
Defect of Mitotic Vimentin Phosphorylation Causes
Microophthalmia and Cataract via Aneuploidy and
Senescence in Lens Epithelial Cells*�

Received for publication, August 29, 2013, and in revised form, October 11, 2013 Published, JBC Papers in Press, October 18, 2013, DOI 10.1074/jbc.M113.514737

Makoto Matsuyama‡1, Hiroki Tanaka‡1, Akihito Inoko‡1, Hidemasa Goto‡§, Shigenobu Yonemura¶, Kyoko Kobori‡,
Yuko Hayashi‡, Eisaku Kondo�**, Shigeyoshi Itohara‡‡, Ichiro Izawa‡, and Masaki Inagaki‡§2

From the Divisions of ‡Biochemistry and �Oncological Pathology, Aichi Cancer Center Research Institute, Nagoya, Aichi 464-8681,
the Departments of §Cellular Oncology and **Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550,
the ¶Electron Microscope Laboratory, RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, and the ‡‡Laboratory for
Behavioral Genetics, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako 351-0198, Japan

Background: Vimentin, an intermediate filament (IF) protein, is phosphorylated in mitosis.
Results: Disruption of vimentin phosphorylation during cell division leads to chromosomal instability (CIN) and premature
aging in mouse lens tissue.
Conclusion:Our data document the first physiological importance of vimentin phosphorylation duringmitosis for organogen-
esis and tissue homeostasis.
Significance:Our data suggest a possible causal relationship between CIN and premature aging.

Vimentin, a type III intermediate filament (IF) protein, is
phosphorylated predominantly in mitosis. The expression of a
phosphorylation-compromised vimentin mutant in T24 cul-
tured cells leads to cytokinetic failure, resulting in binucleation
(multinucleation). The physiological significance of intermedi-
ate filament phosphorylation during mitosis for organogenesis
and tissue homeostasis was uncertain. Here, we generated
knock-inmice expressing vimentin that havehad the serine sites
phosphorylated during mitosis substituted by alanine residues.
Homozygoticmice (VIMSA/SA) presentedwithmicroophthalmia
and cataracts in the lens, whereas heterozygotic mice
(VIMWT/SA) were indistinguishable fromWT (VIMWT/WT)mice.
In VIMSA/SA mice, lens epithelial cell number was not only
reduced but the cells also exhibited chromosomal instability,
including binucleation and aneuploidy. Electron microscopy
revealed fiber membranes that were disorganized in the lenses
of VIMSA/SA, reminiscent of similar characteristic changes seen
in age-related cataracts. Because the mRNA level of the senes-
cence (aging)-related gene was significantly elevated in samples
from VIMSA/SA, the lens phenotype suggests a possible causal
relationship between chromosomal instability and premature
aging.

Intermediate filaments (IFs),3 together with microtubules
and actin filaments, form the cytoskeletal framework in the
cytoplasm of various eukaryotic cells. IF proteins are divided
into six groups related to their primary sequence characteris-
tics, their tissue-specific expression profiles, and differentiation
status (1–3). For example, GFAP and desmin are type III IF
proteins that are expressed specifically in astroglial andmuscu-
lar cells, respectively (4–6). However, vimentin, another type
III IF protein, is expressed in all mesenchymal cells with the eye
lens being the tissue with by far the highest levels (7, 8).
There is increasing evidence that IF disassembly is regulated

by phosphorylation of Ser/Thr residues in the amino-terminal
head domain on IF proteins (9, 10). The first direct evidence
was obtained by an in vitro study that treated polymerized
vimentin filaments with a purified protein kinase to cause their
disassembly (11). Site- and phosphorylation state-specific anti-
bodies that can recognize a phosphorylated residue and its
flanking sequence (12, 13) are powerful tools able to resolve the
spatial and temporal details of IF phosphorylation in cells (14,
15). Using antibodies raised against four distinct phosphoryla-
tion sites in GFAP, we showed that mitotic IF phosphorylation
is regulated by different protein kinases in a spatiotemporal
manner (13, 16). Further detailed studies revealed that several
mitotic kinases, such as Aurora-B (17, 18), Cdk1 (19, 20), Plk1
(21), and Rho kinase (22–24), participate in the phosphoryla-
tion of type III IF proteins during cell division. By transient
expression of type III IF proteinsmutated at thesemitotic phos-
phorylation sites to Ala, we found that preventing the phosphor-
ylation of IFs during cell division inhibited cytokinesis by the
retention of an IF bridge that connected the two daughter cells
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(17, 18, 21, 25, 26). These findings indicated that mitotic IF
phosphorylation is essential for the efficient separation of the
two daughter cells. The presence of the IF bridge presented the
cell pair with two options. In the first option, the IF bridge could
be torn apart presumably by cell adhesion-dependent traction
force (27) to allow the completion of cytokinesis (26). In the
second option, cytokinesis failed, resulting in the formation of
binucleate (multinucleate) cells (21). The physiological signifi-
cance of IF phosphorylation during cell division for organogen-
esis and tissue homeostasis, however, has yet to be determined.
We have generated knock-in mice to produce VIM alleles in

which the serine residues in vimentin that are phosphorylated
in mitosis have been replaced with alanine residues (indicated
in Fig. 1A). Homozygotic mice bearing such mutations
(VIMSA/SA) presented with microophthalmia and lens cataract
as phenotypes. The heterozygotes (VIMWT/SA) showed no
obvious phenotype. Compared with WT (VIMWT/WT) and
VIMWT/SA mice, the epithelial cell number was significantly
reduced in lenses from VIMSA/SA mice. We observed not only
binucleate (multinucleate) cells but also aneuploid cells in
VIMSA/SA lens, whereas these abnormal cells were not detected
inVIMWT/WT orVIMWT/SA lens. In addition, themRNA level of
the senescence (aging)-related gene was significantly elevated
in the lens of VIMSA/SA.

EXPERIMENTAL PROCEDURES

Generation of Vimentin Knock-inMice—Abacterial artificial
chromosome clone containing the 129Sv mouse vimentin
genome locus was purchased (Mouse bMQ bacterial artificial
chromosome library, The Wellcome Trust Sanger Institute).
The targeting vectorwas designed to substitute Ser toAla in the
vimentin head domain at the indicated positions (Fig. 1, A and
B). The 5� and 3� homology arms were amplified by PCR. Site-
directed mutagenesis was introduced on exon 1 for the substi-
tution. Then they were ligated into the 5� and 3� side of the
PGKneobpA-loxP-positive selection marker cassettes, with an
MC1DTpA-negative selectionmarker cassette at the 5� homol-
ogous arm to enrich for homologous recombinants. The target-
ing vector was electroporated into EB3 ES cells with 129 back-
ground, as described previously (28, 29).
G418-resistant clones were initially screened by Southern

blotting analysis with a unique external probe following EcoRI
digestion (see Fig. 1,B andC). Correctly targeted ES cloneswere
microinjected intoC57BL/6 blastocysts, whichwere in turn trans-
ferred into foster mothers to obtain chimeric mice. Following
germ line transmission, homozygous mutant (VIMSA/SA) mice
were produced by intercrossing heterozygous (VIMWT/SA)
mice (Fig. 1,D and E).Mutations were verified by PCR followed
by DNA sequencing (Fig. 1F). The mutant mice were back-
crossed for more than 10 generations onto a C57BL/6 back-
ground. Genotyping was performed by PCR (Fig. 1E) with the
following primers: WT (5�-GAT CAG CTC ACC AAC GAC
AAG-3�), reverse (5�-TCC TCT GCT ATC CTC CAG ACA-
3�), and bpA (5�-TGC ATC GCA TTG TCT GAG TAG-3�).
Mice were maintained at the Aichi Cancer Center Research
Institute Animal Facility in compliance with the regulations of
the Animal Ethics and Animal Care Committees at the Aichi
Cancer Center.

Immunoblotting—Samples preparation was described previ-
ously (30). After incubation with the desired antibody, PVDF
membranes (Immobilon-P, Millipore) were developed using
the following detection reagents (Western Lightning Chemilu-
minescence Reagent plus, PerkinElmer Life Sciences, or Super-
SignalWest FemtoMaximum Sensitivity Substrate, or Thermo
Fisher Scientific).
In Situ Hybridization—In situ hybridization on whole-

mount embryoswas performed using digoxigenin-labeled ribo-
probes as described (31). Templateswere cloned fromcDNAby
PCR amplification with the following primers: vimentin, 5�-
atgtctaccaggtctgtg-3� and 5�-cgcacatcacgcagggca-3�, and desmin,
5�-cgaggctacacagcaaca-3� and 5�-tgcctctctcttccttcctct-3�.
Histology and Immunohistochemistry—Fixation and H&E

staining of histological sections was performed according to
standard protocols. For immunohistochemistry, 3,3�-diamino-
benzidine staining was performed with a kit (Dako EnVision�
System-HRP Labeled Polymer, Dako), according to the manu-
facturer’s protocol.
Immunostaining—Paraformaldehyde-fixed tissue slides were

deparaffinized, microwaved in 10 mM citrate buffer, pH 6.0, for
15min, and then blocked in 5% (v/v) donkey serum in TBST for
1 h. Sections were incubated with primary antibodies overnight
at 4 °C followed by TBST wash and then incubated with appro-
priate secondary antibodies (Invitrogen) for 1 h at room
temperature.
Cultured cells were grown on coverslips (Iwaki Glass Co.,

Ltd.) and immunostained with the followingmodifications: fix-
ation, with 1% (w/v) formaldehyde in PBS for 15 min at room
temperature followed by permeabilization with 0.2% (v/v) Tri-
ton X-100 for 15 min or with 100% methanol at �20 °C for 10
min; blocking, with 1% (w/v) BSA/PBS for 15min; primary anti-
bodies, for 1 h at room temperature; secondary antibodies for
30 min. DNA was also stained with 1 �g/ml DAPI.

Fluorescence images were obtained by confocal microscopy
(LSM 510 META, Carl Zeiss) and equipped with a microscope
(Axiovert 200 M, Carl Zeiss), a Plan Apochromat 40�/1.3 NA,
63�/1.4 NA, and 100�/1.4 NA oil immersion lens, a Plan Apo-
chromat 150�/1.35 NA glycerol immersion lens, and LSM
Image Browser software (Carl Zeiss).
Fig. 5A was obtained by using the DeltaVision system

(Applied Precision), as described previously (32), equipped
with amicroscope (IX70, Olympus), a Plan Apochromat 100�/
1.40 NA oil immersion lens (Olympus), and a cooled charge-
coupled device camera (CoolSNAP HQ, Photometrics). The
images were obtained with 0.2-�m intervals in a z section,
deconvolved, and integrated with softWoRx software (Applied
Precision).
FISH—Mouse eyes were fixed with 4% (w/v) paraformalde-

hyde in PBS overnight at 4 °C and embedded in paraffin. 5-�m-
thick sections were prepared and mounted. Slides were depar-
affinized and then treated with 0.1% (w/v) pepsin, 0.1 N HCl for
15 min. FISH probes were mounted with specimen, denatured
for 10 min at 90 °C, and then hybridized overnight at 37 °C.
After hybridization, slides were washed stringently in 50%
formamide, 2� saline sodium citrate (SSC), and 1� SSC. DNA
was also stained with 1 �g/ml DAPI.
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Fluorescence image was captured with a fluorescencemicro-
scope (Leica CW-4000). The mouse two-color FISH probe
(Chromosome 12 probe; labeled with Spectrum Green, chro-
mosome19probe; labeledwithCy3)was purchased fromChro-
mosome Science Labo Inc. (Sapporo, Japan).
For the cultured cells, some modifications were made. In

brief, cells were fixed with Carnoy’s fixative (3:1 methanol/gla-
cial acetic acid) at room temperature for 5 min with three
changes before FISH probes were hybridized to the samples.
Antibodies—The following primary antibodies were used:

polyclonal guinea pig anti-vimentin (Progen; Germany);mono-
clonal rabbit anti-desmin (Y266, Abcam, Cambridge, UK);
monoclonal mouse anti-GFAP (GA5, Cell Signaling Technol-
ogy, Beverly, MA); monoclonal mouse anti-nestin (Millipore,
Billerica, MA); polyclonal rabbit anti-HSP70 (D69; Cell Signal-
ingTechnology, Beverly;MA);HRP-conjugated polyclonal rab-
bit anti-�-tubulin (Abcam, Cambridge, UK); monoclonal rat
anti E-cadherin (ECCD2, Cell Signaling Technology, Beverly,
MA);monoclonalmouse anti�-catenin (Transduction Labora-
tories, Lexington, KY); polyclonal rabbit anti-AQP0/MIP
(Alpha Diagnostic International, San Antonio, TX); polyclonal
rabbit anti-�-tubulin (ab11321, Abcam, Cambridge, UK); poly-
clonal goat anti-vimentin (25); monoclonal rabbit anti-vimen-
tin (D21H3, Cell Signaling Technology, Beverly, MA); mono-
clonalmouse anti-�-tubulin (B-5-1-2, Sigma); polyclonal rabbit
anti-PCNA (ab15497, Abcam, Cambridge, UK); and monoclo-
nal anti-�-tubulin (GTU-88, Sigma). Primary antibodies were
detected using species-specific secondary antibodies conju-
gated to either Alexa Fluor 488 or 555 (Invitrogen).
Quantitative RT-PCR—Total RNA was prepared from eye

lenses using TRIzol� (Invitrogen) in accordance with the manu-
facturer’s instructions. Total RNA was reverse-transcribed using
SuperScript�VILOTM cDNA synthesis kit (Invitrogen). Taq-
Man analysis was performed. Primer sequences for p16Ink4a
and p19Arf were as published (33). Other primers are the
TaqMan�Gene Expression Assays by Applied Biosystems:
E2f1 (Mm00432936_m1), p15 (Mm00483241_m1), p21
(Mm04205640_g1), GAPDH (Mm99999915_g1), and Ndrg2
(Mm00443481_g1).
Primary Cell Culture—Primary lens epithelial cell cultures

were established by microdissecting the anterior lens capsule
and then culturing on collagen I-coated plastic dish (BDBiosci-
ences) with Dulbecco’s modified Eagle’s medium supple-
mented with 10% (v/v) FCS and antibiotics. Sequentially, they
were replaced on collagen I-coated coverslips (Iwaki Glass Co.,
Ltd.) and cultured for a total of 7 days from theharvest, followed
by the fixation.
Transmission Electron Microscopy of Lens Fiber Cells—The

fixationwas based on the following standardmethodwith some
modifications for the equatorial section. Lenswas fixedwith 2%
fresh formaldehyde and 2.5% glutaraldehyde in 0.1 M sodium
cacodylate buffer, pH 7.4, for 2 h at room temperature. After
washing with 0.1 M cacodylate buffer, pH 7.4, they were post-
fixed with ice-cold 1% OsO4 in the same buffer for 2 h. The
samples were rinsed with distilled water, stained with 0.5%
aqueous uranyl acetate for 2 h or overnight at room tempera-
ture, dehydratedwith ethanol andpropylene oxide, and embed-
ded in Poly/Bed 812 (Polysciences, Inc.). Then ultrathin sec-

tions were cut through the lens equator, double stained with
uranyl acetate and Reynolds’s lead citrate, and viewed with a
transmission electron microscope (JEM-1010; JEOL) with a
charge-coupled device camera (BioScan model 792; Gatan,
Inc.) at an accelerating voltage of 100 kV.
Statistical Analyses—Mean values� S.E. were calculated and

used to test for significance between treatments in each dataset
using the two-tailed Student’s t test (Graph Pad software). Dif-
ferences were considered significant when *, p � 0.05; **, p �
0.01; and ***, p � 0.001.

RESULTS

Lens Disorder in VIMSA/SA Mice—Knock-in mice were gen-
erated that only expressed vimentin mutated at Ser-6, Ser-24,
Ser-38, Ser-46, Ser-55, Ser-64, Ser-65, Ser-71, Ser-72, Ser-82,
and Ser-86 to Ala (Fig. 1, A–F). These serine residues in mouse
vimentin have been identified as phosphorylation sites during
mitosis. Western blot analyses of embryos showed no signifi-
cant difference in vimentin protein levels between WT
(VIMWT/WT), heterozygous (VIMWT/SA), and homozygous
(VIMSA/SA) mice (Fig. 1F). Next, we compared the expression
patterns of vimentin and desmin in VIMWT/WT and VIMSA/SA

embryos. Therewere onlymarginal differences in vimentin and
desmin expression, as judged by in situ hybridization of mouse
whole embryos at E8.5 (Fig. 2A) and E9.5 (Fig. 2B). These data
collectively indicate the successful generation of vimentin
mutant mice.
VIMSA/SAmice were viable, but the eyes were microophthal-

mic, and the lenses were smaller than those in littermate con-
trols (Fig. 2C). The gross morphology and histology of the eye
tissues were unchanged for VIMWT/WT and VIMWT/SA mice
(Fig. 2C). Lens cataract was observed in VIMSA/SA mice at 11
months old, whereas VIMWT/WT and VIMWT/SA mice all had
clear lenses (Fig. 2D). As shown in Fig. 2E, we observed no
redundant protein expression of desmin, GFAP, and nestin
(with which vimentin can form heteropolymeric filaments) (3)
in VIMSA/SA lens. The fact that the lens is the tissue where
vimentin is the most abundantly expressed (Fig. 2F) likely
explains the cataract phenotype in VIMSA/SA mice.
Binucleation and Aneuploidy in VIMSA/SA Lens—A single

layer of epithelial cells covers the anterior hemisphere of the
lens. The cells in the central zone of the epithelium (anterior
region) rarely undergo cell division, but at the lens equator
there is a band of dividing cells termed the germinative zone in
the epithelium (equatorial region). The progeny of these cells in
the germinative zone of the equatorial region differentiate into
lens fiber cells, a process that starts in the transitional zone of
the equatorial region (34). The immunohistochemical analyses
with anti-PCNA (which stains active DNA replication sites in
cells; Fig. 3A) identified the germinative zone (34).
Histological changes were observed in both the anterior (Fig.

3, B andC) and equatorial regions (Fig. 4,A and B) ofVIMSA/SA

lenses. The number of lens epithelial cells was significantly
decreased in VIMSA/SA mice, compared with VIMWT/WT or
VIMWT/SAmice. In contrast, there was no significant difference
between similar regions in VIMWT/WT and VIMWT/SA mice.
Because binucleation (multinucleation) was observed in tissue
culture cells expressing phosphorylation-compromised vimen-
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tin (21), lenses from VIMSA/SA were stained with E-cadherin,
�-catenin (the markers of cell-cell boundaries), and DAPI
(nucleus). In both anterior (Fig. 3,D and E) and equatorial (Fig.
4,C andD) regions ofVIMWT/WT orVIMWT/SA lens epithelium,
each cell had one nucleus. In contrast, binucleate (multinucle-
ate) cells were observed in VIMSA/SA lens epithelium. Approx-
imately 13 and 1% of cells each had two nuclei in the anterior
(Fig. 3,D andE) and equatorial (Fig. 4,C andD) regions, respec-
tively. FISH analyses using mouse chromosome 12 (green) and
19 (red) probes were used to determine chromosomal instabil-
ity (CIN) in VIMSA/SA lens. Approximately 3 and 17% of nuclei
in the anterior (Fig. 3, F and G) and equatorial (Fig. 4, E and F)

regions, respectively, ofVIMSA/SA lens epithelial cells hadmore
than two FISH signals per chromosome. Aneuploid cells were
not detected in VIMWT/WT or VIMWT/SA lens epithelial cells.
To analyze the mechanism by which CIN occurs in lens epi-

thelial cells, we analyzed primary cultures of lens epithelial
cells.VIMSA/SA-derived primary culture cells exhibited not only
binucleation (Fig. 5A) but also aneuploidy (Fig. 5B). These phe-
nomena were rarely observed in VIMWT/WT- or VIMWT/SA-de-
rived primary culture cells. The binucleate cells in primary cell
cultures derived from VIMSA/SA lenses possessed four centro-
somes (Fig. 5A) consistent with cytokinetic failure causing
binucleation (multinucleation) just like T24 cultured cells

FIGURE 1. Generation of knock-in mice (VIMSA/SA) where two VIM alleles are mutated at mitosis-specific phosphorylation sites to Ala. A, schematic
featuring mitosis-specific vimentin phosphorylation sites on mouse vimentin. Their responding kinases are also shown. B, diagram of the VIM genomic locus
is shown as follows: WT allele with EcoRI (RI) restriction maps, exons (black box), and translation initiation point (hooked arrow); targeting vector, including
mutated exon1 (with asterisks), and inserting neo gene; mutant allele by homologous recombination. Genotyping probes for Southern blot (bar) and the PCR
primers (arrows) are also illustrated. C and D, Southern blotting of EcoRI-digested genomic DNA from ES clones (C) and tails form offspring (D). About 8.2- or
3.1-kbp fragment is derived from EcoRI-digested genomic DNA of a VIMWT or neo-inserted VIMSA allele, respectively. E, PCR genotyping of offspring. The 278-
or 203-bp fragment is derived from mRNA of a VIMSA or VIMWT allele, respectively. F, sequence of mutation sites on VIMSA/SA were checked as described under
“Experimental Procedures.” G, Western blot analyses with extracts from embryos. After blotting, the membrane was stained with Coomassie Brilliant Blue (CBB).
*, p � 0.05; **, p � 0.01; ***, p � 0.001.
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that express similar phosphorylation-compromised vimen-
tin mutants (21). Does this account for aneuploidy inVIMSA/SA

lens epithelial cells? Extra centrosomes have been reported to
be sufficient to induce chromosome missegregation (such as
lagging chromosomes) during cell division (35). Interestingly,
tetraploid cells with four centrosomes showed a high frequency
of chromosome missegregation whereas tetraploid cells with
two centrosomes decreased to a level observed in diploid cells
with two centrosomes (35). These observations led us to pro-
pose the following model. Lens epithelial cells in VIMSA/SA

mice form an IF bridge, which induces binucleation (multi-
nucleation) due to cytokinetic failure. The binucleation (multi-
nucleation) results in abnormal numbers of centrosomes per
cell, which in turn promotes aneuploidy. Given the regional
differences in the frequency of cell division rates in the anterior
and equatorial regions of the lens, this could explain why there

is more binucleation (early event) in the central region and
more aneuploidy (later event) in the equatorial zone (Fig. 3
versus Fig. 4).
Premature Aging in VIMSA/SA Lens—How CIN induces

microophthalmia and cataract in VIMSA/SA mice is an impor-
tant question. As judged by TUNEL staining, it is less likely that
CIN promotes apoptosis in VIMSA/SA lens.4 Table 1 summa-
rizes the time course of the appearance of the lens abnormali-
ties. Twomonths after birth, all lens abnormalities have started
to appear in some VIMSA/SA mice. The abnormalities in lens
size and chromosomal stability were observed in all VIMSA/SA

mice by 3 months, whereas it took almost 1 year before all
VIMSA/SA mice exhibited cataract phenotype. These observa-

4 H. Tanaka and M. Inagaki, unpublished observations.

FIGURE 2. Optical disorder in knock-in mice (VIMSA/SA). A and B, in situ hybridization analyses of mouse whole embryos at E8.5 (A) and E9.5 (B) using vimentin
and desmin probes. C and D, lens from 4-month-old (C) or 11-month-old (D) mice. Bar graph shows the quantification of the volume of lens, normalized to
VIMWT/WT lens (n � 5 mice per genotype; C). The volume of 4-month-old lens (C) was calculated with the following mathematical formula: V � 4�Rr2/3 (R, major
radius; r, minor axis). E, total lens lysates (20 �g) prepared from 4-month-old mice were analyzed by Western blotting. The lysates of U251, HeLa, and baby
hamster kidney (BHK) cells were loaded as positive controls. F, vimentin expression pattern of indicated mouse tissues. 15 �g of total protein are applied in each
lane. Scale bars, 500 �m (A and B) or 1 mm (C and D). **, p � 0.01.
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tions suggested that lens cataract followed after CIN in
VIMSA/SA lens.

To examine lens fiber morphology in detail, lens epithelial
cells were costained with anti-AQP0 (also called membrane

intrinsic protein (MIP)) and anti-vimentin. Lens fiber cells were
disorganized at 4months as seen by theAQP0 staining (Fig. 6,A
and B) after birth when CIN was observed in allVIMSA/SAmice
(also see Table 1). The vimentin networkwas also disorganized,
but no vimentin aggregates were seen (Fig. 6, A and B).
Inter-fiber spaces were also increased in VIMSA/SA lens (Fig.

6,A and B), and in the bow region of the lens, the characteristic
distribution of the fiber cell nuclei was disrupted (Figs. 4A and
6B). Vacuoles (area devoid of cellular materials; Fig. 4A) were

FIGURE 3. Changes in the epithelial cells in the anterior region of VIMSA/SA

lenses. A, active dividing site of lens epithelium. Cells in lens tissue were
stained with anti-PCNA. Arrows indicate PCNA-positive nuclei. B, microoph-
thalmia in the VIMSA/SA mice. Lens from 4-month-old VIMWT/WT or VIMSA/SA

mice was stained with H&E. Magnified images of anterior or equatorial
regions of lens are also shown below (a and b) or in Fig. 4A (c and d), respec-
tively. C, bar graph shows the cell number of epithelium per 500 � 100 �m
area, normalized to VIMWT/WT mice (n � 3 mice per genotype); we observed at
least 10 sections per each lens for the calculation. D and E, immunostaining
(D) of lens epithelial cells with anti-E-cadherin (green), anti-�-catenin (red),
and DAPI (blue; nuclei). Bar graph (E) shows the percentage of binucleate cells
per 500 � 100 �m area; we observed at least 10 sections per each lens for the
calculation (n � 3 mice per genotype). E–G, FISH analyses of nuclei in each
genotype of mice. Green or red color represents mouse chromosome 12 or 19,
respectively (G). Magnified images of nuclei indicated as arrows are shown at
right. Arrowheads indicate aneuploid nuclei (F). Quantification of aneuploid
nuclei is also shown (G; n � 3 mice per genotype). Scale bars, 50 �m (A), 500
�m (B, upper), 40 �m (B, lower), or 10 �m (D and F). **, p � 0.01.

FIGURE 4. Changes in the epithelial cells in the equatorial region of
VIMSA/SA lenses. A–F, histological analyses at equatorial portion of lens were
performed according to the legend of Fig. 3. Bar graphs show the relative
proportion of cell number or binuclear ratio per 300 � 100 �m area; we
observed at least 10 sections per each lens for the calculation (B and D).
Scale bars, 40 �m (A) or 10 �m (C and E). **, p � 0.01; ***, p � 0.001.
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also apparent in VIMSA/SA lenses. Such observations are con-
sistent with other mouse models that develop lens cataract
(36–39).
The cross-sectional profiles of fiber cells at the lens equator

were analyzed by transmission electron microscopy (40). The
profiles of both VIMWT/WT or VIMWT/SA lens fiber cells were
very regular maintaining their characteristic hexagonal geom-
etry over 11 months (Fig. 6C). VIMSA/SA lens fiber cells were,
however, irregular both in size and shape. Size variation was
very apparent as too was the disorganizedmembranemorphol-
ogy manifested in, for example, irregular membrane processes
(Fig. 6C). In samples from 11-month-old VIMSA/SA mice, the

fiber cell boundaries were apparently lost in some areas (see a
right lowest photograph in Fig. 6C), which we interpret as a
degenerative process (41). Evenwith the increased resolution of
the electron microscope, no electron dense aggregates were
observed in the VIMSA/SA lenses. The observed changes in the
plasmamembranes of theVIMSA/SA lenses resemble those seen
in age-related cataracts (41).
Given this comparison, real time PCR analyses to monitor

mRNA levels of several senescence (aging)-related genes (p21,
Ndrg2, p16Ink4a, and p19Arf) were performed on lens samples.
The induction of p21 was recently reported to promote senes-
cence in lens epithelial cells leading to cataract formation (42).
N-myc downstream regulated gene 2 (Ndrg2) is considered to
be a lens-specific senescentmarker (43). Two aging biomarkers
of various human and rodent tissues, p16Ink4a and p19Arf (44),
were also reported to be induced in eye tissue of hypomorphic
BubR1 (BubR1H/H) progeroid mice (45). The elevation of p21
promotes senescence of lens epithelial cells and cataract forma-
tion, whereas the later elevation of p16Ink4a and p19Arf is related
to age-related tissue deterioration (42).
As shown in Fig. 6D, mRNA expression of p21 or Ndrg2 was

significantly elevated in lens of 4-month-old VIMSA/SA mice,
compared with the littermate control. 12 months after birth,
transcript levels of not only p21 andNdrg2 but also p16Ink4a and
p19Arf were significantly higher in VIMSA/SA lens than in
VIMWT/WT orVIMWT/SA lens (Fig. 6E). These data suggest that
premature cataract formationmight represent a progeroid-like
lens phenotype in VIMSA/SA mice.

DISCUSSION

In this study, we have analyzed the physiological effects of the
expression of a vimentin mutant that will remain unphosphor-
ylated during cell division by replacing with alanine all the ser-

FIGURE 5. Analysis of primary lens epithelial cell culture. A and B, lens epithelial cells were primarily cultured for 7 days and then subjected to immuno-
staining (A) or FISH analyses (B). Upper insets indicate magnification images around centrosomes in each cell (A). Cells were classified as the numbers of
chromosome (Chr.) 12 and 19 according to FISH data (left photographs in B). The proportion of each category is indicated as the size of circle (right scattered graph
in B; n � 100 nuclei per genotype). The percentage of normal diploid (with each two chromosomes) is shown in the violet circle (right graph in B). Scale bars, 10
�m (A and B).

TABLE 1
Age-dependent lens abnormality in VimSA/SA mice

Abnormal
lens size

Lens fiber
disorientation Bi nuclei Aneuploidy Cataract

Homozygous
(SA/SA)

2 months n � 1/3 n � 1/3 n � 1/3 n � 1/3 n � 1/3
3 months n � 4/4 n � 4/4 n � 4/4 n � 4/4 n � 1/4
4 months n � 4/4 n � 4/4 n � 4/4 n � 4/4 n � 2/4
6 months n � 4/4 n � 4/4 n � 4/4 n � 4/4 n � 2/4
8 months n � 4/4 n � 4/4 n � 4/4 n � 4/4 n � 3/4
12 months n � 3/3 n � 3/3 n � 3/3 n � 3/3 n � 3/3

Heterozygous
(WT/SA)

2 months n � 0/3 n � 0/3 n � 0/3 n � 0/3 n � 0/3
3 months n � 0/4 n � 0/4 n � 0/4 n � 0/4 n � 0/4
4 months n � 0/4 n � 0/4 n � 0/4 n � 0/4 n � 0/4
6 months n � 0/4 n � 0/4 n � 0/4 n � 0/4 n � 0/4
8 months n � 0/4 n � 0/4 n � 0/4 n � 0/4 n � 0/4
12 months n � 0/3 n � 0/3 n � 0/3 n � 0/3 n � 0/3

Wild type
(WT/WT)

2 months n � 0/3 n � 0/3 n � 0/3 n � 0/3 n � 0/3
3 months n � 0/4 n � 0/4 n � 0/4 n � 0/4 n � 0/4
4 months n � 0/4 n � 0/4 n � 0/4 n � 0/4 n � 0/4
6 months n � 0/4 n � 0/4 n � 0/4 n � 0/4 n � 0/4
8 months n � 0/4 n � 0/4 n � 0/4 n � 0/4 n � 0/4
12 months n � 0/3 n � 0/3 n � 0/3 n � 0/3 n � 0/3
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ine residues known to be phosphorylated inmitosis. Binucleate
(multinucleate) epithelial cells were observed in the lenses of
VIMSA/SA mice (Figs. 3 and 4), mimicking the observations
made with T24 cultured cells that expressed phosphorylation-
compromised vimentin. Pairs of cells remained connected by
an IF bridge, which subsequently induced cytokinetic failure

(21). We also found aneuploid lens epithelial cells in VIMSA/SA

mice (Figs. 3 and 4), which was unexpected. Perhaps this is due
to the presence of additional centrosomes in the binucleated
cells (as discussed above). CIN accelerates premature aging,
and inVIMSA/SAmice this wasmanifested as cataracts, the clas-
sic age-related phenotype of the eye lens.

FIGURE 6. Progeria-like phenotypes apparent in VIMSA/SA lenses. A and B, disorganization of lens fiber cells in VIMSA/SA mice. Anterior (A) or equatorial (B) lens
fiber cells from 4-month-old mice were immunostained with anti-MIP (AQP0; green), anti-vimentin (red), and DAPI (blue; nuclei). C, electron micrographs of lens
at 4 (upper) or 11 (lower) months of age. The dispersion in the size distribution was evaluated as the percentage of cells �2 larger than the average size of cells
(right graph). D and E, mRNA expression of the indicated genes were analyzed through quantitative RT-PCR using the lens of 4-month-old (D) or 12-month-old
(E) mice (n � 5 mice per genotype). n.d. means “no detected signals.” Scale bars, 30 �m (A, upper) or 10 �m (A (lower) and B and C). *, p � 0.05; ***, p � 0.001.
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Congenital cataracts can be caused by vimentin mutations,
for example, the E151K (VIMWT/E151K) mutation in the vimen-
tin rod domain (46). Magin and co-workers (47) also reported
lens cataract formation in the transgenic mice with vimentin
carrying R113Cmutation (VimR113C). The cataract pathology
observed for both these mutations in the vimentin rod domain
is different from that reported here in several respects. Both are
autosomal dominant mutations (46, 47). In contrast, no cata-
ract pathology was observed in VIMWT/SA mice. The inheri-
tance is therefore recessive and not dominant in character. Rod
domain vimentin mutants also formed protein aggregates, and
the endogenous vimentin network was disrupted (46, 47). Such
consequences were rarely, if at all, observed in both VIMWT/SA

and VIMSA/SAmice (Fig. 6). This observation is consistent with
our previous finding that SA mutants can normally form
vimentin filament networks in interphase cells (25). Finally, the
expression of HSP70 was elevated in response to abnormal
vimentin structures such as protein aggregates in transgenic
VimR113C mice (47), but such a phenomenon was not
observed in the lenses of VIMSA/SA mice (Fig. 2E). Taken
together, it is less likely that the expression of phosphorylation-
compromised vimentin may induce abnormal vimentin fila-
ment structure and subsequently lens cataract.
In conclusion, this study documents for the first time the

physiological importance of vimentin phosphorylation during
cell division in the lens. It also paves the way for future studies
evaluating the relationship between CIN and premature aging.
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