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Abstract
MicroRNAs (miRNAs) are recognized as important regulators of cardiac development,

hypertrophy and fibrosis. Recent studies have demonstrated that genetic variations which

cause alterations in miRNA:target interactions can lead to disease. We hypothesized that

genetic variations in miRNAs that regulate cardiac hypertrophy/fibrosis might be involved in

generation of the cardiac phenotype in patients diagnosed with hypertrophic cardiomyopa-

thy (HCM). To investigate this question, we Sanger sequenced 18 miRNA genes previously

implicated in myocyte hypertrophy/fibrosis and apoptosis, using genomic DNA isolated

from the leukocytes of 199 HCM patients. We identified a single nucleotide polymorphism

(rs6971711, C57T SNP) at the 17th position of mature miR-590-3p (= 57th position of pre-

miR-590) that is common in individuals of African ancestry. SNP frequency was higher in

African American HCM patients (n = 55) than ethnically-matched controls (n = 100), but the

difference was not statistically significant (8.2% vs. 6.5%; p = 0.5). Using a cell culture sys-

tem, we discovered that presence of this SNP resulted in markedly lower levels of mature

miR-590-5p (39 ± 16%, p<0.003) and miR-590-3p (20 ± 2%, p<0.003), when compared with

wild-type (WT) miR-590, without affecting levels of pri-miR-590 and pre-miR-590. Consis-

tent with this finding, the SNP resulted in reduced target suppression when compared to

WTmiR-590 (71% suppression by WT vs 60% suppression by SNP, p<0.03). Since miR-

590 can regulate TGF-β, Activin A and Akt signaling, SNP-induced reduction in miR-590

biogenesis could influence cardiac phenotype by de-repression of these signaling path-

ways. Since the SNP is only present in African Americans, population studies in this patient
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population would be valuable to investigate effects of this SNP on myocyte function and car-

diac physiology.

Introduction
MicroRNAs (miRNA) play important regulatory roles in cardiac development and pathology
via post-transcriptional gene silencing[1–3]. Base-pairing between the highly conserved, 50

proximal seed region (residues 2–8) of miRNA and the 30-UTR (un-translated region) of target
mRNA is important for miRNA: mRNA binding and target gene silencing[4, 5]. Additionally,
sequences outside the seed region can also impact target suppression [6–8]. Recent studies
have shown that genetic variations in miRNA genes can predispose to disease [9–13]. However,
it is unknown whether variants in miRNAs can affect the cardiac phenotype in cardiomyopa-
thies, such as hypertrophic cardiomyopathy (HCM), which is the most common cardiac
genetic disease and cause of sudden death in young individuals.

HCM is characterized pathologically by myocyte hypertrophy, disarray, fibrosis[14] and is
caused by sarcomeric protein mutations in ~60% of patients; genetic causes are unknown in
~40% of patients. Inheritance is autosomal dominant with variable penetrance and phenotypic
heterogeneity. The genetic mechanisms underlying variability in penetrance and expression in
HCM are not well defined [15–17]. We hypothesized that genetic variations in miRNAs that
regulate cardiac hypertrophy/fibrosis might be involved in generation of the cardiac phenotype
in HCM patients. We used a literature search combined with online bioinformatics tools to
identify miRNAs (n = 18) that have been implicated in the pathologic features of HCM,
namely, myocyte hypertrophy, cardiac fibrosis and apoptosis. Using Sanger sequence analysis
of genomic DNA obtained from peripheral blood in HCM patients, we identified 11 variants in
9 of the 18 miRNAs that we investigated. We focused on the C57T single nucleotide polymor-
phism (SNP, rs6971711) in the miR-590 gene for two reasons. First, the C57T SNP in miR-590
is a common SNP that is only seen in African Americans; minor allele frequency of the miR-
590 SNP was slightly higher in African American HCM patients when compared to ethnically-
matched controls. Second, miR-590 has been reported to be an important regulator of signaling
pathways involved in cardiac fibrosis/ventricular remodeling[18–20], embryonic stem cell pro-
liferation[21], cardiac differentiation[22], metabolism [23–25], cardiac regeneration [26, 27]
and atrial fibrosis/fibrillation[23]. However, it is unknown whether the miR-590 C57T SNP
affects levels of miR-590-5p or miR-590-3p. In order to address this question, we used an in
vitro cell culture system to investigate functional effects of this SNP. We discovered that the
C57T SNP markedly reduced levels of mature miR-590-5p and miR-590-3p (when compared
with the wild-type sequence) without affecting levels of pri-miR-590 and pre-miR-590. Consis-
tent with this finding, the C57T SNP also reduced target suppression by miR-590, which sug-
gests that presence of the miR-590 SNP could influence cell function. Since miR-590 can
regulate TGF-β, Activin A and Akt signaling, SNP-induced reduction in miR-590 biogenesis
could modify cardiac phenotype by de-repression of these signaling pathways.

Materials and Methods

Overall workflow of the studies
The overall workflow is illustrated in Fig 1 and in the Supporting Information section. Briefly,
we used literature mining to select 18 miRNAs that have been implicated in cardiac hypertro-
phy, fibrosis and/or apoptosis by previous experimental studies. Sanger sequencing was
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initially performed in 199 patients with a clinical diagnosis of HCM. Eleven of the 199 patients
(5.5%) were African American and 5 of the 11 African American HCM patients carried the
miR-590 C57T SNP, rs6971711 (heterozygous). Targeted genotyping for the miR-590 C57T
SNP, rs6971711 was performed in a second cohort of African American HCM patients
(n = 44) and controls (n = 100) to increase sample size and examine possible significance of
this SNP in HCM. Functional effects of the miR-590 C57T SNP were examined using a cell cul-
ture model (human embryonic kidney cells/HEK293T).

Identification of miRNAs for genotyping
Our goal was to identify variations in miRNAs with functional effects that could influence devel-
opment of a cardiac phenotype. Since HCM patients often exhibit phenotypic variability, with
varying degrees of hypertrophy, disarray and fibrosis [14], a literature search was performed
using keywords that link miRNAs with the pathologic features of HCM, including cardiovascular
disease, hypertrophy, fibrosis, apoptosis, metabolism, and electrophysiology. A miRNA was
selected only if 1) it was expressed in the heart; cardiac expression was confirmed using the
miRNA database (http://www.microrna.org), NCBI Gene Expression Omnibus and/or published
literature, and 2) experimental studies revealed its role in generation of myocyte hypertrophy,
fibrosis or apoptosis. Our literature search yielded the following 18 miRNAs which are expressed
in the heart and have been previously implicated in hypertrophy, fibrosis or apoptosis in animal
models or humans: miR-1-1, miR-1-2, miR-15a, miR-16-1, miR-21, miR-23a, miR-29a, miR-
29b-1, miR-29b-2, miR-29c, miR-30c-1, miR-30c-2, miR-133a-1, miR-133a-2, miR-195, miR-
208a, miR-208b, and miR-590 (S1 and S2 Tables)[16, 17, 23, 28–35].

Please see Supporting Information section for detailed methods.

Fig 1. Overall study design.

doi:10.1371/journal.pone.0156065.g001
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HCM patients
This study was approved by the Institutional Review Board at Johns Hopkins Medicine and the
National Institute of Health. Written informed consent was obtained from all participants.
Patients enrolled in the HCM Registry at Johns Hopkins and the NIH HCM registry were ret-
rospectively studied if they fulfilled the standard diagnostic criteria for HCM [36], namely, left
ventricular hypertrophy (septal thickness>1.5cm) in the absence of other causes such as hyper-
tension and valvular disease. African American individuals without heart disease were used as
controls. DNA was isolated from buffy coats obtained from peripheral venous blood in most
subjects. HCM patients’medical records were reviewed to obtain clinical information, includ-
ing family history of HCM and results of imaging studies.

MiRNA Sanger Sequencing
DNA analysis was performed by the Genetics Translational Technology Core at Johns Hop-
kins. Genomic DNA was extracted from the buffy coat of blood samples manually using the
QIAamp DNA Blood Mini Kit (Qiagen), or the QiaSymphony robot. The pre-miRNA
sequence and approximately 200 flanking base pairs were analyzed. The primers were designed
using Primer 3 software and included M13 universal forward and reverse sequences (S5 Table).
The miRNA region was amplified using HotStar Taq DNA Polymerase (Qiagen). Excess prim-
ers and dNTPs were eliminated by Exo/SAP digestion. Purified PCR products were sequenced
unidirectionally using either forward or reverse M13 universal primers and the DNA sequenc-
ing kit with Big Dye Cycle Sequencing Ready Reaction Kit version 3.1 (Applied Biosystems),
according to the manufacturer’s recommendations. Sequencing reaction products were sepa-
rated using POP7 in a 50 cm 48 capillary array on an ABI3730 DNA Sequencer (Applied Bio-
systems). Sequencher 4.6 (GeneCodes) was used to align individual sequences to wild type
reference sequence and identify sequence variations. All sequences were evaluated by two inde-
pendent editors following criteria for identifying non-reference sequence changes validated by
the Johns Hopkins DNA Diagnostic Laboratory. If a variant was detected in a single direction,
then the opposite direction was sequenced for confirmation. Mfold was used to predict poten-
tial alteration of miRNA secondary structure. The Exome Aggregation Consortium (ExAC)
database (http://exac.broadinstitute.org/) was used to obtain population-based allele and geno-
type frequency for the miR-590 C57T SNP rs6971711.

Plasmid construction
The miR-590 gene (pri-miR-590) was cloned from human DNA using DNA primers shown in
S6 Table, using the XhoI and KpnI sites, into the GV268 vector (Geneche). The C57T SNP was
introduced using the QuikChangeII XL Site-Directed Mutagenesis Kit (Stratagene). To con-
struct dual luciferase reporters, psiCheck2 (Promega) was digested with XhoI and NotI, and
the dsDNA oligos listed in S6 Table were inserted.

RNA preparation
Since endogenous expression of miR-590 is very low in HEK293T cells [37, 38], we selected
this cell line for analysis of miR-590 biogenesis following exogenous introduction of plasmids.
HEK293T cells (5x106) were transiently transfected with 50 μg of plasmids harboring either the
wild-type pri-miR-590 (pri-miR-590-WT) or C57T SNP pri-miR-590 (pri-miR-590-SNP) or
empty vector (GV268) using lipofectamine 2000 (Invitrogen). Total RNA was isolated using
miRVana (Life Technologies) at 72h after plasmid transfection.

miR-590 SNP rs6971711 Reduces miR-590 Biogenesis

PLOS ONE | DOI:10.1371/journal.pone.0156065 May 19, 2016 4 / 19

http://exac.broadinstitute.org/


Real-time qPCR
Reverse-transcription was performed using oligo-dT primer and SuperScript II reverse tran-
scriptase (Invitrogen). Real-time quantitative PCR was performed using Luminaris HiGreen
qPCR master mix (Life Technologies) in a CFX96 system (Biorad). The sequences of the oligo
primers used are listed in S6 Table.

Northern blot
Northern blot was performed as described previously [39]: 35 μg total RNA was denatured in
formamide loading buffer (98% v/v formamide, 0.1% w/v bromophenol blue, 0.1% w/v xylene
cyanol, and 10mM EDTA) at 95C for 5 min and was resolved on a 0.4 mm thick, 15% denatur-
ing polyacrylamide 7 M urea sequencing gel in 0.5×TBE (Tris-Borate-EDTA) buffer. After
electrophoresis, RNA was transferred at 20 V for 1 hr to a Hybond-N+ membrane (GE health-
care) in 0.5×TBE buffer using a semi-dry transfer system (Transblot SD, Bio-Rad). The RNA
was UV cross-linked (HL2000, UVP) to the membrane and pre-hybridized in Church buffer
for at least 60 min at 37C. DNA oligo nucleotide probes (S6 Table) were 50 32P-radiolabeled
with γ-32P-ATP and T4 polynucleotide kinase (NEB). After labeling, non-incorporated nucleo-
tides were removed using a Sephadex G-25 spin column (GE healthcare). The probes were
added to the Church buffer and hybridized for at least 6h at 37°C. The miR-590-3p-WT and
miR-590-3p-SNP probes were hybridized at 32 and 25C, respectively, because of their lower
Tm values. Membranes were washed three times for 10 min in 2×SSC containing 0.05% (w/v)
SDS, subsequently exposed to Storage Phosphor Screens (GE healthcare), and analyzed using
FLA-9500 (GE healthcare). Probes were stripped from the membranes in boiling 0.1% SDS
solution. The membranes were re-probed with the next probe.

Luciferase assay
S2 cell dual luciferase reporter assays using the psiCheck2 vector (Promega, Madison, WI,
USA) were performed as described previously [39]. HEK293T cells (1x105) were co-transfected
with 20 ng of the psiCheck2 luciferase reporter plasmids and 100 ng of the pri-miR-590 plas-
mids (WT, SNP, empty vector), using Dharmafect Duo (GE healthcare), 24h after seeding. The
media was replaced 24h after transfection. Firefly (Photinus pyralis) luciferase and Renilla lucif-
erase activities were measured using the Dual-Glo luciferase assay system (Promega) 48h after
transfection. Firefly luciferase served as the internal control.

Dicing assay
Recombinant human Dicer was expressed and purified from Sf9 cells as described previously
[39]. In vitro dicing assay was performed as previously described [39–41]. The dicing reactions
contained 1 nM Dicer, 100 nM 50 32P-radiolabeled pre-miR-590 (wild-type and C57U SNP var-
iant), 20 mMHEPES-KOH (pH 7.4), 80 mM potassium acetate, 6 mMmagnesium acetate, 5
mMDTT, 0.1 mg/mL BSA, and 1 mM ATP. Aliquots of reactions were quenched by the addi-
tion of 20 volumes of formamide loading buffer, incubated at 95C for 5 min, and analyzed by
electrophoresis through a denaturing polyacrylamide 7 M urea gel in 0.5xTBE buffer. Gels
were dried, exposed to Storage Phosphor Screens (GE healthcare), and were analyzed with
FLA-9500 (GE healthcare).

Statistics
Continuous variables were expressed as mean± standard deviation (SD); categorical variables
were presented as absolute and percentage numbers. The Student’s t-test or Mann—Whitney
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U test was used to test significance between groups depending on their distributions. Chi-
square test was used for categorical variables. A p-value<0.05 was considered statistically sig-
nificant. All statistical analyses were performed using the SPSS statistical package (v.13.0).

Results

HCM cohort
A total of 243 patients (mean age 46 ± 16 years; 149 men) were studied. The demographic and
clinical features of the entire study population (n = 243) and the cohort of African American
HCM patients (n = 55) are described in Table 1.

Identification of miRNA variants in HCM patients
Sanger sequencing of the 18 miRNA genes identified by literature search and bioinformatics
analysis revealed 11 variants in 9/18 miRNAs in 89/199 HCM patients (Table 2 and Supporting
Information section). Only one variant, C57T (rs6971711), was located in a mature miRNA:
miR-590-3p. The allele frequency of miR-590 C57T was higher in the African American HCM
cohort (8.2%, 9 of 110 alleles) compared to the control group (6.5%, 13 of 200 alleles), but the
difference was not statistically significant (p = 0.5) (Table 3). Since allele frequency can vary
depending on the population, we also assessed frequency of this allele in European and African

Table 1. Demographic and Clinical Characteristics of HCM patient cohort.

Patient Demographics Total HCM cohort Total African American HCM cohort

Number of Patients 243 55

Age (Y) 46.2± 16.8 48.5± 19.3

Male 149 (61.3%) 20 (46.5%)

BSA (m2) 1.87± 0.60 1.61± 0.90

white 166 (68.3%)

African American 55 (22.6%)

Other 22 (9.0%)

Clinical symptoms

CHF (NYHA class �II) 186 (76%) 38 (88%)

Angina 80 (32%) 22 (51%)

Syncope 34 (14%) 10 (23%)

Dyspnea 115 (47%) 21 (48%)

Past history

AF 25 (10%) 8 (18%)

VT/VF 3 (1.2%) 1 (2.3%)

ICD 49 (20%) 16 (37%)

Family history

Hypertrophic cardiomyopathy 114 (47%) 5 (11%)

Sudden cardiac death 35 (14%) 12 (28%)

Echocardiography

LA size (cm) 3.8± 0.4 4.1± 0.7

LVOT obstruction1 49 (20%) 5 (11%)

BSA, body surface area; AF, atrial fibrillation; NSVT, non-sustained ventricular tachycardia; VT, sustained

ventricular tachycardia; VF, ventricular fibrillation; ICD, implantable cardiac defibrillator; IVS, interventricular

septal thickness; LA, left atrium; LVOT, left ventricular outflow tract
1LVOT obstruction is considered when left ventricular outflow tract gradient is >30 mmHg

doi:10.1371/journal.pone.0156065.t001

miR-590 SNP rs6971711 Reduces miR-590 Biogenesis

PLOS ONE | DOI:10.1371/journal.pone.0156065 May 19, 2016 6 / 19



populations in the Exome Aggregation Consortium (ExAC) database for comparison. Fre-
quency of miR-590 C57T in individuals with African ancestry in the ExAC database (7.0%, 728
of 10340 alleles) was slightly lower than that seen in our African American HCM cohort
(8.2%), but again the difference was not statistically significant (p = 0.5). Notably, this SNP was
not seen in whites in our HCM cohort or in the European (Finnish) population in the ExAc
database; minor allele frequency in the European (non-Finnish) population was very low
(0.0003%, 22 of 66296 alleles) (S4 Table).

MiR-590 C57T SNP rs6971711 changes G-C pair to G-U pair
The miR-590 gene is located within intron 5 of the eukaryotic translation initiation factor 4H
(eIF4H) gene in 7q11.23. SNP rs6971711 is located at the 57th position of pre-miR-590 (the
17th position of miR-590-3p). Therefore, it is referred to as miR-590 C57T SNP (and C57U
SNP when we refer to pre-miR-590 RNA molecule). Alignment of available pre-miR-590
sequences revealed that the miR-590 C57T SNP rs6971711 is highly conserved in mammals
(Fig 2A). Nucleotide C57 is located in the stem of pri-miR-590 and pre-miR-590, and forms a
G-C base pair with nucleotide G3 (Fig 2B), which is also highly conserved among mammals
(Fig 2A). The C57T SNP changes this conserved G-C base pair to a G-U wobble pair. This
change could potentially affect miR-590 maturation, including pri-miR-590 processing by
Drosha, pre-miR-590 processing by Dicer, and/or miR-590 duplex stability.

Table 2. Genetic variations detected in miRNA genes in the initial cohort of 199 HCM patients.

miRNA Number of
patients

miRNA gene
location

SNP Chromosome Allele position Distance from pre-
miRNA

Mature
miRNA

miR-590 5 intron rs6971711 7q11.23 g.73605599C>T

Pre-miRNA

miR-16-1 1 intron rs72631826 13q14.2 g.50623143T>C

Pri-miRNA

miR-133a-2 82 intron rs13040413 20q13.3 g.61162100G>A 40 bp upstream

miR-133a-2 1 intron 20q13.3 g.61162228C>T 30 bp downstream

miR-1-1 1 intron rs6122014 20q13.3 g.61151515G>A 4 bp upstream

miR-1-2 7 intron rs9989532 18q11.2 g.19408950A>G 26bp downstream

miR-21 1 intergenic 17q23.1 g.57918535_57918536insT +/- 98 bp upstream

miR-29b-1 1 intergenic rs116155675 7q32.2 g.130562314A>G 25 bpupstream

miR-29b-1 1 intergenic 7q32.2 g.130562511_130562514delTCTG 222 bp upstream

miR-29b-2 1 intergenic 1q32.2 g.207975681_207975682insA +/- 113 bp downstream

miR-29c 1 intergenic 1q32.2 g.207975315G>A 46 bp upstream

Ins, insertion; del, deletion; bp, base pair

doi:10.1371/journal.pone.0156065.t002

Table 3. Minor allele frequency in the African American HCM cohort, African American controls and individuals with African ancestry from the
ExAc Database.

miRNA SNP Minor allele HCM cohort Controls ExAc database

miR-590 rs6971711 T 0.082 (9/110) 0.065 (13/200) 0.070 (728/10340)

doi:10.1371/journal.pone.0156065.t003
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Fig 2. The miR-590 C57T SNP changes the conserved G3-C57Watson-Click base pair in pri-miR-590, pre-
miR-590, andmiR-590 duplex to a G3-U57 wobble pair. (A) Multiple sequence alignment of pre-miR-590 from
mammals. (B) miR-590 biogenesis pathway.

doi:10.1371/journal.pone.0156065.g002
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MiR-590 C57T SNP rs6971711 reduces abundance of miR-590-5p and
miR-590-3p
First, we examined whether presence of the C57T SNP in miR-590 affects abundance of miR-
590 by quantifying miR-590 production in HEK293T cells. We chose HEK293T because these
cells do not express endogenous miR-590, based on high-throughput sequencing data [37, 38].
In order to examine miR-590 transcription in HEK293T cells, we quantified pri-miR-590 tran-
scripts in total RNA obtained from HEK293T cells by qRT-PCR. We were unable to detect
endogenous pri-miR-590 in HEK293T cells (Fig 3A), which permits investigation of miR-590
biogenesis by exogenously introduced plasmids. Next, we transfected HEK293T cells with plas-
mids containing wild-type pri-miR-590, pri-miR-590 expressing the C57T SNP or empty plas-
mid. We found that levels of pri-miR-590 were similar between the wild-type and the SNP pri-
miR-590 plasmids transfections (p-value> 0.05), indicating that presence of the C57T SNP
does not affect miR-590 transcription.

Next, we quantified the abundance of pre-miR-590, miR-590-5p and miR-590-3p by North-
ern blot. Using the empty plasmid as a negative control, we confirmed that almost no endoge-
nous pre-miR-590, miR-590-5p or miR-590-3p are detected in HEK293T cells (Fig 3B and
3C). We quantified the pre-miR-590 (WT, SNP) and miR-590-5p levels using a miR-590-5p
probe (Fig 3B and 3G), normalized by the internal loading control, U6 RNA (Fig 3F). The
C57T SNP did not significantly affect levels of pre-miR-590 (p-value> 0.05) (Fig 3B and 3G).
In contrast, the C57T SNP markedly reduced (p-value< 0.003) levels of mature miR-590-5p.
The amount of miR-590-5p produced from the pri-miR-590-SNP plasmid was 39 ± 16% of
that produced from the pri-miR-590-WT plasmid.

Unlike miR-590-5p, the relative abundance of miR-590-3p-WT and miR-590-3p-SNP can-
not be quantified directly using a probe, because the SNP affects probe hybridization. To over-
come this issue, we quantified the ratio of miR-590-5p to pre-miR-590 in each sample (Fig 3B).
Then we measured the ratio of miR-590-3p-WT to pre-miR-590-WT following transfection
with the pri-miR-590-WT plasmid, using the miR-590-3p-WT probe (Fig 3C). Similarly, we
measured the ratio of miR-590-3p-SNP to pre-miR-590-SNP following transfection with the
pri-miR-590-SNP plasmid, using the miR-590-3p-SNP probe (Fig 3D). Using these three ratios
and the pre-miR-590 levels normalized by U6 RNA determined in Fig 3B, we calculated the rel-
ative abundance of miR-590-3p-WT and miR-590-3p-SNP (Fig 3G). The C57T SNP signifi-
cantly (p-value< 0.003) reduced levels of miR-590-3p: miR-590-3p produced from the pri-
miR-590-SNP plasmid was 20 ± 2% of that produced from the pri-miR-590-WT plasmid. Lev-
els of endogenous miR-15-5p, miR-16-5p, miR-17-5p, and miR-25-3p were examined as con-
trols. We did not observe differences in levels of these miRNAs following transfection with
plasmids expressing miR-590 WT and SNP (p-value> 0.05) (Fig 3E and 3G and S1 Fig). We
concluded that the miR-590 C57T SNP reduces levels of both miR-590-5p and miR-590-3p,
without affecting levels of pri-miR-590 and pre-miR-590.

MiR-590 C57T SNP rs6971711 does not affect pre-miR-590 processing
by recombinant Dicer in the test tube
Since the miR-590 C57T SNP reduced levels of miR-590-5p and miR-590-3p, without affecting
levels of pri-miR-590 and pre-miR-590 (Fig 3), we assessed whether this SNP negatively affects
pre-miR-590 processing by Dicer. We tested this possibility in vitro using recombinant human
Dicer, 50 32P radiolabeled WT pre-miR-590 and pre-miR-590 containing the SNP (C57U). We
found that Dicer processed the C57U SNP-containing pre-miR-590 as efficiently as the WT
type pre-miR-590 (Fig 4), which led us to conclude that this SNP does not affect processing of
pre-miR-590 by recombinant Dicer in the test tube.
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Fig 3. The miR-590 C57T SNP reduces levels of miR-590-5p andmiR-590-3p, without affecting the levels of pri-miR-590 and pre-miR-590. (A)
Quantification of pri-miR-590 by qRT-PCR normalized by GAPDH. Mean ± SD (n = 3). HEK293T cells were transfected with the pri-miR-590-WT or pri-
miR-590-SNP plasmids. The empty plasmid was used as negative control. (B-F) Northern blot images for pre-miRNA, miRNA, and U6 RNA using total
RNA prepared from HEK293T cells transfected with the pri-miR-590-WT or pri-miR-590-SNP plasmids. The empty plasmid was used as negative control.
Four biological replicates were analyzed for each transfection plasmid. Northern probes used are perfectly complementary to miR-590-5p (A), miR-590-3p-
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MiR-590 C57T SNP rs6971711 reduces target suppression by miR-590-
5p
Since the C57T SNP reduced levels of miR-590-5p and miR-590-3p, we expected that the SNP
would reduce target suppression by miR-590. We tested this using the dual luciferase reporter
assay in HEK293T cells. We constructed Renilla reniformis (Rr) luciferase reporters which
have in their 30 UTR, (1) four tandem perfect match target sites of miR-590-5p (Fig 5A), (2)
four tandem near perfect match target sites of miR-590-5p, in which positions 9–11 are mis-
matched (Fig 5B), or (3) no miR-590-5p target sites (Fig 5C). Co-transfection of the perfect
match target sites reporter plasmid with the pri-miR-590-WT plasmid suppressed Rr firefly

WT (B), miR-590-3p-SNP (C), miR-16-5p (D), and U6 RNA (E). The miR-590-3p-WT probe weakly cross-hybridized to miR-590-3p-SNP, and vice versa.
(G) The abundance of pre-miR-590, miR-590-5p and miR-590-3p-(WT/SNP) relative to the mean value of miR-590-5p in the WTmiR-590 gene plasmid
transfection conditions. (H) The abundance of miR-16-5p normalized to the mean value of the pri-miR-590-WT plasmid transfection conditions. Mean ± SD
(n = 4).

doi:10.1371/journal.pone.0156065.g003

Fig 4. ThemiR-590 C57T SNP does not affect pre-miR-590 processing by recombinant Dicer in test
tube. (A) Representative image of pre-miR-590 (100 nM) processing assay by recombinant human Dicer (1
nM) in test tube. (B) Quantification of three independent replicates of the experiment in (A). Mean ± SD
(n = 3).

doi:10.1371/journal.pone.0156065.g004
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expression to 29 ± 3% of the empty vector control (Fig 5A). In contrast, the pri-miR-590-SNP
plasmid suppressed Rr luciferase expression to 40 ± 6% of the empty vector control. The differ-
ence between the WT and SNP was significant (p-value< 0.03). Similarly, co-transfection of
near perfect match target sites reporter plasmid with the pri-miR-590-WT plasmid suppressed
Rr luciferase expression to 62 ± 5% of the empty vector control, while the pri-miR-590-SNP
plasmid co-transfection suppressed Rr luciferase expression to 75 ± 2% of the empty vector
(Fig 5B). The difference between the WT and SNP was significant (p-value< 0.02). The con-
trol, no target site reporter was not suppressed by pri-miR-590-WT or pri-miR-590-SNP
plasmids (Fig 5C). We concluded that the miR-590 C57T SNP reduces miR-590-5p target sup-
pression, which is consistent with our results that this SNP reduces abundance of miR-590-5p
(Fig 3).

MiR-590 is expressed in human cardiac myocytes
Using a literature search, we learned that miR-590-5p and miR-590-3p are expressed in human
hearts (GEO datasets GSE53080 [42], GSE46224 [43], and GSE36946) and cardiac myocytes
derived from human induced pluripotent stem cells (IPSC-CMs) [44]. We analyzed miRNA-
sequencing data (GSE60292 [44]) from human IPSC-CMs with/without endothelin-1 treat-
ment (which induces cardiac hypertrophy). We observed that majority of the 18 miRNAs that
we selected for genotyping are expressed in human IPSC-CMs. Interestingly, induction of
hypertrophy by endothelin-1 treatment significantly reduced levels of miR-590-5p and miR-
590-3p in IPSC-CMs (p-value< 0.003 and< 0.002, respectively) (Fig 6), suggesting a possible
role for miR-590 in cardiac hypertrophy.

Discussion
MiRNAs are important regulators of multiple genes via post-transcriptional gene silencing
and of physiologic as well as pathologic processes such as cardiac development, hypertrophy,

Fig 5. The miR-590 C57T SNP reduces target suppression by miR-590. Silencing of Renilla luciferase reporters bearing 30 UTR target sites
for miR-590-5p. Reporters containing four tandemmiR-590-5p perfect match sites with t1A (A), four tandemmiR-590-5p near perfect match sites
with mismatches at positions 9–11 and t1A (B), and no miR-590 target site (C). HEK293T cells were cotransfected with the luciferase reporter
plasmids and the pri-miR-590-WT or pri-miR-590-SNP plasmid. The empty plasmid was used as a negative control. Renilla luciferase expression
relative to the firefly luciferase internal control is shown. Mean ± SD (n = 4).

doi:10.1371/journal.pone.0156065.g005
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fibrosis, proliferation, apoptosis, and cancer. Previous studies have revealed that occurrence of
SNPs or variants in human pre-miRNA sequences is relatively rare: ~10% of human pre-miR-
NAs have documented SNPs and<1% of human miRNAs have documented SNPs in the seed
region, which is crucial for target gene regulation [45]. Base-pairing between the highly con-
served, 50 proximal seed region (residues 2–8) of miRNA and the 3' UTR of target mRNA is
important for miRNA:mRNA binding and silencing [4, 5]. Additionally, sequences outside the
miRNA seed region can also impact target silencing efficiency and/or the spectra of targeted
transcripts[6–8]. Our study revealed a SNP in the 17th position of mature miR-590-3p. Experi-
mental studies indicated a ‘loss of function effect’ of the miR-590 C57T SNP (rs6971711) on
mature miR-590 abundance, which is most likely due to SNP-induced change in the G-CWat-
son-Click base pair within the pri- and pre-miR-590 stem and miR-590 duplex into a G-U
wobble base pair. It is possible that this change alters geometry of the RNA helix and thus
affects recognition of the pri- and/or pre-miR-590 stem and miR-590 duplex by enzymes or
RNA-binding proteins [46–48], while the stems of most of pri-miRNAs and pre-miRNAs,
including pri-miR-590 and pre-miR-590 (Fig 2B) contain G-U wobble base pairs, mismatched
base pairs, and/or bulged nucleotides. Where in the miR-590 biogenesis step, does the C57T
SNP exert its effect? Considering that only mature miR-590-5p and -3p are reduced, but pri-
miR-590 and pre-miR-590 levels are unaffected, it appears that the SNP negatively affects miR-
590 maturation downstream of pre-miR-590 production by Drosha in nucleus. The possibili-
ties include the following: C57T SNP may reduce (i) transport of pre-miR-590 from nucleus to

Fig 6. Expression of selectedmiRNAs in human cardiac myocytes derived from induced pluripotent stem cells
(IPSC-CMs). The high-throughput miRNA-sequencing data (GSE60292) in Aggarwal et al [44] were analyzed. The dark gray
bars and light gray bars represent IPSC-CMs with and without Endothelin-1 treatment, respectively. Mean ± SD (n = 3).
Endothelin-1 (ET-1) treatment is commonly used to stimulate cardiac myocyte hypertrophy [44, 49, 59].

doi:10.1371/journal.pone.0156065.g006
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cytoplasm by Exportin-5, (ii) processing of pre-miR-590 into miR-590 duplex by Dicer, (iii)
loading of miR-590 duplex to Argonaute and/or (iv) stability of the miR-590 duplex. We per-
formed an in vitro pre-miR-590 processing assay using recombinant Dicer protein to test pos-
sibility (ii) and observed no effect of the SNP on pre-miR-590 processing. Future work is
needed to test if this is the case in cells and in vivo. We also tested possibility (iv) using an in
vitro system, and found that the miR-590 C57T SNP did not affect stability of the miR-590
duplex in HEK293T cell lysate; the WT and SNP miR-590 duplex were degraded at similar
rates by cellular RNases present in the HEK293T cell lysate (S2 Fig). Further studies are
required to identify the specific step(s) in the miR-590 biogenesis pathway that is negatively
affected by the C57T SNP.

MiR-590-5p and miR-590-3p are expressed in human IPSC-CMs and in the human heart
(Fig 6) [42–44]. MiR-590 regulates signaling pathways (TGF-β, activin, Akt) which are
involved in cardiac fibrosis/remodeling [18–20], embryonic stem cell proliferation/cardiac dif-
ferentiation[22] and metabolism by suppressing TGF-β receptor II (TGFβRII)[23], Activin
receptor 2a (Acvr2a) and PTEN (phosphatase and tensin homolog) [24, 25] expression, respec-
tively. Interestingly, overexpression of miR-590-3p stimulated neonatal myocyte proliferation
and cardiac regeneration following myocardial infarction [26, 27], whereas miR-590 down-reg-
ulation was associated with atrial fibrosis and atrial fibrillation [23]. Notably, endothelin-1
treatment which induces cardiac hypertrophy, reduced levels of miR-590-5p and miR-590-3p
in human IPSC-CMs (Fig 6) [44, 49]. Taken together, this data suggests a role for miR-590 in
cardiac physiology and disease.

Mutations or SNPs in miRNAs can cause disease via two main mechanisms: First, varia-
tions in miRNA coding regions, especially the seed region, can act as causal mutations in
inherited disease. For example, a mutation in the seed region of miR-96 was segregated
with human hearing loss in a large family and this was further reproduced using animal
models [10]. MiRNAs may also serve as modifier genes[50]. SNPs (or variants) in miRNA
genes have been demonstrated to influence miRNA expression, processing and/or matura-
tion thereby affecting downstream gene targeting [6]. A recent study demonstrated that
miR-499 is up-regulated in cardiac hypertrophy and cardiomyopathy [51] and a variant
located outside the seed region (miR-499-5p c17) conveyed a favorable impact on the cardiac
phenotype when compared to wild-type miR-499-5p by altering the target gene profile [8].
Interestingly, the location of the SNP rs6971711 in mature miR-590-3p (detected in our
study) and the miR-499-5p variant are identical; both SNPs are located at the 17th nucleotide
position of the respective mature miRNA. Since the miR-590 C57T SNP was observed in
6.5% of controls, it is unlikely to be a causal gene in cardiomyopathies. But it could be a mod-
ifier of the cardiac phenotype in heart disease including HCM. SNP-induced reduction of
miR-590 levels could lead to de-repression of TGFβRII (target of miR-590-5p[23]) and
Acvr2a (target of miR-590-5p/3p), receptors involved in TGF-β and Activin A signaling,
respectively, which in turn could influence cardiac hypertrophy and fibrosis (cardiac remod-
eling) and thus, clinical outcomes in the setting of cardiomyopathies and following myocar-
dial infarction [18].

Clinical implications
African-Americans with heart disease have higher cardiovascular mortality rates [52], dispro-
portionately higher rates of heart failure [53–55] and higher mortality [56] in the setting of
heart failure, when compared to whites. However, the mechanisms underlying differences in
outcomes between African Americans and whites is unknown. Since the C57T SNP in miR-
590 is common in African-Americans and can regulate TGF-β signaling, an important
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regulator of cardiac fibrosis/ventricular remodeling [57, 58], presence of the miR-590 C57T
SNP could promote cardiac fibrosis by de-repression of TGF-β signaling.

Limitations
The small number of African American HCM patients in our study precluded assessment of
the relationship between the common miR-590 C57T SNP and cardiac phenotype. This result
is not unexpected because common genetic polymorphisms are known to have small effects on
disease phenotype. Future basic and epidemiologic studies in large numbers of African Ameri-
cans are needed to investigate effect of the miR-590 C57T SNP on myocyte physiology and car-
diac fibrosis/function.
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miR-15-5p, miR-17-5p, and miR-25-3p normalized to mean value of the wild-type pri-miR-
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