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ABSTRACT

Motivation: Protein–protein interaction (PPI) networks are a valuable
resource for the interpretation of genomics data. However, such
networks have interaction enrichment biases for proteins that are
often studied. These biases skew quantitative results from comparing
PPI networks with genomics data. Here, we introduce an approach
named physical interaction enrichment (PIE) to eliminate these
biases.
Methodology: PIE employs a normalization that ensures equal node
degree (edge) distribution of a test set and of the random networks
it is compared with. It quantifies whether a set of proteins have more
interactions between themselves than proteins in random networks,
and can therewith be regarded as physically cohesive.
Results: Among other datasets, we applied PIE to genetic morbid
disease (GMD) genes and to genes whose expression is induced
upon infection with human-metapneumovirus (HMPV). Both sets
contain proteins that are often studied and that have relatively
many interactions in the PPI network. Although interactions between
proteins of both sets are found to be overrepresented in PPI
networks, the GMD proteins are not more likely to interact with each
other than random proteins when this overrepresentation is taken
into account. In contrast the HMPV-induced genes, representing
a biologically more coherent set, encode proteins that do tend to
interact with each other and can be used to predict new HMPV-
induced genes. By handling biases in PPI networks, PIE can be a
valuable tool to quantify the degree to which a set of genes are
involved in the same biological process.
Contact: i.sama@cmbi.ru.nl; m.huynen@cmbi.ru.nl
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Physical interactions between proteins explain how proteins function
together in protein complexes or functional modules (Dittrich et al.,
2008; Ideker and Sharan, 2008; Tucker et al., 2001; Vidal, 2001).
Discovery of all protein–protein interactions (PPIs) has therefore
been a priority in systems biology and there have been several efforts
to elucidate PPIs both in low- and in high-throughput platforms
(Collins et al., 2007; Rual et al., 2005; Stelzl et al., 2005), as well as
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by evolutionary inference (Brown and Jurisica, 2007; Huang et al.,
2007; Yu et al., 2004).

The resulting PPI networks are invaluable for the interpretation of
other genomics data. In a number of studies, specific emphasis has
been placed on quantifying aspects of network topology to identify
proteins that are specifically relevant to a biological process or
for evolution. For instance Wachi and coworkers identified a high
network centrality for genes that are upregulated during lung cancer
as a distinguishing topological feature to enable placement of cancer
genes into the global and systematic context of the cell (Wachi et al.,
2005). In a similar study, essential genes in yeast have been found to
be well connected and globally centered in the PPI network (Jeong
et al., 2001; Wuchty and Almaas, 2005).

Notwithstanding the success of such approaches, there are some
experimental biases in the determination of PPIs. For instance, the
Yeast-2-Hybrid (Y2H) approach is known to detect interactions
among proteins that may not be likely because the proteins naturally
do not occur in the same subcellular compartment (von Mering et al.,
2002). Tandem Affinity Purification followed by mass spectrometry
is known to favor highly abundant proteins (Bjorklund et al., 2008;
von Mering et al., 2002). In addition, evolutionary inference of
PPIs as ‘interologs’ has placed highly conserved proteins as hubs
in general PPI networks (Brown and Jurisica, 2007). Even manual
curation of PPIs in scientific literature has caveats. One main caveat
being that the discovery of such interactions is driven by existing
knowledge and hypotheses (Cusick et al., 2009). The latter has led
to an overrepresentation of interactions between proteins encoded
by disease genes in the Human Protein Reference Database (HPRD)
(Oti et al., 2006).

Several measures have been developed to improve the reliability
of PPI networks (Sharan et al., 2007), like the integration of general
PPI networks with networks based on other data (Karni et al.,
2009; Tornow and Mewes, 2003; Yosef et al., 2008). Although such
comparative genomic approaches increase the reliability of the PPI
network, they do not specifically remove systematic biases, like
the overrepresentation of well-studied proteins, from general PPI
networks. This is of pertinent concern because function information
derived from such networks would be skewed towards well-studied
genes that are often evolutionarily conserved nodes, immune-related
nodes or disease-associated nodes in PPI networks. Moreover, such
biases can cloud quantitative assessments of whether a set of proteins
of interest tend to interact with each other, and are therewith
‘physically cohesive’. For example, when genes that are upregulated
under a specific condition encode proteins that physically interact
with each other, this can be because they truly interact more with
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each other than a random set of proteins, or simply because there
are just more interactions known for these proteins than for those
whose genes are not highly expressed (von Mering et al., 2002).

To handle the bias that arises from the overrepresentation of
certain proteins (e.g. well-studied proteins) in PPI networks, we
present an approach called physical interaction enrichment (PIE).
PIE extracts ‘random’ sets of proteins from a general PPI network
that have the same node (protein) and edge (interaction) biases in
the general PPI network as a set of proteins of interest. Secondly,
it assesses whether the average degree of interaction among the
proteins of interest is higher than that among the proteins from
the random sets and thus quantifies how physically cohesive the
proteins are.

To illustrate the usefulness of PIE, we first show how general
human PPI networks have higher node degrees (i.e. number of
interactions) for proteins encoded by morbid genetic disease genes.
We also reveal biases in these networks for proteins encoded by
genes that are stimulated by human metapneumovirus (HMPV)
infection, a virus recently discovered to cause morbidity in very
young and elderly people (van den Hoogen et al., 2001; van Diepen
et al., 2010). The HMPV-induced genes are used here to represent
a scientifically new and likely more focused context than the
morbid genetic disease genes. Secondly, we demonstrate how PIE
compensates for the enrichment biases in both the morbid genetic
disease gene set and the sets of HMPV-induced genes. Thirdly,
we assess physical cohesiveness of genes that are upregulated
or downregulated to examine the biological coherence in such
context. Furthermore, we apply PIE to other datasets in which
the gene expression response of epithelial cells to a cytokine,
interferon gamma (INFG) or other airway pathogens like Chlamydia
pneumoniae, uv-irradiated Pseudomonas aeruginosa, UV-irradiated
respiratory syncytial virus (RSV) have been measured. Finally, we
use PIE to assess whether the propagation of interactions through PPI
networks is biologically relevant. For the cases where it is relevant,
we propagate these networks to larger networks and demonstrate
the predictability of future expressed genes therein, thus showing
exploratory potential in general PPI networks using PIE.

2 METHODS

2.1 General PPI networks
The PPI network used were built from an accumulation of human-curated
PPIs obtained from the Biomolecular Interaction Network Database (BIND;
Bader et al., 2003) (data downloaded in October 2006), the HPRD (Peri
et al., 2003) (data of release 6 of January 2007), the IntAct database
(Kerrien et al., 2007) (downloaded in May 2007), the Molecular Interactions
Database (MINT; Chatr-aryamontri et al., 2007) (downloaded in May 2007)
and the PDZBase database (Beuming et al., 2005) (downloaded in May
2007). For the scope of this study, only direct PPIs within the same
species were used. We refer to the network composed of all interactions
between human proteins as HsapiensPPI. Furthermore, interologous PPIs
were built using the orthologues datasets from the Ensembl genome browser
(Hubbard et al., 2007) (Ensembl release 44, downloaded on May 2007).
These were combined with the HsapiensPPI dataset. We refer to this
comprehensive dataset as AllspeciesPPI. The HsapiensPPI contains 53 807
interactions between 10 826 proteins. The AllspeciesPPI network contains
205 050 interactions among 13 920 proteins. Unique to AllspeciesPPI are
151 243 interactions, among 3094 proteins. The main difference between
the HsapiensPPI and AllspeciesPPI is that the former has fewer interactions
per node than the latter. The high average degree in the AllspeciesPPI is

in agreement with other studies that posit that preferential conservation of
proteins with higher degree (hubs) leads to enrichment in protein complexes
when interactions are transferred between organisms using interologs (Brown
and Jurisica, 2007; Wuchty and Almaas, 2005). All the nodes in the
HsapiensPPI and AllspeciesPPI networks represent the Entrez gene IDs
of interacting proteins, and are not redundant in the networks. These PPI
networks are large enough for the scope of our study. Unless otherwise
stated, the HsapiensPPI is used in this article as the general PPI network.

2.2 Disease and immune-related data
All human disease genes were obtained from the Morbid Omim database
(downloaded February 10, 2009 from ftp://ftp.ncbi.nih.gov/repository/
OMIM/morbidmap) (Sayers et al., 2009). The HMPV infection data was
obtained from (Bao et al., 2008), as deposited in the NCBI Gene Expression
Omnibus database with reference as GSE8961. Other data included that
of human lung epithelial cell treatment with the cytokine INFG (GSE1815)
(Pawliczak et al., 2005). Expression data of bronchial epithelial cells infected
with respiratory pathogens like Chlamydia pneumonia (GSE7246) (Alvesalo
et al., 2008) and UV-irradiated airway-pathogens (for P.aeruginosa and RSV;
GSE6802; Mayer et al., 2007).

A geometric average of all probes for a gene was used to represent the fold
change (FC) of a gene due to infection or treatment. A FC threshold of ≥1.5
was used to select genes induced by the inert pathogens (UV irradiated), and
this low threshold was necessary to yield adequately testable sample sizes.
In all other cases, upregulated or downregulated genes used were those that
showed a FC ≥3.0 after infection or treatment.

2.3 Enrichment of PPIs for disease genes and
immune-related genes in general PPI networks

To measure the biased enrichment in interactions for proteins of genetic
disease genes in general PPI networks, the morbid Omim gene set (n=1996)
was used as the genetic disease test set. Its enrichment was assessed as
follows: the average node degree (nodes of degree zero inclusive) in the
general PPI network for proteins encoded by the disease genes was compared
with those of sets of 1996 genes that were randomly selected from all human
genes (n=36456) that were available in NCBI Entrez gene database in 2008.
The P-value of enrichment in interactions for proteins of disease genes was
estimated as a fraction of the frequency (out of 1000 simulations) of the sets
of random genes having an average degree that was equal or greater than that
of the disease genes. As shown in Figure 1, disease genes have significantly
(P < 0.001) high node degrees in the general PPI networks HsapiensPPI and
AllspeciesPPI.

To measure the biased enrichment in interactions for proteins of immune-
related genes in the general PPI networks, genes that were upregulated at a
FC threshold of 3.0 at various time points after HMPV infection were used
as an example. The enrichment procedure for these representative immune-
response genes was similar to that carried out for the morbid disease gene
set. Apart from the gene set at the earliest infection time point (6 h), these
immune-related sets of genes have significantly (P < 0.01) high node degrees
in general PPI networks (Fig. 1).

Overall, these results indicate that proteins of disease genes and immune-
related genes have, on average, more interactions in general PPI networks
than do proteins of randomly chosen genes.

2.4 PIE procedure
Proteins of disease genes or of genes involved in immune response have
relatively more interactions than random sets of genes in general PPI
networks (Fig. 1). This can lead to a bias when measuring whether genes
whose expression is e.g. triggered by a viral infection or involved in genetic
disease tend to interact with each other. As such, one cannot simply compare
the extent to which proteins of these genes interact with each other relative to
randomly chosen proteins from the PPI network, thus dictating the need for
appropriate random models (Koyuturk et al., 2007). In order to circumvent
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Fig. 1. Proteins of disease genes and immune-related genes have higher
node degree in general PPI networks than do proteins of randomly sampled
genes. The average node-degree of disease genes (represented by morbid
Omim genes) and immune-related genes (represented by genes upregulated
at least 3-fold in expression at various time points after HMPV infection)
is observed in the HsapiensPPI (top panel) and the AllspeciesPPI (bottom
panel) networks to be generally higher than randomly sampled genes from the
genome. In the top and lower panels, hmpv6, hmpv12, etc. refer to gene sets
upregulated in expression after 6 and 12 h of HMPV infection. In brackets
are the P-value estimates of higher node degree (compared with random) of
disease and immune-related genes in the general PPI networks.

these biases in the number of proteins that are present in the PPI network and
also in the number of interactions per protein in the PPI network, the PIE
procedure is presented as depicted in Figure 2. PIE measures the physical
cohesiveness of interacting proteins via the strict randomization procedure
described in detail below.

2.4.1 Derivation of test and random PPI networks from a general PPI
network for PIE A test PPI network is derived from a set of test genes by
selecting all the interactions from the general PPI network occurring between
proteins encoded by the genes in that test set (Equation 1). An example of
a test set is a set of genes that are upregulated in expression due to a viral
infection. Next, for each node in the general PPI network, the degree (i.e.
number of interactions the node has in the network) is obtained. Thus, a
degree distribution for the nodes in the general PPI network is derived. We
call this the global degree distribution. From the global degree distribution,
a test degree distribution consisting only of the test network nodes (and their
associated degree in the general PPI network) is extracted. Subsequently,
proteins that have the same degree as those in the test network are randomly
selected from the global degree distribution. This is done such that for every
degree in the test degree distribution, the number of randomly chosen nodes
for that degree is the same as that of the test nodes for that degree. Moreover,
the total number of nodes in the test set is ideally much smaller than the total
number of nodes in the general PPI network (Equations 2 and 3). As such
the total number of randomly chosen nodes is the same as that of the test
nodes. Thus, both random and test have been normalized in the context of
the general PPI network.

Essentially, the PIE randomization involves selection of nodes from the
general PPI network that have the same node degrees as those of the test
nodes in the general PPI network prior to constructing an induced subgraph
by selecting all the interactions from the general PPI network that occur
between the random nodes.

This randomization procedure presents a caveat regarding saturation of
network sampling space. In the random sampling procedure, many random
protein sets with identical degree distribution as the test set are extracted from
the global network. When the test network becomes large and therewith

Fig. 2. Summary of the PIE procedure. In the PIE procedure, a test set of
genes of interest, e.g. those upregulated by a virus, are used to extract a
specific PPI network from the general PPI network that consists of proteins
encoded by genes in that test set. The number of interactions of each protein
of the test set in the general PPI network (i.e. degree) is calculated. A number
of proteins equal to the test set and with the same degree distribution as the
test proteins in the general PPI network are then randomly selected from the
set of all proteins in the general PPI network. As such the test set and the
randomly selected set have the same degree distribution in the general PPI
network. The average degree within the test set itself (i.e. total number of
edges divided by total number of nodes in the test set) is then obtained and
compared with that within the randomly selected set. The fraction of cases
in which the average degree within a randomly selected set surpasses or
equalizes that of the test network is recorded as the P-value for the physical
cohesiveness of proteins of the genes of interest. The PIE score is the ratio
of the average degree within the test network to the median average degree
within the random networks.

largely identical to the global network, randomly sampled networks will
largely overlap with the test network, and it will become meaningless to try to
measure an increase in the number of interactions in the test network relative
to the random networks. We measured the overlap of nodes between the test
and random networks and also the overlap of interactions. In practice, the
sets of proteins that we tested for physical cohesiveness contained <16%
of the nodes of the random networks, while the overlap in the number of
interactions was <13%. Only propagated test networks (see Section 3 below
and Supplementary Material) contain a substantial fraction of the global
network.

2.4.2 Measuring physical cohesiveness First, the average degree of the
test network is calculated as the average number of interactions per node
(Equation 4). Also, for the random network the average degree is calculated
by dividing the number of interactions by the number of nodes. Next, the
ratio of the average degree of the test network relative to the median average
degree of the corresponding random networks (i.e. those obtained after PIE
randomization) is calculated (Equation 5). This is the measure of physical
cohesiveness or ‘PIE score’ for the set of test genes. Finally, the fraction
of instances whereby the average degree of the random networks is larger
or equal to the test network is calculated (Equation 6). This strict empirical
value represents the P-value for the physical cohesiveness for the test set of
genes.

2.5 Algorithm
All calculations and graphs were obtained using Python scripting and R.
Network graphs and Gene Ontology enrichment analyses were obtained
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using Cytoscape (Shannon et al., 2003) and the Cytoscape plugin BINGO
version 2.3 (Maere et al., 2005), respectively. P-values reported for the
gene enrichment analyses were gotten after Benjamini and Hochberg false
discovery rate correction.

All network P-values indicate how often the average degree of a test
network is less than that of random networks of equal size and equal global
degree distribution as the test set.

All calculations of correlations and associated P-values are Pearson
moment correlations as implemented in the statistical package R. Other
specific calculations are as described below.

2.5.1 Test PPI network Given a general PPI network, G= (V ,E) such
that V is a set comprising NV vertices (nodes) and E is a set comprising NE

edges (links, degrees). A PPI network, Gt = (Vt,Et) of a given test set of
genes is constructed such that:

Gt ⊆G, induced subgraph (1)

That is, Vtare the vertices in G that are proteins encoded by the test genes
and Et are the edges from G that connect all the Vt vertices. For clarity, each
gene is represented by only one protein node.

2.5.2 Random PPI network for PIE The appropriate nodes used to
construct the random networks used for comparison with the test network are
obtained as follows. Let global degree, g be the number of edges (interaction
partners) a node has in a general PPI network, and αg be a vector of all
existing g. Given the general network G= (V ,E) comprising a set V of NV

vertices, with a set E of NE edges: we create another vector βg comprising
Ng number-of-nodes for each distinct global node degree g in αg.

Next, given a test network Gt = (Vt,Et), we create a vector βt comprising
Ngt number-of-nodes from Vt such that, Gt ⊆G and αt ⊆αg.

Finally, a corresponding (i.e. to the test network) random induced
subgraph, Gr = (Vr ,Er ) is deduced from G such that Gr ⊆G and βr =βt

and also αr =αt , whereby Vr is randomly selected from V .
Resulting in:

Ngt∑
i=1

βti =
Ngt∑
i=1

βri =Nt
v (2)

i.e. total number of nodes of the test network and for a random network is
the same, and have the same degree distribution.

Furthermore, for adequate sampling space of Vr from V ;
Ngt∑
i=1

βti <<

Ngt∑
i=1

βgi ; such that ideally Gr �= G (3)

2.5.3 Average Degree of PPI network The average degree ω of a network
G= (V ,E) is the average number of interaction per node. This is calculated
as follows:

ω= NE

NV
(4)

Where NE is the total number of edges linking nodes and NV is the total
number of distinct vertices (nodes) in the PPI network.

2.5.4 Physical cohesiveness The score of physical cohesiveness ρ is
calculated as follows:

ρ= ωt +1

µ
{⋃N

0 ωr

}
+1

(5)

Where ωt and ωr are as derived in (Equation 4) for a test network, and N
random networks of identical global node-degree distribution (as derived in
Equations 2 and 3), respectively. The denominator is the median of N random
networks. Unless otherwise indicated, this N is 1000. To avoid division by
zero error, 1 is added to both numerator and denominator.

2.5.5 P-value of physical cohesiveness The P-value of physical
cohesiveness, Pvalue ρ, is calculated as follows:

P valueρ=
∑N

t=1 (ωri ≥ ωt)

N
; if the numerator =0,P valueρ<1/N (6)

3 RESULTS

3.1 Assessment of enrichment of disease or
immune-related protein interactions in general PPI
networks

As expected, when assessing the presence of genes involved
in disease or in the immune system we observed a significant
overrepresentation of interactions for the proteins of these genes.
Morbid disease genes have a higher node degree than random
(P < 0.001). Likewise were the proteins of HMPV-induced genes
(P < 0.01) (Fig. 1).

3.2 Physical cohesiveness of disease and
immune-related genes

The PIE approach was tested on morbid genetic disease genes and
genes that were upregulated in expression due to HMPV infection.
The first set of genes represents the general context of genes relevant
to human health and disease. The second set serves as an example
of a more focused context and is selected using a more objective
criterion, i.e. gene expression perturbations upon HMPV infection.
Both sets of genes encode proteins with overrepresented interactions
in general PPI networks (Fig. 1).

3.2.1 Morbid disease genes Proteins of morbid disease genes
have more interactions with each other than do proteins of
randomly chosen genes. The average number of interactions between
morbid disease genes is 2.29 while that of the same number of
randomly chosen genes is 1.15 (P < 0.001). Nevertheless, the PIE
procedure indicates that the morbid disease gene set has no physical
cohesiveness (PIE score = 1), and this is not because the morbid
disease gene network is quantitatively similar to the general network
as it contains only 11% of the nodes, and 5% of the interactions in
the general network. The morbid disease gene set has only 15% of
its nodes, and 12% of its interactions in common with those of the
random networks used in the PIE randomization approach.

Thus, the proteins encoded by morbid disease genes are not more
likely to interact with each other than random proteins with the same
degree distribution. Overall, the absence of physical cohesiveness
for morbid disease genes using PIE might be expected because
disease genes are involved in many different diseases and likely
many different processes, and it is encouraging to see that PIE
effectively corrects for such biases.

3.2.2 HMPV-induced genes Like the morbid disease genes,
proteins of genes whose expression are induced after 12 h of
HMPV infection also have a higher number of interaction with
each other (average degree = 1.148) than the same number of
randomly chosen genes (median average degree = 1.0). Unlike the
case of morbid disease genes, however, the 12 h HMPV-induced
genes do display significant physical cohesiveness (PIE score = 1.1,
P = 0.04) when the latter is measured using PIE. The physical
cohesiveness of the nodes of the HMPV-induced genes therefore
does not depend on their overrepresentation in general PPI networks
(Fig. 1) in which it contains only 0.5% of the general network
nodes and 0.12% of the interactions. Furthermore, both average
degree and physical cohesiveness depend on some criteria of
severity of HMPV infection. For instance at a gene expression FC
threshold of 3.0, physical cohesiveness increases with longevity
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A

B

Fig. 3. Timewise variation in physical cohesiveness of HMPV infection
induced genes. (A) Changes in average degree for the infection (circles
with black line) and random (boxplots with grey line). (B) Changes in
physical cohesiveness measured as PIE scores with P-values of cohesiveness
in brackets.

of the infection (Fig. 3). In line with the changes in physical
cohesiveness, the immune response might become more specific in
the time course of infection. For example, apoptosis starts to play a
more prominent role later in infection as reflected by the enrichment
of the GO term ‘apoptosis’ for genes that are upregulated at a FC
threshold of 3.0. At various time points of infection, the process
apoptosis is observed to change in significance as follows: 6 h
(absent), 12 h (P =2.58e-2), 24 h (P = 1.94e-2), 48 h (P = 2.68e-4)
and 72 h (P = 7.39e-4). In addition, key apoptosis marker genes like
MDA-5 and RIG-1 were found using western blotting to increase
over time of HMPV infection as seen in the data of Bao and others
(i.e. the HMPV data used in this article) (Bao et al., 2008). In addition
to the temporal cohesiveness of upregulated genes, it is interesting
to examine the cohesiveness of infection and immune system related
genes in other regulatory contexts.

3.2.3 Other infection related datasets The 12 h HMPV perturbed
genes were cohesive, not only for upregulated genes (PIE
score = 1.1, P = 0.04) but also for downregulated genes (PIE
score = 1.4, P < 0.001), indicating the ability of PIE to effectively
reveal physical cohesiveness in different regulatory settings.
We further explored the physical cohesiveness of infection and
immune system related genes by analyzing the upregulated and
downregulated genes in a number of relevant datasets: (i) genes that
are affected in expression after 24 h treatment of bronchial epithelial
cells with IFNG (Pawliczak et al., 2005), (ii) genes affected by
cells infected for 4 h with UV-irradiated RSV or pseudomonas
(Mayer et al., 2007) and (iii) genes that are affected after 24 h
infection by Chlamydia pneumonia (Alvesalo et al., 2008). Both
the IFNG and the UV-irradiated pathogens led to a significant PIE
score for upregulated genes [PIE score = 1.14, P = 0.02 (IFNG),
PIE score = 1.35, P<0.001 (RSV) and PIE score = 1.19, P = 0.022

(Pseudomonas)], while only for IFNG did the downregulated genes
display physical cohesiveness (PIE score = 1.17, P = 0.032). In
contrast, PIE indicates no physical cohesiveness for genes that were
upregulated or downregulated after Chlamydia infection of human
lung epithelial cells. The absence of physical cohesiveness of genes
perturbed by Chlamydia might be partly explained by the ability
of this intracellular parasite to de-modulate host-cell responses, e.g.
its abrogation of apoptosis in epithelial cells (Airenne et al., 2002;
Hacker et al., 2006), thus resulting in PPI networks that are less
or equally dense as random networks. In this light, the significant
physical cohesiveness of the upregulated genes after infection with
UV-irradiated pathogens is particularly interesting, as these cannot
be the result of the direct interference of the pathogen with the gene
regulation, but, in contrast point to the cellular program that appears
to be triggered by the infection.

3.3 Correlation of physical cohesiveness with
prediction of downstream pathway genes in
propagated networks

We also examined to what extent proteins that interact with
the proteins of upregulated genes are physically cohesive
(Supplementary Material). We observed that a one step propagation
of networks of genes upregulated in expression by HMPV or
IFNG led to physically cohesive networks (Supplementary Fig. 1).
Nevertheless, the overlap between random networks with the same
degree distribution and the propagated network becomes substantial
(25%). At higher levels of propagation, this overlap becomes too
large to assess a significance value for the PIE score. Comparison
between the one step propagated networks of genes induced by
the HMPV virus at time points 12, 24 and 48 h and the genes
overexpressed at the next time point indicated a significant overlap
(P <1.0e-3), showing some predictive capacity of such propagation
(Supplementary Table 1). Overall, the sensitivity of prediction
is 5–41% and the positive predictive value is 5–11%. There is
a positive, albeit insignificant correlation between the PIE score
of precursor networks and the predictability of genes in their
propagated networks. For instance, the correlation between the
PIE score and sensitivity of predictions is 0.93 (P = 0.066). These
results demonstrate the usefulness of the PIE approach to assess
the biological coherence of a set of genes and the potential to use
general PPI networks in an exploratory manner to predict genes of
relevance to a process being studied.

4 DISCUSSION
In order to explore PPIs in a quantitative manner, we have developed
a method called PIE, to circumvent interaction enrichment biases
in context-specific networks derived from general PPI networks.
PIE employs a randomization procedure that appropriately considers
the global degrees (in a general PPI network) of the extant nodes
in a context-specific test network, prior to assigning physical
cohesiveness to the test network.

We have focused on the context of disease and immunity because
many proteins have been studied in this area. We observe that there
are significantly (P < 0.01) more interactions for proteins of morbid
disease genes and HMPV-induced genes than random expectation in
general PPI networks. This observed enrichment for PPI of morbid
disease genes and HMPV-induced genes is in agreement with other
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studies indicating that disease-based inquisitional biases have an
influence on the topology of general PPI networks (Oti et al.,
2006; Wachi et al., 2005). The basis for this enrichment can be
biological, in the sense that disease genes or genes that are triggered
upon infection are simply more likely to have physical interactions.
Nevertheless, it is not unlikely that this enrichment is at least partly
caused by an experimental bias in research efforts. Based on these
premises, we investigated the physical cohesiveness of the proteins
of these sets of genes using the PIE approach.

The PIE approach reveals no physical cohesiveness among the
morbid disease genes, by taking into account that these genes
are significantly enriched in general PPI networks. Other studies
examining global topological properties of protein encoded by
disease genes have focused on cancer genes. In this light, greater
degrees and centralities of cancer genes in comparison to non-
cancer genes within the interactome have been observed (Jonsson
and Bates, 2006; Wachi et al., 2005). In contradiction to the previous
observation, Goh et al. (2007) have shown that the majority of
disease genes do not actually show a tendency to code for highly
interacting proteins but instead the apparent correlation between
high degrees and disease genes is entirely due to the ∼22% overlap
between disease genes and essential genes, the latter set of genes
being mainly hubs (Goh et al., 2007). The methods used by the
previous authors were not similar to the PIE approach. Nevertheless,
PIE further clarifies this discrepancy in the literature by indicating
that globally, there is no physical cohesiveness between the proteins
of morbid disease genes, when taking into account their high degrees
in PPI networks. This suggests that genes that are not associated
with similar disorders, even if their protein products have many
interactions in PPI networks, show negligible biological coherence
and advocates the existence of distinct, disease-specific functional
modules.

On the other hand, the PIE approach reveals significant physical
cohesiveness for HMPV-induced genes. In general, both average
degree and the physical cohesiveness increased in the time course
of infection. The observed increase in physical cohesiveness in the
course of HMPV infection suggests the existence of biologically
coherent functional modules, like those for apoptosis (van Diepen
et al., 2010), being elicited in response to the infection. This
observation is in agreement with other interactome–transcriptome
studies that posit that there is a correlation between transcription
pattern similarities of a pair of genes and there being an interaction
between their protein products (Ge et al., 2001; Hahn et al., 2005;
Wachi et al., 2005).

Moreover, the biologically coherent information observed so
far using PIE sets the premise to predict genes that might be
relevant to HMPV-infection biology but not yet expressed at the
particular time point of infection being studied. We observe that
the propagation of a physically cohesive network rapidly leads to
a less cohesive network; a phenomenon that is likely due to the
change in context from which the genes in the original network
were chosen to the global context of the general PPI network.
This observation is in agreement with other studies indicating that
there is a correlation between network distance (distance apart
in a PPI network) and functional distance (semantic similarity in
functional category) between proteins in a PPI network. That is,
the closer two proteins are in a PPI network, the more similar are
their function annotations (Sharan et al., 2007). In this light, we
could predict 5–41% of the genes that would be overexpressed at

future time points of the infection. Although the positive predictive
values for these predictions are low (<11%), mainly due to the
rapid growth of the propagated networks, they are significant (P ≤
0.001, Supplementary Table 1) even after randomizations based on
networks of the same sizes and degree distributions as those of the
test networks (i.e. the PIE approach).

PIE is different from general methods designed to derive
functional insights from a set of genes by integrating gene lists
with general PPI networks mainly in the sense that most of these
methods are aimed at decomposing the network into smaller clusters
or functional modules (Sharan et al., 2007). As such it is difficult
to directly compare PIE with other methods. Notwithstanding, PIE
is a very strict and globally unbiased approach. Even though PIE
scores are in general not very high (the increase in the average
number of interactions relative to the random networks is about
5–10%) they can nevertheless be deemed significant or not (i.e.
they are informative). Moreover, the PIE procedure is very reliable,
in the sense that it mimics the degree distribution of the network
that is being tested exactly. A disadvantage of this approach is that it
limits the number of alternative, independent networks that can be
extracted from the global network for comparison with the network
under investigation. An alternative would be to relax this constraint
slightly by either modeling or binning the degree distribution and
extracting networks with that modeled or binned distribution. This
would also have the advantage that the physical cohesiveness of
networks with many high degree nodes could be assessed (Koyuturk
et al., 2007).

Contingencies with respect to the interactions, like inhibition
or stimulation, are not available at a scale that allows systematic
comparisons of networks. Such information would of course make
the networks more specific, allowing more meaningful comparisons
with respect to their biological cohesiveness. Nevertheless,
regardless of the source of experimental or inquisitional bias, PIE
circumvents gene enrichment biases in a global manner as has
been shown here using data of morbid genetic disease genes,
virus-perturbed genes (HMPV), cytokine-perturbed genes (IFNG),
bacteria-perturbed genes (C.pneumoniae), and even genes perturbed
by inert pathogen material (UV-irradiated RSV and P.aeruginosa).
PIE can in principle be applied to any given set of genes to estimate
the overrepresentation of protein interactions as a proxy for their
biological cohesiveness.
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