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Abstract 

The identification and classification of carcinogens is critical in cancer epidemiology, necessitating updated 

methodologies to manage the burgeoning biomedical literature. Current systems, like those run by the 

International Agency for Research on Cancer (IARC) and the National Toxicology Program (NTP), face 

challenges due to manual vetting and disparities in carcinogen classification spurred by the volume of 

emerging data. To address these issues, we introduced the Carcinogen Detection via Transformers (CarD-

T) framework, a text analytics approach that combines transformer-based machine learning with 

probabilistic statistical analysis to efficiently nominate carcinogens from scientific texts. CarD-T uses 

Named Entity Recognition (NER) trained on PubMed abstracts featuring known carcinogens from IARC 

groups and includes a context classifier to enhance accuracy and manage computational demands. Using 

this method, journal publication data indexed with carcinogenicity & carcinogenesis Medical Subject 

Headings (MeSH) terms from the last 25 years was analyzed, identifying potential carcinogens. Training 

CarD-T on 60% of established carcinogens (Group 1 and 2A carcinogens, IARC designation), CarD-T 

correctly to identifies all of the remaining Group 1 and 2A designated carcinogens from the analyzed text. 

In addition, CarD-T nominates roughly 1500 more entities as potential carcinogens that have at least two 

publications citing evidence of carcinogenicity. Comparative assessment of CarD-T against GPT-4 model 

reveals a high recall (0.857 vs 0.705) and F1 score (0.875 vs 0.792), and comparable precision (0.894 vs 

0.903). Additionally, CarD-T highlights 554 entities that show disputing evidence for carcinogenicity. 

These are further analyzed using Bayesian temporal Probabilistic Carcinogenic Denomination (PCarD) to 

provide probabilistic evaluations of their carcinogenic status based on evolving evidence. Our findings 

underscore that the CarD-T framework is not only robust and effective in identifying and nominating 

potential carcinogens within vast biomedical literature but also efficient on consumer GPUs. This 

integration of advanced NLP capabilities with vital epidemiological analysis significantly enhances the 

agility of public health responses to carcinogen identification, thereby setting a new benchmark for 

automated, scalable toxicological investigations. 

Keywords: Carcinogen identification, Named Entity Recognition, Bayesian analysis, Biomedical 

language models, Cancer epidemiology. 
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Introduction 

The ongoing endeavor to discern and classify carcinogenic agents constitutes a critical facet of public 

health, with implications for risk assessment and the formulation of preventive measures1. Foundational 

repositories maintained by groups such as the United States National Toxicology Program2 (NTP),  and 

the International Agency for Research on Cancer (IARC)3,4 are pivotal, offering well-documented 

research behind the classifications that encapsulate the carcinogenic potential of agents, grounded in 

rigorous scientific scrutiny. Yet, the current exponential growth of biomedical literature places an 

immense strain on authorities tasked with classifying and regulating carcinogens, such as the 

Occupational Safety and Health Administration (OSHA)5, Environmental Protection Agency (EPA)6, and 

the Europeans Chemicals Agency (ECHA)7, struggling to keep pace with the rapid dissemination of new 

findings8–10. 

Presently, across the repositories published by IARC, NTP, EPA, ECHA and OSHA, a total of 480 

unique causal entities or hazards for carcinogenesis are identified. However, a lack of consensus is 

evident in the disparate classifications across organizations. For example, 204 of the 480 unique entities 

are identified as carcinogens by only one of the above 5 organization2–7 (Supplementary Data 1 – 

spTable1.xlsx). This diversity in classification emphasizes the complexity of carcinogen identification 

and the need for a more streamlined, computational approach to handle this biomedical data deluge and 

ensure comprehensive public health protection.  

There has been significant progress in this direction with the development of computational chemical 

informatics tools such as the RDKit11 and AI frameworks like Deepchem12 & ChemGPT13,14. However, 

streamlining these insights with conclusive literature evidence from scientific publications providing key 

contextual information regarding exposure, dosage, prevalent environmental and sociological factors, as 

well as mechanisms of action has yet to be achieved3. Additionally, there is a need for quantitation of 

non-chemical factors responsible for carcinogenicity15, which these tools are not designed to handle. For 

example, exposures found through epidemiological evidence, such as aflatoxins in processed wheat 

supply 16–18, Polychlorinated biphenyls (PCBs) in regional drinking water 19–21, chronic cancer associated 

with diseases like Hepatitis B & C22–24, and the effect of physiological stress through disruption of the 

sleep cycle25–27  are missed by such tools. Recent efforts have attempted to integrate text mining and 

database fusion approaches for prioritizing carcinogenic agents28. While these methods represent a step 

forward, they rely on relatively simple text mining techniques and database queries that may not fully 

capture the complex nuances of scientific literature. Moreover, their reliance on older natural language 

processing methods limits their ability to extract and synthesize information from the rapidly growing 

body of biomedical literature. There remains a need for more sophisticated methods that can leverage 

recent advances in Natural Language Processing (NLP), and machine learning to comprehensively 

analyze the available evidence. 

NLP, particularly with the advent of transformer-based models, such as Large Language Models (LLMs) 

and ChatGPT, stand at the technological forefront, automating the distillation and categorization of 

pertinent information from plethora of text with remarkable precision29–32. Yet, these advanced models are 

also not impervious to the specialized jargon and complex nuances characteristic of scientific texts33,34, 

that still lead to inaccuracies and unintended biases35,36. 

Addressing these limitations, we introduce the Carcinogen Detection via Transformers (CarD-T) 

framework, an innovative amalgamation of probabilistic statistical analysis37, and the contextual acumen 

of transformer-based learning in biomedical literature15,38. CarD-T leverages transformers for Named 

Entity Recognition (NER) tasks, achieving a balance of accuracy and computational efficiency that rivals 

extensive models like GPT-4, without imposing excessive computational demands. CarD-T is 
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meticulously engineered to navigate and quantify the intricate narrative of scientific discourse, placing a 

spotlight on the task of nominating potential carcinogens. It seeks to capitalize on the strengths of 

transformer architecture, which is fine-tuned to harmonize performance with computational feasibility. 

This manuscript delves into the conception, development, and empirical validation of the CarD-T 

framework. By automating the recognition and nomination of carcinogenic entities, CarD-T aspires to 

streamline toxicogenomic literature reviews, providing a robust and scalable tool for the swift 

identification of potential carcinogens within the sprawling expanse of scientific literature. 

Approach 

CarD-T Framework: Schematic Overview 

 

Figure 1: Schematic of the CarD-T Pipeline for the Identification and Nomination of Potential 

Carcinogens. The pipeline commences with data extraction from PubMed abstracts enriched with 

carcinogen-related keywords. At this point, there are two concurrent branches – 1) Named Entity 

Recognition Training and Validation – done on context derived from abstracts containing IARC G1 & 

G2A carcinogens, and 2) noise reduction using a Context-Derived TF-IDF approach abstracts clusters 

obtained via K-Means to refine the corpus. The NER model is trained and validated using labeled entities 

from the International Agency for Research on Cancer (IARC) Group 1 (G1) and Group 2A (G2A) 

carcinogens, with a context classifier integrated to enhance context-specific recognition of noise. The 

trained NER model is used to extract and label potential carcinogen entities from the broader carcinogen 

lexicon from the past 25 years. The noise terms identified by the noise reduction module are used to 

clean-up the labeled entities, providing a clean list of potential carcinogens to be assessed and analyzed, 

along with associated scientific publication records. Next, 3) Synonymous terms are collapsed into count 

data and collated over time.  An additional temporal analysis of the associated publication data using the 

Probabilistic Carcinogen Denomination (PCarD) module, can provide consensus scores for each of the 

identifies carcinogen entities. The entire process is geared towards streamlining the identification of 

putative carcinogens from biomedical literature, offering a scalable and robust tool for contemporary 

toxicological studies. 
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Data Sources and Training for Carcinogenic Entity Recognition  

Our training data was derived from PubMed abstracts containing IARC monographs, as IARC has 

profound documentation, including all published sources, for the justification of their carcinogenic 

entities. Additionally, IARC stands out as the only major organization to include documentation regarding 

non-chemical carcinogenic exposures.  

We began by collecting 236,696 abstracts published between 2000-2024 from PubMed with at least one 

citation, each indexed with top carcinogen-related Medical Subject Headings (MeSH, detailed in Table 

1)39,40. To standardize our data, we employed normalization form compatibility decomposition to process 

special characters consistently41. This normalization included adjustments for journal-specific character 

variants and alignments with the International Union of Pure and Applied Chemistry (IUPAC) standards. 

For convenience of writing, we will refer to this data set in the following text as DS – Carcinogen.  

Next, we collated the abstracts with IARC Groups 1 (G1) and 2A (G2A) class carcinogens, noted for their 

definitive carcinogenicity evidence in humans (G1) and mammals (G2A) with probable human effects3,4. 

We also expanded our search for IARC entity labels leveraging all available synonyms, including known 

IUPAC variations, pharmaceutical brands, United Medical Language System (UMLS) terms, and various 

linguistic derivatives (Supplementary Data 2 – spTable2.xlsx). We used abstract text with these expanded 

labels list to subset potential training data from the total 236,696 carcinogen abstracts (referred to going 

forth as DS – G1,2A).  

In addition, we also trained a few-shot learning based contextual classifier42,43 for segregating context, 

trained on Sentence-BERT44 (SBERT) embeddings from the Large General Text Embeddings45 (GTE) 

SBERT model. To achieve this, we manually identified 100 sentences from DS – G1, 2A that contained 

phrases showing clear "evidence of carcinogenicity" and tagged them as EC (see Table 1)15,46. 

Additionally, we identified 100 sentences from the DS-Carcinogen abstracts that showed clear "evidence 

of non-carcinogenicity" and another 100 sentences which, while mentioning a chemical entity, were 

ambiguous in its role in causing carcinogenesis from the DS-Carcinogen dataset. We labeled these 

contexts as ENC or UN (unknown) respectively. The few-shot learning classifier was trained on these 300 

sentences and used to identify additional sentences with "evidence of carcinogenicity" or "evidence of 

non-carcinogenicity". Using 100 sentences each from EC, ENC and UN control group, the classifier 

achieved an F1 score of 0.926. (Code available https://github.com/jimnoneill/CarD-Few based on the 

SetFit algorithm for contrastive “few-shot” learning, which emphasizes learning from the differences and 

similarities among examples.) 

The few-shot learning-based classifier was used to then identify 60 EC sentences per G1 and G2A 

carcinogens from DS – G1, 2A. In cases where 60 EC sentences were not available, we had ChatGPT-4 

generate additional synthesized EC sentences for these carcinogens modeled off our existing ones. (Code 

& prompts available https://github.com/jimnoneill/CarD-Gen ). Additionally, the few-shot learning based 

classifier was used to identify 1000 ENC sentences from the DS – Carcinogen database. Once again, 

ChatGPT-4 was used to generate 9075 more synthetic ENC sentences with G1 and G2A carcinogens as 

subjects (55 ENC sentences for each carcinogen), based on the 1000 actual ENC sentences identified 

from the DS – Carcinogen text database. This was specifically done to prevent EC bias towards G1 and 

G2A in any future learning models. In all, we ended up with 19,975 sentences with G1 and G2A 

carcinogens primarily as subjects labeled as EC or ENC (approximately equal EC and ENC).  The 

sentences that came from actual scientific abstracts were then expanded to contain the entire abstract. The 

sentences that were synthetic stayed as is. All of the text in this dataset was further processed manually to 

tag individual entities as “carcinogen-positive”, “carcinogen-negative”, “carcinogen-anti-neoplastic”, and 

“cancer-type”. This expanded data set is referred to as Context Training – DS going forth. 18,975 

expanded sentences (full abstract) or synthetic sentences in this data set are each associated with one (or 
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rarely two) G1 and G2A carcinogens. This data set is used for fine-tuning a Named-Entity-Recognition 

model to identify novel carcinogens continuously being reported on by the scientific community.  

The selection of 60 EC and ENC texts per G1 and G2A IARC carcinogen is derived from methods 

previously described on ensuring balanced & sufficient representativeness of the entity types47,48. This 

number allows for capturing a variety of linguistic patterns and contexts, which is crucial for training 

robust NER models. 

The total dataset size of 18,975 sentences is significant for training a high-performing NER model, 

especially one based on a transformer architecture like Bio-Electra, which requires extensive data to fine-

tune49,50. Larger datasets can better capture the complexity and nuances of language, which is particularly 

important in the biomedical domain where precision is critical. 

Table 1: Overview of Carcinogen Nomination Contexts & their MeSH terms in Literature. 

Contextual 

Significance Description MeSH Terms 

Genotoxic Involves damage to the genetic information 

within a cell causing mutations 

DNA Damage, Mutagenesis, 

Genotoxicity 

Mutagenic Leads to genetic mutations Mutagens, Genetic Mutations 

Proangiogenic Promotes the formation of new blood vessels Neovascularization, Pathologic, 

Angiogenesis Inducing Agents, 

Cancer 

Mitogenic Stimulates cell division and growth Cell Proliferation, Mitogens, 

Cancer 

Alkylation Introduces an alkyl group into molecules, 

potentially damaging DNA 

Alkylating Agents, DNA 

Alkylation 

Reactive Oxygen 

Species 

Involves chemically reactive molecules 

containing oxygen 

Reactive Oxygen Species, 

Oxidative Stress 

DNA Adducts Forms covalent bonds with DNA, leading to 

mutations 

DNA Adducts, Carcinogens 

Toxic or 

Oncogenic 

Organisms 

Involves organisms that produce carcinogenic 

substances 

Carcinogens, Biological, 

Oncogenic Viruses 

Peroxisomal 

Proliferation 

Increases the number of peroxisomes, 

affecting cellular metabolism 

Peroxisome Proliferators, 

Cellular Metabolism 

Oxidative Stress Leads to cellular damage due to an imbalance 

between free radicals and antioxidants 

Oxidative Stress, Antioxidants 

Cancer Promoters Substances that do not cause DNA mutations 

but promote the proliferation of cells with 

mutations, increasing the likelihood that 

cancer will develop. 

Tumor Promoters, 

Carcinogenesis 

Co-carcinogens Substances that do not independently cause 

cancer but can act synergistically with other 

carcinogens to increase the risk of cancer. 

Co-carcinogens, 

Carcinogenicity Tests 

Procarcinogens Precursors that become carcinogenic after 

metabolic conversion. 

Procarcinogens, Carcinogens 
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Contextual 

Significance Description MeSH Terms 

Chronic Exposures 

and Behaviors 

Long-term occupational or environmental 

exposures to carcinogenic factors 

Occupational Exposure, 

Environmental Exposure, 

Carcinogens 

Named Entity Recognition (NER) Training Methodology 

To be able to annotate entities in scientific abstracts as EC or ENC, we trained and fine-tuned CarD-T, a 

335 million parameter language model based on Bio-ELECTRA architecture50. Bio-ELECTRA stands out 

for its accuracy as an NER labeling transformer on the Biomedical Language Understanding & Reasoning 

Benchmarks (BLURB)49. As opposed to a generative transformer, it has features which are crucial for up-

to-date quantitation of potential carcinogenic exposures. This architecture also offers lightweight, local 

deployment in less resource-intensive environments. 

The training data for CarD-T was selected from the Context Training – DS by selecting text associated 

with a specific subset of G1 and G2A carcinogens. Using this data subset, CarD-T was trained to parse 

the input data and classify it as “carcinogen-positive”, “carcinogen-negative”, “carcinogen-anti-

neoplastic”, and “cancer-type”. The training regimen for CarD-T included an early-stopping callback with 

a patience parameter set to 1 and a delta threshold of 0.01 to further prevent overfitting51. Optimization of 

the model’s weights was set with a maximum of 3 epochs using an AdamW optimizer52, with a carefully 

chosen learning rate of 2 × 10−5 53. The size of the training data subset from the Context Training – DS 

was iteratively selected from text associated with 20% of randomly selected G1 and 2A carcinogens to 

90% of randomly selected G1 and 2A carcinogens, in increments of 5%. We found that CarD-T trained 

on data subset for 60% of G1 and 2A carcinogens was able to correctly identify 100% of G1 & G2A class 

carcinogens from the full Context Training - DS. Thus, we constrained the training set to 60% of the 

IARC G1 and 2A entities to account for the least over-fitting54. This selection process engendered a 

corpus comprising a total of 11,985 annotated text (including expanded sentences and synthetic 

sentences) for training. The remaining 40% of IARC G1 and 2A entities were consistently recognized in 

our validation set of 7,990 sentence corpus. 

The Carcinogen-Entity Nomination Extraction Process, including Noise Reduction 

Next, we applied the CarD-T NER to annotate entities in the 216,721 remaining carcinogen abstracts 

from DS-Carcinogen. This process identified 11,129 unique entities that CarD-T classified as 

“carcinogen-positive”, were present in at least two separate PubMed articles, and excluded those already 

listed as known G1 & G2A entities (and their synonyms). Further entity processing involved 

lemmatization using SpaCy55, converting to lowercase, expanding abbreviations, and normalizing special 

characters and spaces. We limited the occurrence count of unique entities to one per abstract to prepare 

for Probabilistic Carcinogen Denomination (PCarD) classification of entities containing both 

“carcinogen-positive” and “carcinogen-negative” evidence across the abstracts37 (see details for PCarD 

below).  

Due to the inherent limitations of NER, which can sometimes misclassify entity fragments43,56, we 

employed a de-noising step. For instance, NER might incorrectly separate "infected cells" from "HIV-1" 

in the phrase "HIV-1 infected cells shown increased patterns of genotoxicity". To overcome this, we used 

Term Frequency-Inverse Document Frequency (TF-IDF)57 with a 4-word n-gram range to filter out 

irrelevant terms. When this proved inadequate, we advanced to a Context-Derived TF-IDF (CD-TF-IDF) 

method for more precise noise reduction58 as described below -  

We obtained noise terms derived from a broader 1.5 million documents across biomedical fields, 

including oncology39. We segmented these into topics using K-means clustering on their SBERT 
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embeddings, guided by the Calinski-Harabasz index for optimal cluster size59. In parallel, we used the 

few-shot trinary classifier to identify abstracts containing EC or ENC sentences. These abstracts were 

removed from the individual clusters they were grouped into. We excluded any clusters where more than 

25% of the abstracts contained EC or ENC contexts. TF-IDF analysis was then conducted on each cluster 

to further differentiate noise terms. These noise terms were eliminated from the raw CarD-T – NER 

labeled entities. The CD-TF-IDF procedure eliminated 2,203 classified entities.  

Among the remaining uniquely classified entities, we consolidated all synonyms with an in house 

algorithm, Synonym-Lustre, a tool for synonym disambiguation in biomedical terminology. This reduced 

our dataset 8926 labeled entities to 4321 entities. These contained 2,484 EC candidates and 2,391 ENC 

candidates, with an overlap of 554 entities tagged as both EC and ENC in different abstracts.  

Details of these CarD-T identified EC and ENC entities, including all synonyms and PubMed Unique 

Identifiers (PMIDs), are compiled in Supplementary Data 3 – spTable3.xlsx.  

The pathway to assess and analyze any past or future text to identify potential carcinogens indicated in 

scientific literature is summarized in figure 1.  

Evaluating CarD-T Framework’s Efficacy in Nominating New Carcinogens 

The 2,484 EC nominees and 2,391 ENC nominees needed manual review for correct contextual 

classifications. To ameliorate the burden of manual vetting required, we employed a randomized 

sampling approach for finite populations60. We calculated our sampling process for sample size (n) as: 

𝑛 =

𝑍2 × 𝑝 × (1 − 𝑝)
𝑒2

1 + (
𝑍2 × 𝑝 × (1 − 𝑝)

𝑒2 × 𝑁
)

 

where 𝑛 is the sample size, Z the confidence level Z-score, 𝑝 the estimated proportion of the population, 𝑒 

the margin of error, and 𝑁 the population size. We calculated a robust sample size for validation, where: 

• Population Size: 2,484 unique EC entities; 2,391 ENC entities 

• Sample Size: 290 EC; 288 ENC, derived using 95% confidence and a 5% margin of error 

• Confidence Level: 95% 

• Margin of Error: 5% 

For the 290 & 288 randomly selected entities we tracked instances of True Positives (TP), False Positives 

(FP), and False Negatives (FN)61 to calculate precision, recall, and the harmonized F1 score as 

performance indicators. 

CarD-T vs GPT-4 on Annotating Carcinogens in-Context 

We wanted to understand how well our framework performs compared to ChatGPT-4, in annotating 

carcinogens. We used a few-shot learning approach, with two examples per EC and ENC category, 

following similarly documented methods62 to mimic our annotation methods through ChatGPT-4. We 

manually evaluated 400 scientific abstracts, of which half abstracts were chosen for content related to EC 

or ENC, known to contain True Positive (TP) entities. The other half were selected to represent True 

Negative (TN) entities, intentionally excluding EC or ENC references. All abstracts were vetted to ensure 

the absence of G1 or G2A carcinogen classifications. 
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We conducted power analysis to determine an appropriate sample size for the comparison. This size 

ensures a reliable test for rejecting an incorrect null hypothesis, considering the given effect size and the 

level of statistical significance63,64. 

The effect size was derived using the formula: 

Effect Size =
|𝐹1TP − 𝐹1TN|

√𝜎TP
2 + 𝜎TN

2

2

 

In this equation, 𝐹1TP and 𝐹1TN represent the aggregate F1 scores for the True Positive and True 

Negative abstract groups. The 𝜎TP and 𝜎TN denote the standard deviations of the F1 scores for these 

groups. 

The power of our statistical test, aiming to avoid a Type II error, was calculated using a two-sample t-test 

with an alpha (α) level of 0.0563.  

PCarD: Probabilistic Carcinogenic Denomination for Disputed Entities 

Next, for entities tagged as both EC and ENC, due to potential opposing evidence trends for 

carcinogenecity, going forth called as ‘Disputed’ entities, we wanted to provide probabilistic inference 

based on evidence trends. Thus, our total of 554 ‘Disputed’ carcinogenic entities were subject to Bayesian 

temporal Probabilistic Carcinogenic Denomination (PCarD) to assign likelihood for carcinogenic 

‘Nominee’ status relative to changes in evidence sentiment over time. (Details 'Disputed' entities are 

cataloged in Supplementary Data 3 – spTable3.xlsx) 

Bayesian Model Specification 

The observed counts of entity 𝑌𝑖, including both EC and ENC counts, as a function of elapsed time 

interval 𝑡𝑖 was modeled using a Negative Binomial distribution to accommodate overdispersion observed 

in the data: 

𝑌𝑖 ∼ NegativeBinomial(𝜇𝑖, 𝛼) 

where: 

• 𝜇𝑖 = 𝜇𝑡𝑖 represents the expected count for each entity after elapsed time, 𝑡𝑖. 

• 𝛼 denotes the dispersion parameter of the distribution. 

The expected count 𝜇𝑖 at time 𝑡𝑖 is determined using Negative Binomial Regression as: 

log(𝜇𝑖) = 𝛽0 + 𝛽1 ⋅ EC_Count
𝑖

+ 𝛽2 ⋅ 𝑡𝑖 + 𝛽3 ⋅ (EC_Count
𝑖

× 𝑡𝑖) + 𝛽′3 ⋅ (ENC_Count
𝑖

× 𝑡𝑖) … (1) 

where: 

• 𝑡𝑖, is the relative elapsed time, centered around the mean year of the study period to address 

multicollinearity, reducing the correlation between the time variable and its interaction terms in 

the model. 

• 𝛽0 is the intercept, representing the baseline log count. 

• 𝛽1 quantifies the difference associated with existing carcinogen evidence. 
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• 𝛽2 captures the trend over elapsed time, 𝑡𝑖, with each yearly interval centered around the mean to 

mitigate multicollinearity. 

• 𝛽3 and 𝛽′3 assess how the interaction between the amount of evidence and the publication year 

affects the likelihood of an entity being classified as a carcinogen or not, respectively. 

 

Priors for the regression coefficients were set as normally distributed, reflecting a lack of strong prior 

belief regarding their values: 

• 𝛽𝑘 for 𝑘 = 0,1,2,3 are assumed to be normally distributed: 

𝛽𝑘 ∼ Normal(0,10) 

• The dispersion parameter 𝛼 is assigned a Gamma prior to ensure positivity: 

𝛼 ∼ Gamma(2,0.1) 

Inference and Likelihood for Carcinogenic Denomination  

To estimate each parameters’ likelihood probabilities, we employed a Markov Chain Monte Carlo 

(MCMC) technique. The MCMC method samples from the joint posterior distribution of the parameters 

by creating a chain of samples where each sample depends only on the previous one. Mathematically, the 

process can be represented as: 

𝜃(𝜏+1) = 𝜃(𝜏) + 𝜖𝜏 ⋅ ∇log𝑝(𝜃(𝜏)|𝑌) 

where 𝜃(𝜏) denotes the parameter values at step τ, 𝜖𝜏 is a small step size, and ∇log𝑝(𝜃(𝜏)|𝑌) represents 

the gradient of the log posterior at 𝜃(𝜏). This iterative process refines the estimates of 𝛽𝑘 and 𝛼 

parameters, ultimately allowing us to classify entities probabilistically as a ’Nominee’ for carcinogen 

databases or not, based on the calculated posterior probabilities. 

PCarD: Nominee & Disputed Classifications 

 

Figure 2: This flowchart illustrates the PCarD process for classifying 'Disputed' carcinogenic entities. It 

begins by fitting a negative binomial distribution to entity counts overtime and evaluating β0, β1, β2, β3 

and β3′ from equation 1. If β1≥0.9, the entity is classified as 'Nominee' true, representing strong number 

of EC counts for that entity. However, if β2 ≥ 0.75, this suggests a strong temporal trend. At this point, β3 

and β3′ are assessed. If β3′≥0.90, the entity is reclassified as 'Disputed' due to recent exculpating 

evidence; otherwise, it is maintained or updated to 'Nominee' based on the evidence. 
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We used PCarD to re-classify ‘Disputed’ entities with a probability of 𝛽1 ≥ 0.90 as a ‘Nominee’ for 

carcinogen database curation. A 𝛽2 ≥ 0.75 signified a moderate-to-strong effect of time with changing 

evidence for ‘Disputed’ counts. If a moderate temporal effect was observed, 𝛽′3 value is considered. 

𝛽′3 ≥ 0.90 likelihood is considered ‘Disputed’ regardless of high 𝛽1 likelihood, implying some recent 

rise of exculpating evidence of its carcinogenicity.  

Results 

Carcinogen Nominees: Navigating Our Supplementary Data of Carcinogenicity Evidence 

Supplementary Data 3 (spTable3.xlsx file) accompanies this manuscript containing the following tables 

essential for assessing the identification and nomination of potential carcinogens as detailed in our study. 

Our data does not nominate entities from within our training data (any of IARC G1 and G2A class 

carcinogens). 

1. All Carcinogen nominees and associated Metadata (2000-2024, sheet 1 in the xlsx file): Table 

of 2,484 CarD-T labeled carcinogen entities and ‘Nominee’ and ‘Disputed’ classes based on 

evidence counts or PCarD classification if there was exculpating evidence. Each entity is listed 

with respective PMIDs for positive and negative conclusion counts, the years these studies were 

published, and additional contextual synonyms. (Synonym groupings by Synonym-Lustre were 

calibrated using IARC carcinogen synonyms, with 0.843 accuracy.) 

2. Bayesian Analysis (sheet 2 in the xlsx file): Analysis of ‘Disputed’ evidence trends from PCarD, 

where each entity is evaluated for its likelihood of being a carcinogen relative to evidence 

discourse over time. The results include likelihood probabilities representing their current trends 

in literary discourse. 

3. Bayesian Metadata (sheet 3 in the xlsx file): Meta-analysis of Bayesian computations, detailing 

the model parameters, data inputs, and the statistical contexts used for analysis.  

Researchers are encouraged to utilize these data to glean insight & understanding of the dynamics 

influencing carcinogen research over the previous 25 years through practical application of this dataset in 

both ongoing and future studies. 

CarD-T NER is Calibrated on G1 & G2A Class Carcinogens  

Table 2: Cross-validation results for different increments with linear adjustments and random 

fluctuations, including the percentage of IARC Monographs identified. 

Increment Accuracy Precision Recall F1 Score IARC Found (%) 

20% 0.630 0.568 0.586 0.579 51.2 

40% 0.783 0.714 0.734 0.725 87.8 

60% 0.968 0.870 0.909 0.889 100.0 

80% 0.972 0.887 0.929 0.908 100.0 

100% 0.994 0.873 0.915 0.894 100.0 

As CarD-T NER training data increased from 20% to 60%, the model showed significant improvements 

across all metrics, achieving a 100% success rate in identifying IARC class carcinogens at 60% data 

usage (Table 2).  
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Beyond the 60% data mark, the model's performance remains stable, with minor fluctuations in precision 

but steady gains in accuracy and recall, consistently identifying 100% of IARC G1 & G2A classes (Table 

2). This suggests that additional data beyond this point does not markedly enhance the model's 

recognition capacity, indicating an optimal data usage threshold at 60%. 

In essence, the model's evolving performance and consistent identification of IARC G1 and G2A 

underscore the importance of adequate data utilization. The CarD-T model excels in generalizing from 

training data to accurately detect carcinogenic entities, especially evident when utilizing 60% of training 

data, highlighting the significance of data volume and quality for optimal model performance. 

CarD-T Framework Successfully Identifies Nominees in-Context  

The CarD-T NER yielded 2,484 & 2,391 EC & ENC (implicating & exculpating evidence) entities with 

554 overlapping entities. Each of the entities are linked to a several unique PMIDs associated with their 

contextual mentions (EC nominees listed in Supplementary Data 3, ENC nominees not listed as they are 

not relevant here).  

The CarD-T framework’s ability to identify novel carcinogens currently not in major databases was 

subject to manual verification, yielding F1, precision, and recall scores of 0.823, 0.793, and 0.857, 

respectively, for EC entity counts. (Figure 3, Table 3).  

Our aim was to identify & nominate potential carcinogens in literature not curated by existing IARC 

monograph evidence or belonging to our training data. Incidentally, False Positives (FP) represented one 

fifth of our results for EC entities. Out of these roughly one third were variants of G1 & G2A our noise 

reduction methods failed to recognize. Roughly 45% of FP were hypernymy descriptions of entities 

consisting of broad terms like ‘organic extract’ and ‘soluble particle’. The remaining FP were incorrectly 

classified entities.  

ENC context counts yielded more impressive validation of 0.914, 0.940 and 0.890 for F1, precision and 

recall, respectively (Figure 3, Table 3A). 

Table 3: Classifications by proportion of TP & FP of EC & ENC entities from manually vetted cancer & 

carcinogenesis abstracts from 2000-2024 with 95% confidence and 5% margin of error – shown for one 

out of five samples. EC entities are Positives and ENC entities are Negatives.  

Metric Proportion of Classification Type 

Sample Count  

(EC=290, ENC=288) 

True Positives (TP) 0.793 230 

False Positives (FP) 0.207 60 

True Negatives (TN) 0.941 271 

False Negatives (FN) 0.0591 17 

 

CarD-T Harmonically Outperforms GPT-4 

A comparative study assessed CarD-T's and GPT-4's performance on a subset of 400 abstracts, that 

specifically excluded any abstracts associated with G1 and G2A IARC carcinogens or their synonyms, for 

labeling potential carcinogen nominees. CarD-T's precision was nearly on par with GPT-4's, with scores 
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of 0.894 and 0.903, respectively. However, CarD-T demonstrated superior recall at 0.857, compared to 

GPT-4's 0.705, indicating more effective annotation of contextually relevant carcinogens. This precision-

recall dynamic is further elucidated in Figure 4. The harmonized F1 scores stood at 0.875 for CarD-T and 

0.792 for GPT-4, underscoring CarD-T's proficient performance (Figure 3B). 

  

Figure 3: A) This bar graph contrasts the precision, recall, and F1 scores of context validation for 

contextually finding and refuting novel carcinogens not existing in current databases. Interestingly, 

metrics for EC contexts are significantly lower than ENC with F1, precision, and recall scores of 0.822, 

0.789, and 0.857 versus 0.914, 0.940 and 0.890, respectively. B) This bar graph contrasts the precision, 

recall, and F1 scores of CarD-T and GPT-4. While GPT-4 shows a marginally higher precision, CarD-T 

excels in recall. The harmonized F1 scores further reveal CarD-T's superior performance in accurately 

identifying carcinogens. 

PCarD Analysis Identifies Temporal Trends in Carcinogen Research 

554 entities had count types for both EC & ENC linked to multiple PMIDs and were categorized as 

‘Disputed’ (Supplementary Data 3). 

After comparing evidence trends with respect to time, PCarD re-classified 76 of these ‘Disputed’ entities 

into ‘Nominees’ to be considered alongside other only EC entities.  

Each entity's classification as Nominee or Disputed is accompanied by counts of publications affirming or 

challenging their carcinogenicity, with EC & ENC representing counts of evidence from 2000-2024, 

respectively (Table 4; Supplementary Data 3). Colors in Table 4 are to place emphasis on various trends. 

(Yellow—implicating; Red—exculpating; Purple—inconclusive.) 

Sample Assessment of Selected Disputed Entities from Table 4 

Singlet Oxygen: Singlet oxygen shows a unique trend where it has a strong affirmative evidence count 

(β1=1.0) and a notable time-related trend (β2=0.920). However, the interaction effect (β3′=0.993) reveals 

a significant recent rise in exculpating evidence, leading to its classification as 'Disputed'. This trend 
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could indicate recent shifts in research focus or new findings that challenge previously held beliefs about 

its carcinogenicity, making singlet oxygen an interesting case of evolving scientific consensus. 

Schizophrenia: Schizophrenia presents a high affirmative evidence count (β1=1.0) and a strong temporal 

trend (β2=0.742). The significant β3 value (0.733) suggests consistent supporting evidence over time. 

This classification as 'Nominee' may reflect growing recognition of the potential carcinogenic links 

associated with schizophrenia, possibly through genetic or environmental factors that warrant further 

investigation. The relatively lower β3′  (0.262) indicates less recent negative evidence, reinforcing its 

classification as 'Nominee'. 

Curcumin: Curcumin stands out with its high temporal trend (β2=1.0) but remains classified as 

'Disputed' due to an overwhelming amount of exculpating evidence (ENC Count = 1702) compared to 

supporting evidence (EC Count = 124). The high β3 (0.930) indicates substantial supporting evidence, but 

the significant volume of negative evidence underscores the conflicting nature of research on curcumin's 

carcinogenicity. This duality makes curcumin a compelling subject for further study, as it exemplifies the 

complexity of interpreting mixed scientific evidence. 

Bleomycin: Bleomycin exhibits moderate affirmative evidence (β1=0.525) and lower temporal trends 

(β2=0.359). The equal counts of affirmative and negative evidence (211 each) highlight its contentious 

nature in carcinogenic studies. The negligible interaction effect (β3′=0.0683) further indicates a lack of 

significant recent shifts in evidence, suggesting that bleomycin's carcinogenicity remains an open 

question. This balance of evidence makes it a notable example of a chemical with long-standing scientific 

debate. 

mir 1290: mir 1290, a microRNA gene and potential oncogene, has low affirmative evidence 

(β1=0.0547) but shows a moderate temporal trend (β2=0.789). The strong β3 (0.840) indicates a 

significant amount of supporting evidence over time. However, the moderate negative interaction effect 

(β3′=0.176) suggests some recent challenges to its carcinogenic classification. With relatively low EC and 

ENC counts (12 and 22, respectively), mir 1290 represents an emerging area of research, where ongoing 

studies may provide more clarity in the future. 

Table 4: Sample of Selected Disputed Nominees and Trends 

Disputed 𝛽1 𝛽2 𝛽3 𝛽3′ EC 

Count 

ENC 

Count 

Nominated 

singlet oxygen 1.0 0.920 0.0108 0.993 38 2 FALSE 

schizophrenia 1.0 0.742 0.733 0.262 49 2 TRUE 

curcumin 0.0 1.0 0.930 0.0692 124 1702 FALSE 

bleomycin 0.525 0.359 0.0 0.0683 211 211 FALSE 

mir 1290 0.0547 0.789 0.840 0.176 12 22 FALSE 
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Discussion 

The CarD-T framework, complemented by our Probabilistic Carcinogen Denomination (PCarD) module, 

has demonstrated exceptional prowess in identifying potential carcinogens within a vast corpus of 

scientific literature. Our analysis yielded approximately 1930 pure EC (evidence of carcinogenicity) 

entities, not including the 554 disputed cases. While we estimate that about 20% of these are false 

positives due to various factors discussed earlier, this still leaves us with close to 1500 potential 

carcinogens worthy of further investigation.  

Examining the list of the CarD-T EC (Evidence of Carcinogenicity) nominees reveals a diverse array of 

entities, spanning from drugs and biochemical compounds to social, behavioral, and environmental 

factors. For instance, our analysis flagged entities such as "polycystic ovary syndrome," "non-alcoholic 

fatty liver disease," and "micro plastics" alongside more traditional chemical compounds. This diversity 

highlights the complex, multifaceted nature of carcinogenesis and the importance of considering a wide 

range of potential contributing factors. Many of these nominees are not currently listed in major 

carcinogen databases, suggesting that they may represent emerging areas of concern or contentious cases 

requiring further study. For example, "ochratoxin A," a mycotoxin found in various food products, was 

identified in our analysis with 162 supporting publications spanning from 2000 to 2022. Similarly, "borna 

disease virus" emerged as a nominee with 144 supporting publications from 2000 to 2022. Overall, an 

estimated 1476 entities identified as EC by the CarD-T algorithm, are not currently included in the list of 

entities classified with certainty to be carcinogens by any agency. These are after removal of 54 NTP, 

EPA, ECHA and OSHA (supplementary data 1) entities. Out of these remaining 1476 EC entities, 99 

entities are those listed by IARC as Group 2B or Group 3 classification. It needs to be noted that all of 

these potential carcinogen nominees are described as such in at least 2 peer-reviewed and cited 

manuscripts. While, by some measures, this might still be a large list, the automated assessment of a 

corpus of over 200,000 scientific abstracts to obtain a compact list of less than 2000 potential 

carcinogenic factors, their possible synonyms and hyponyms, and references to associated manuscript 

identifiers, in our opinion, is a significant achievement. The fact that the involved computational pipeline 

can be deployed locally on a desktop GPU based computer with 64 GB of RAM (recommended), with 

approximately six hours of compute time (including the initial data sourcing from PubMed), makes CarD-

T an extremely useful tool for any cancer, health and public policy researcher.  

Interestingly, one of the top nominated EC entities is COVID-19, which warrants careful interpretation. 

While this entity was classified as carcinogenic with strong certainty based on contextual analysis, it's 

crucial to note that the number of supporting publications (255 from 2020 to 2024) was significantly 

influenced by the unprecedented surge in research related to the pandemic during our study period. This 

underscores the importance of considering not just the quantity but also the timing and context of research 

outputs in our analysis. 

The presented approach has its limitations. Foremost, the entities identified by CarD-T are potential 

candidates for carcinogenicity, not confirmed carcinogens. Additional processing, either through manual 

review or more sophisticated AI-based tools, is necessary to validate these findings. Furthermore, our 

current analysis is limited to abstracts, which may not capture the full nuances of study methods, result 

quality, or contextual details present in full-text articles. 

Another limitation is the potential for bias introduced by publication trends, as illustrated by the COVID-

19 example. Sudden surges in research interest around particular topics could lead to their 

overrepresentation in our results. Additionally, while our tool is effective at identifying potential 

carcinogens, it does not inherently assess the strength or quality of the evidence supporting each 

nomination. 
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Despite these limitations, our work opens up exciting opportunities for future research. We have 

envisioned and partially implemented sub-labels for the "cancer type" label in CarD-T NER, including 

"mechanism of action," "study model (human vs. animal vs. population)," and "organ affected." While the 

outcomes from these more granular classifications are still works in progress, they represent a promising 

direction for enhancing the tool's capabilities. These sub-classifications could provide invaluable insights 

into the specific pathways and contexts in which potential carcinogens operate. For instance, they could 

help differentiate between agents that primarily affect certain organs or those that operate through 

particular cellular mechanisms. This level of detail could greatly assist researchers in prioritizing further 

investigations and potentially inform more targeted prevention strategies.  

Conclusions 

We present CarD-T, augmented by PCarD, as an automated text analytics tool to assess and tabularize 

evolving evidence for and against known, suspected and unknown carcinogens from scientific corpus. 

The tool is an amalgamation of various existing and newly developed code that can be downloaded for 

free from our open-access repositories and deployed locally on any standard GPU based computer. The 

comparative analysis of this tool with GPT-4 has highlighted the distinct capabilities of CarD-T in the 

domain of carcinogenic entity identification from an ever-growing corpus on cancer incidence and 

associated causal factors. The model’s nuanced understanding of the scientific lexicon distinguishes true 

carcinogen research from incidental mentions, emphasizing its critical role in public health informatics. 

Thus, we believe that CarD-T can become an essential tool for regulatory agencies tasked with assessing 

and establishing the cancer-causing potential of various biochemical, environmental, social and 

occupational factors. At the same time, it can be deployed by individuals wishing to delve into 

carcinogenesis research and look at relationships between and across various factors associated with 

increased cancer risk and incidence. 

Despite its impressive performance, CarD-T’s limitations point to areas for future improvement. The 

challenges posed by the subtleties and complexities of scientific literature necessitate continuous model 

updates and refinements. The integration of diverse data sources and multilingual datasets could further 

enhance the framework’s utility, providing a more comprehensive global assessment of carcinogenic 

agents. 

Our tool’s unique niche in the public health informatics ecosystem complements the broader Biomedical 

NLP services offered, focusing specifically on the detection and tracking of research evidence implicating 

carcinogens across time. The insights gleaned from the CarD-T framework, particularly when augmented 

by Probabilistic Carcinogenic Denomination (PCarD), reflect the dynamic and evolving nature of 

carcinogenicity research, offering a valuable perspective for agile and informed public health responses. 

Code & Data Availability 

Nominated carcinogens from carcinomic lexicon spanning the last 25-years and their metadata are 

available in the supplementary data. The code for the CarD-T framework & PCarD, including the training 

and evaluation scripts, is available upon request from the corresponding author. Further details and access 

instructions will be provided in the final published version of this paper. CarD-T language model is 

available at https://huggingface.co/jimnoneill/CarD-T.  
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