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ABSTRACT
Objective: The immune system, including the
adaptive immune response, has recently been
recognized as having a significant role in diet-induced
insulin resistance. In this study, we aimed to determine
if the adaptive immune system also functions in
maintaining physiological glucose homeostasis in the
absence of diet-induced disease.
Research design and methods: SCID mice and
immunocompetent control animals were phenotypically
assessed for variations in metabolic parameters and
cytokine profiles. Additionally, the glucose tolerance of
SCID and immunocompetent control animals was
assessed following introduction of a high-fat diet.
Results: SCID mice on a normal chow diet were
significantly insulin resistant relative to control animals
despite having less fat mass. This was associated with
a significant increase in the innate immunity-
stimulating cytokines granulocyte colony-stimulating
factor, monocyte chemoattractant protein 1 (MCP1),
and MCP3. Additionally, the SCID mouse phenotype
was exacerbated in response to a high-fat diet as
evidenced by the further significant progression of
glucose intolerance.
Conclusions: These results support the notion that
the adaptive immune system plays a fundamental
biological role in glucose homeostasis, and that the
absence of functional B and T cells results in
disruption in the concentrations of various cytokines
associated with macrophage proliferation and
recruitment. Additionally, the absence of functional B
and T cells is not protective against diet-induced
pathology.

INTRODUCTION
Increasing interest in the convergent biology
of insulin resistance and diabetes mellitus
has been partly fueled by the need for effect-
ive interventions, and by recent data impli-
cating the immune system in the
pathogenesis of these diseases and perhaps
shared mechanisms. It has long been estab-
lished that obesity, insulin resistance, and
chronic inflammation are often associated,
but it has been challenging to determine if a
causal relationship exists among these
conditions.
It is known that the adipose tissue of obese

mice and humans is characterized by an

accumulation of macrophages and, it is
thought, that this is a necessary component
of disease progression.1–3 The secretion of
cytokines tumor necrosis factor-α and inter-
leukin (IL)-6 by infiltrating macrophages are
thought to play a direct role in reducing the
insulin sensitivity of regional adipocytes.4–6

Even more compelling, the role of the
immune system in insulin resistance is no
longer thought to be restricted to just the
innate arm, but also includes an adaptive
immune response. B and T cells have both
been implicated in insulin resistance, with
both detrimental and protective effects being
reported.7–21

The results to date have been compelling;
however, they fail to address if the adaptive
immune system is a necessary component for
metabolic homeostasis; that is, by manipulat-
ing the immune phenotype are we disrupting
a physiological homeostatic mechanism? This
study aimed to examine this by assessing the
effects of immune incompetence on meta-
bolic homeostasis in the presence and
absence of a high-fat diet (HFD).

RESEARCH DESIGN AND METHODS
Ethics statement
All animal studies were completed in accord-
ance with the Guide for the Care and Use of
Laboratory Animals of the National Institutes
of Health and approved by the Institutional
Animal Care and Use Committee of Stanford
University.

Mouse manipulations
Male, 6-week-old BALB/c control and
BALB/c scid mice were purchased from

Key messages

▪ Mice lacking of an adaptive immune system
(SCID mice) have disruptions in the concentra-
tions of various circulating cytokines.

▪ SCID mice have significant glucose intolerance
that is independent of diet and obesity.

▪ The absence of functional B and T cells in SCID
mice is not protective against diet-induced
glucose intolerance progression.
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Jackson Laboratories. Blood glucose measurements were
taken using the One Touch Ultra blood glucose meter.
The HFD, 60% kilocalories from fat, (#D12492) and
control, 10% kilocalories from fat, (#D12450B) diets
were purchased from Research Diets, Inc. Fasting insulin
levels were detected using the Crystal Chem Inc Ultra
Sensitive Mouse Insulin ELISA (#90080). The Stanford
Human Immune Monitoring Core completed the
mouse cytokine Luminex array. The Stanford
Department of Comparative Medicine’s Histology Lab
prepared all histological samples.

Glucose tolerance test
The glucose tolerance test (GTT) was completed as pre-
viously described.22 Briefly, mice were fasted for 8 h fol-
lowed by intraperitoneal administration of 2 g/kg of
D-glucose.

Insulin tolerance test
The insulin tolerance test (ITT) was completed as previ-
ously described.22 Briefly, mice were fasted for 6 h fol-
lowed by intraperitoneal administration of 2 units/kg of
Humulin R insulin.

Statistical analysis
All data were presented as the mean±SEM. For data ana-
lysis between two groups, significance was determined by
the unpaired Student t test and defined as p≤0.05. For
repeated measures data (GTT and ITT), significance was
determined by two-way analysis of variance for repeated
measures with Bonferroni correction and defined as
p≤0.05.

RESULTS
The phenotypes of BALB/c scid (SCID) and the BALB/
c strain controls (control) were compared for variations
in glucose and insulin sensitivity. SCID mice had signifi-
cantly reduced glucose tolerance compared with control
mice (p=0.0049; figure 1A). There was no difference
observed between the fasting blood glucose levels or in
response to insulin administration (figure 1B).
On evaluation of fasting insulin levels, SCID mice had

a 174% greater fasting blood insulin concentration than
that of controls (p=0.0345; figure 1C). Use of the
homeostatic model assessment method indicated that
SCID mice had significantly greater β-cell function, 205
±31%, when compared with control mice, 71±7%
(p=0.0183; figure 1D). Correspondingly, the method
indicated that SCID mice had a nearly significant reduc-
tion in insulin sensitivity (p=0.0977; figure 1E).
Despite the apparent insulin resistance of SCID mice,

SCID mice weighed significantly less at 23.3±0.3 g
(p=0.0332; figure 2A). The total body weight of control
mice was 25.0±0.4 g. This difference was predominately
due to differences in fat mass. SCID mice had 50% the
adipose volume when compared with control mice. SCID
mice had 110±26 mg of inguinal subcutaneous adipose

tissue and 211±37 mg of visceral epididymal adipose
tissue (mean±SEM). In contrast, control mice possessed
significantly more adipose tissue with 204±25 and 423
±70 mg, respectively (p=0.0383 and 0.0252; figure 2B,C).
Histopathology did not reveal any clear differences
between the tissues collected from mice (figure 2D,E).
Luminex was used to evaluate the circulating cytokine

profiles of control and SCID mice and revealed that
SCID mice had alterations in the levels of circulating
cytokines with significantly higher levels of granulocyte
colony-stimulating factor (GCSF), IL-4, monocyte
chemoattractant protein 3 (MCP3), MCP1, IL-17A,
macrophage inflammatory protein 2 (MIP2), IL-1A,
IL-28, IL-18, and IL-31 and significantly lower levels of
C-C motif chemokine ligand 5 (CCL5) (RANTES) rela-
tive to controls (figure 3). The cytokines with the great-
est difference in SCID mice were MCP1 and MCP3 and
GCSF which were both significantly higher in the immu-
nodeficient SCID mice (p=0.0116, 0.0011, and 0.0207,
respectively).
To assess the role of the adaptive immune response in

diet-induced glucose intolerance, control (BALB/c) or
BALB/c scid (SCID) mice were fed either a HFD, with
60% of the kilocalories derived from fat, or a control
diet, with 10% of the kilocalories derived from fat, for
14 weeks. At completion of the dietary intervention,

Figure 1 The insulin sensitivity of BALB/c scid mice is lower

than that in BALB/c mice. (A) Glucose tolerance test of control

(white circles) and SCID (black circles) mice following a 2 g/kg

glucose challenge (n=4/5). (B) Insulin tolerance test of control

(white circles) and SCID (black circles) mice following a

2 units/kg insulin challenge (n=4/5). (C) The fasting,

blood-insulin levels of control and SCID mice (n=4/5). (D) The

per cent β-cell function as determined by the homeostatic

model assessment (HOMA) of control and SCID mice (n=4/5).

(E) The per cent insulin sensitivity as determined by the

HOMA of control and SCID mice (n=4/5). (Error bars

represent the mean±SEM, and *signifies a significant

difference between the designated groups of p<0.05.)
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there was no significant difference between the total
body weights for all groups of mice (figure 4A). BALB/c
mice fed on a HFD had significantly (p=0.0473)
reduced glucose tolerance relative to BALB/c mice
maintained on a control diet with significantly higher
fasting blood glucose levels. The SCID mice maintained
on the control diet also had significantly (p=0.0013)
greater fasting blood glucose levels relative to the
BALB/c mice on the control diet. Similarly, the SCID
mice on the control diet had a significantly (p=0.0005)
reduced glucose tolerance compared with BALB/c mice
on the control diet. SCID mice maintained on a HFD
had significantly (p<0.0104) higher fasting blood
glucose levels compared with all other mouse groups.
Additionally, SCID mice on a HFD had significantly
higher blood glucose levels following a glucose chal-
lenge when compared with the SCID mice on a control
diet (p=0.0027) and the BALB/c mice on a HFD
(p=0.0001; figure 4B).

DISCUSSION
The goal of this work was to assess the role of the adap-
tive immune system in glucose homeostasis versus
diet-induced glucose intolerance. We approached this by
comparing the phenotypes of the immunodeficient
SCID mouse and its immunocompetent BALB/c strain
control. Collectively, our studies indicate that an adap-
tive immune response is a necessary, physiological com-
ponent of the metabolic organ required for glucose

homeostasis, but its absence does not protect against
diet-induced glucose intolerance.
SCID mice were insulin resistant in the absence of

obesity and were, in fact, leaner than their counterparts.
This result supports the role of the adaptive immune
system in metabolic homeostasis by suggesting that
obesity is not a required component for immune-
mediated disruption in insulin tolerance. The finding
that the adaptive immune system is important for
glucose homeostasis is consistent with work that demon-
strated an early populating of the visceral adipose tissue
of lean mice by T regulatory cells in an antigen-
dependent fashion. The T regulatory cells performed
both inflammatory and metabolic functions.20 A recent
human trial suggests that a HFD can induce insulin
resistance without causing concurrent detectable
changes in immune function. While short-term over-
feeding did result in insulin resistance, it did not cause
significant alternations in the populations of immune
cells or cytokine gene expression profiles within the sub-
cutaneous adipose tissue.23 These findings support that
glucose sensitivity is an extraordinarily complex process,
melding both physiological and pathological mechan-
isms of a multitude of organ systems.
Interestingly, cytokine profile analyses in immuocom-

petent controls and immunodeficient SCID mice
demonstrated several significant differences; however,
those cytokines that were elevated to a degree as to be
functionally significant were all associated with neutro-
phil proliferation, GCSF, or macrophage recruitment,

Figure 2 The adipose tissue of BALB/c scid mice is quantitatively, but not qualitatively, different than that of BALB/c control

mice. (A) The total body weight of control BALB/c and BALB/c scid (SCID) mice (n=4/5). (B) The total weight of the

subcutaneous adipose tissue bilaterally isolated from the inguinal region of control and SCID mice (n=4/5). (C) The total weight

of the epididymal adipose tissue bilaterally isolated from control and SCID mice (n=4/5). (Error bars represent the mean±SEM,

and *signifies a significant difference between the control and SCID groups of p<0.05.) (D) 10× light microscopy of H&E stained

sections of liver, pancreas, subcutaneous, and visceral adipose tissue collected from control and SCID mice. Scale bar is

200 μm. (E) 100× light microscopy of H&E stained sections of liver, pancreas, subcutaneous, and visceral adipose tissue

collected from control and SCID mice. (Scale bar is 50 μm.)
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MCP1 and MCP3. This is of special note as macrophage
accumulation within the adipose tissue, especially vis-
ceral adipose tissue, is a consistent finding among
insulin-resistant mice and humans and is thought to be
a necessary component in diet-induced insulin resist-
ance.1–3 Additionally, visceral adipose tissue-associated T
cells are thought to be the major source of
macrophage-recruiting chemokines.13 Our results indi-
cated that the MCP1 and MCP3 levels were elevated in
the absence of T cells, suggesting an alternative source
for these chemokines. The likely source for these che-
mokines is adipocytes. Others have demonstrated that
adipocytes secrete macrophage-recruiting chemokines

and that their expression increases in adipocytes on
introduction of a HFD.24 25 Collectively, these results
support the hypothesis that one role of the adaptive
immune system in glucose homeostasis is maintaining
levels of macrophage-stimulating cytokines and prevent-
ing disruption in glucose homeostasis. Additionally, our
work indicates that the absence of functional B and T
cells does not provide protection against HFD-induced
insulin resistance as SCID mice fed on a HFD, although
already insulin resistant, developed even greater glucose
intolerance.
Surprisingly, mice fed on a HFD did not gain signifi-

cant amounts of weight. This result may be due to our
low sample size, and/or our use of the BALB/c mouse
strain. The BALB/c strain has previously been shown to
demonstrate less pathology in association with a HFD
when compared with other mouse strains.26 An add-
itional finding was that 6-week-old SCID mice on a
control diet did not have significantly greater fasting
blood glucose levels when compared with same-aged
BALB/c mice on a control diet (figure 1A and online
supplementary material 1); however, 20-week-old SCID
mice on a control diet did have significantly higher
fasting blood glucose levels when compared with BALB/
c mice on a control diet (figure 4B). This result suggests
that the glucose intolerant phenotype of SCID mice
worsens with age. It is possible that B and T cells have a
developmental and/or continuous regulatory role in
adipose biology, influencing the gut microbiome,
adipose tissue biology, and the adipose tissue inflamma-
tory tone in a way that is exacerbated by age.7–21 27

Collectively, this work supports that the adaptive
immune system is part of the metabolic organ system

Figure 3 BALB/c scid mice have higher levels of

macrophage-stimulating cytokines in circulation compared

with BALB/c control mice. The average fold difference in the

(MFI) of SCID mice relative to the average MFI of control mice

(n=5). (Error bars represent the mean±SEM, and *signifies a

significant difference between the control and SCID groups of

p<0.05.) GCSF, granulocyte colony-stimulating factor;

GMCSF, granulocyte macrophage colony-stimulating factor;

GROA, growth-regulated protein alpha; IFNA, interferon alpha;

IFNG interferon gamma; IL, interleukin; IP, interferon-inducible

protein-10; LIX, lipopolysaccharide-inducible CXC chemokine;

MCSF, macrophage colony-stimulating factor; MFI, median

fluorescence intensity; MCP, monocyte chemoattractant

protein; MIP, macrophage inflammatory protein; TGFB,

transforming growth factor beta; TNFA, tumor necrosis factor

alpha; VEGF, vascular endothelial growth factor.

Figure 4 High-fat diet induces progression of glucose

intolerance in BALB/c scid mice. (A) The total body weight of

control (BALB/c) and BALB/c scid (SCID) mice following

14 weeks of a control diet (control) or high-fat diet (HFD;

n=5). (B) Glucose tolerance test of BALB/c (circle) and SCID

(square) mice on the control (white) or HFD (black) diet

following a 2 g/kg glucose challenge (n=5). (Error bars

represent the mean±SEM, *signifies a significant difference

between the designated groups of p<0.05.)
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and that disruptions in its function can result in insulin
resistance; however, an absence of B and T cells does
not protect from diet-induced insulin resistance. These
findings emphasise that results collected in immune-
manipulated and diet-manipulated mice must be inter-
preted carefully as they can be due to a disruption in
physiological glucose homeostasis, pathological insulin
resistance or a combination of these two events.
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