Press on Demand, Oxford (2010)

31. Korb, J., Thorne, B.: Sociality in termites. In: Comparative Social Evolution, pp.
124–153 (2017)

32. MacDonald, J., Deyrup, M.: The social wasps (hymenoptera: Vespidae) of Indiana.
Great Lakes Entomol. 22(3), 7 (2017)

33. Seid, M.A., Traniello, J.F.: Age-related repertoire expansion and division of labor
in pheidole dentata (hymenoptera: Formicidae): a new perspective on temporal
polyethism and behavioral plasticity in ants. Behav. Ecol. Sociobiol. 60(5), 631–
644 (2006). https://doi.org/10.1007/s00265-006-0207-z

34. Jandt, J.M., Dornhaus, A.: Spatial organization and division of labour in the bum-
blebee Bombus impatiens. Anim. Behav. 77(3), 641–651 (2009)

35. Tschinkel, W.R.: The nest architecture of the florida harvester ant, pogonomyrmex
badius. J. Insect Sci. 4(1), 21 (2004)

36. Cicirello, V.A., Smith, S.F.: Wasp nests for self-configurable factories. In: Proceed-
ings of the Fifth International Conference on Autonomous Agents, pp. 473–480
(2001)

37. de Oliveira, V.M., Campos, P.R.: The emergence of division of labor in a structured
response threshold model. Phys. A: Stat. Mech. Appl. 517, 153–162 (2019)

38. Duarte, A., Pen, I., Keller, L., Weissing, F.J.: Evolution of self-organized division
of labor in a response threshold model. Behav. Ecol. Sociobiol. 66(6), 947–957
(2012). https://doi.org/10.1007/s00265-012-1343-2

39. Shafer, G.: A Mathematical Theory of Evidence, vol. 42. Princeton University
Press, Princeton (1976)

40. Zadeh, L.A.: Fuzzy logic. Computer 21(4), 83–93 (1988)
41. Sidhu, A.S.: Recommendation framework based on subjective logic in decision

support systems, Ph.D. thesis, University of Windsor (2014)
42. Jøsang, A., Hayward, Pope, S.: Trust network analysis with subjective logic. In:

Proceedings of the 29th Australasian Computer Science Conference (ACSW 2006),
pp. 885–894. Australian Computer Society (2006)

43. Liu, Y., Li, K., Jin, Y., Zhang, Y., Qu, W.: A novel reputation computation model
based on subjective logic for mobile ad hoc networks. Future Gener. Comput. Syst.
27(5), 547–554 (2011)

44. Jøsang, A., Bondi, V.A.: Legal reasoning with subjective logic. Artif. Intell. Law
8(4), 289–315 (2000). https://doi.org/10.1023/A:1011219731903

45. Khan, M.W., Wang, J., Ma, M., Xiong, L., Li, P., Wu, F.: Optimal energy man-
agement and control aspects of distributed microgrid using multi-agent systems.
Sustain. Cities Soc. 44, 855–870 (2019)

46. Gerbet, T., Kumar, A., Lauradoux, C.: A privacy analysis of Google and Yan-
dex safe browsing. In: 2016 46th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), pp. 347–358. IEEE (2016)

https://doi.org/10.1007/978-3-642-54432-3
https://doi.org/10.1023/B:AGNT.0000018806.20944.ef
https://doi.org/10.1023/B:AGNT.0000018806.20944.ef
https://doi.org/10.1007/s00265-006-0207-z
https://doi.org/10.1007/s00265-012-1343-2
https://doi.org/10.1023/A:1011219731903


Combining MAS and Subjective Logic to Develop DSS 157

47. Ma, J., Saul, L.K., Savage, S., Voelker, G.M.: Beyond blacklists: learning to detect
malicious web sites from suspicious URLs. In: Proceedings of the 15th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
1245–1254 (2009)

48. McGrath, D.K., Gupta, M.: Behind phishing: an examination of phisher modi
operandi. In: LEET, no. 4, p. 8 (2008)


	Combining Multi-Agent Systems and Subjective Logic to Develop Decision Support Systems
	1 Introduction
	2 Background
	2.1 Multi-Agent Systems
	2.2 Insect Colonies
	2.3 Subjective Logic

	3 Proposed Architecture
	3.1 Multi-Agent System Based on Ant Colonies
	3.2 The Job Workflow
	3.3 Combining Opinions with Subjective Logic

	4 Experiments
	5 Conclusions
	References




