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To identify a glycolysis-related gene signature for the evaluation of prognosis in patients
with breast cancer, we analyzed the data of a training set from TCGA database and four
validation cohorts from the GEO and ICGC databases which included 1,632 patients with
breast cancer. We conducted GSEA, univariate Cox regression, LASSO, and multiple Cox
regression analysis. Finally, an 11-gene signature related to glycolysis for predicting
survival in patients with breast cancer was developed. And Kaplan–Meier analysis and
ROC analyses suggested that the signature showed a good prognostic ability for BC in
the TCGA, ICGC, and GEO datasets. The analyses of univariate Cox regression and
multivariate Cox regression revealed that it’s an important prognostic factor independent
of multiple clinical features. Moreover, a prognostic nomogram, combining the gene
signature and clinical characteristics of patients, was constructed. These findings provide
insights into the identification of breast cancer patients with a poor prognosis.

Keywords: bioinformatics, breast cancer, glycolysis, prognostic signature, The Cancer Genome Atlas
INTRODUCTION

Cancer is a global public health problem and the second most important cause of death in America
(1). The global cancer burden is estimated every year by the American Cancer Society. According to
the latest data report, the numbers of breast cancer (BC) cases and deaths estimated to occur in 2019
were 271,270 and 42,260, respectively (2). The high incidence and mortality of female BC remain a
Abbreviations: BC, Breast cancer; ER, Estrogen receptor; GEO, Gene Expression Omnibus; GRG, Glycolysis-related gene;
GSEA, Gene set enrichment analysis; ICGC, International Cancer Genomics Consortium; LASSO, Least absolute shrinkage
and selection operator; OS: Overall survival; PR, Progesterone receptor; ROC, Receiver operating characteristic; TCGA, The
Cancer Genome Atlas.
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global health challenge, and the global burden is still increasing
in several countries (3–5). Moreover, improvement of the overall
clinical outcome of patients is crucial (6). Therefore, there is an
urgent need to develop effective prognostic models for predicting
the overall survival (OS) in patients with BC and for guiding
clinical practice.

Metabolic reprogramming is a key hallmark of cancer (7, 8).
Sufficient energy and metabolic intermediates for biosynthesis are the
foundation of tumor cell initiation, proliferation and metastasis (9).
Thus, many types of cancer are characterized by enhanced level of
glycolysis and suppressed mitochondrial metabolism (7, 8, 10).
Glycolysis might promote cancer cell survival by providing ATP
and lactic acid (the main energy sources in cancer cells) (11). It has
been reported that increased levels of glycolysis promoted the
proliferation, invasion, and migration of certain cancer cells
through activation of different signaling pathways and also
enhanced drug resistance (10, 12–14). Therefore, tumor aerobic
glycolysis has possible implications for prognosis judgment and
cancer treatment (15, 16). Several studies have proven that the
activity of cancer cells was significantly inhibited after glycolysis
levels were decreased (17, 18). Studies have also examined the role
of glycolysis in prediction of patient survival. For example, higher
TCF7L2 expression predicted worse prognosis in pancreatic cancer
(19). Four glycolysis-related genes (GRGs) (AGRN, AKR1A1,
DDIT4, and HMMR) were identified as closely related to the
clinical outcome in patients with lung adenocarcinoma (20). The
glycolytic gene expression signatures based on nine (CLDN9,
B4GALT1, GMPPB, B4GALT4, AK4, CHST6, PC, GPC1, and
SRD5A3) and 10 biomarkers (HK2, HK3, LDHA, PKM2, GAPDH,
ENO1, LDHB, PKLR, ALDOB, andGALM) predicted poor prognosis
in patients with endometrial cancer (21) and glioblastoma patients
(22), respectively. Although previous studies have investigated the role
of GRGs and glycolysis in the development of BC (23–25),
comprehensive investigations in this field are still needed.

This study aimed to evaluate the GRG expression in BC based
on TCGA data and to study the association between GRG
expression and BC survival. To this end, we primarily selected
genes by conducting gene set enrichment analysis (GSEA). Many
studies have focused on differentially expressed genes in tissues
for the identification of biomarkers. However, some genes with
important biological functions or connections among gene
regulatory networks, gene functions, and characteristics are not
differentially expressed and are often easily ignored. Since GSEA
can scientifically screen genes based on the overall expression
levels and data trends, it does not require significant differences
in gene thresholds. This improves the statistical analysis of gene
expression and biological significance (26).

Finally, an 11-GRG risk signature effectively predicting
patient prognosis was constructed in our study. Furthermore,
our gene-based model, as an independent prediction factor,
could identify that patients with a high risk score had poorer
prognoses than those in the low-risk score. Additionally, the
prognosis performance of the risk model was significantly better
than that of other clinical characteristics. In addition, it showed
better performance in both training and testing datasets for
predicting the clinical outcome in BC patients.
Frontiers in Oncology | www.frontiersin.org 2
MATERIALS AND METHODS

Data Collection
In total, 1,632 patients with BC were selected from five cohorts.
The Cancer Genome Atlas (TCGA) cohorts included 1,057
records of patients with BC, whose expression profiles and
clinical data were downloaded from the TCGA data portal
(https://portal.gdc.cancer.gov/). The combined International
Cancer Genomics Consortium (ICGC) cohort formed by the
merger of Breast Cancer-FR and Breast Cancer-KR cohorts
included 149 BC patients and the clinical information and
expression profiles were obtained from ICGC database (http://
dcc.icgc.org). Three Gene Expression Omnibus (GEO) cohorts
were GSE42568, GSE7390, and GSE58812 datasets, which
expression matrixes were obtained from the GEO database
(https://www.ncbi.nlm.nih.gov/geo/). The GSE58812 and
GSE42568 expression profile was based on the GPL570
platform and respectively contained 107 and 121 BC samples
(27, 28). The GSE7390 expression profile was based on the
GPL96 platform, which cohort included 198 BC samples (29).
The patients from TCGA were defined as a training cohort, while
the four datasets from the ICGC and GEO were used for external
validation. In addition, we also extracted detailed clinical
information of TCGA cohort as shown in Table 1: age,
pathological stage, estrogen receptor (ER; positive or negative)
status, progesterone receptor (PR; positive or negative) status,
human epidermal growth factor 2 (HER2; positive or negative)
status, adjuvant chemotherapies, and T/N/M stage. GRG sets
were searched from the Molecular Signatures Database
(MSigDB) (30).

Gene Set Enrichment Analysis
We used the GSEA (http://www.broadinstitute.org/gsea/index.jsp)
to determine if the identified GRG sets had significant differences
between the BC tissues and matched adjacent normal tissue (26).
We use normalized P values of <0.05 to define statistical
significance. The genes of the GRG sets which produced
significant P value were collected for subsequent analysis.

Construction and Evaluation of the
11-GRG Prediction Model
We normalized each gene from among the expression profiles
using log2 transformation (20, 31, 32). We sequentially
conducted univariate Cox, the least absolute shrinkage and
selection operator (LASSO) regression using the R package
“glmnet” (33, 34), and multivariate Cox regression analyses to
identify the GRGs associated with BC prognosis and to construct
a GRG-based prediction model (34–37). The risk score was
calculated using the following formula: Risk score = Sn

i=1coef ∗ id
(38). We performed the Kaplan–Meier survival analysis to assess
the difference in survival between high and low risk score groups
by using “survival” R package (39, 40). The time-dependent
receiver operating characteristic (ROC) curve was used to assess
the performance of the gene risk model and compare the
prediction efficiency with clinical features using the
January 2021 | Volume 10 | Article 596087
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“survivalROC” R package (39). We applied Cox regression
analyses to assess the independent prognostic values of the
signature and other clinical characteristics. To estimate the
likelihood of survival, a nomogram was constructed based on
the risk score and clinical features by using the R package of
“rms” (41), which were analyzed using multivariate Cox
regression analysis. And the prognostic ability of the
nomogram was weighed by C-index, ROC, and calibration
plots (41).

Statistical Analysis
Differences among variables (risk score, age, tumor stage, T/N/M
pathological stage, and ER, PR, and HER2 status) were tested
using t-tests, non-parametric tests, or chi-square tests. We
identified the alterations in selected genes from the cBioPortal
website (http://www.cbioportal.org/). All statistical analyses were
performed using R software (version 3.6.2) and R packages
including “survivalROC”, “survival”, “glmnet” and “rms” (33,
34, 39, 40). P <0.05 was considered statistically different. All the
scripts were uploaded at Github website (https://github.com/
bioinformatics0/Glycolysis-BC).
Frontiers in Oncology | www.frontiersin.org 3
RESULTS

Initial Screening of Genes Using Gene
Set Enrichment Analysis
We obtained a dataset containing clinical information on 1,057 BC
patients and 112 normal controls and data on the expression levels
of 24,991 mRNAs from TCGA. Five glycolysis-related MSigDB
version6.2 gene setsweredownloaded, anda total of 443 geneswere
obtained. We used the above data and GSEA to verify which gene
sets had significant differences between the BC tissues andmatched
adjacent normal tissues. The results demonstrated four significantly
enriched gene sets, with normalized P values <0.05, from the
following pathways: BIOCARTA_GLYCOLYSIS_PATHWAY,
GO_GLYCOLYTIC_PROCESS, HALLMARK_GLYCOLYSIS,
and REACTOME_ GLYCOLYSIS (Table 2, Figure 1). The
corresponding 381 genes from these four gene sets were selected
for subsequent analysis.
Construction and Evaluation of the
Glycolysis-Related Risk Signature
We conducted univariate Cox regression analysis to analyze 381
genes after GSEA. Finally, a total of 11 genes (PGK1, SDC1,
NUP43, NT5E, IL13RA1, GCLC, CACNA1H, P4HA1, TSTA3,
MXI1, and STC1) were significantly correlated with OS (adjusted
P < 0.05) after the filtration using LASSO and multivariable Cox
regression analyses (Figure 2). A gene-based prognostic model
was established to evaluate the survival risk for each patient as
follows: Risk score = 0.00710 × expression of PGK1 + 0.00187 ×
expression of SDC1 + 0.05107 × expression of NUP43 + 0.05599 ×
expression of NT5E + 0.00587 × expression of IL13RA1 +
0.05692 × expression of GCLC + 0.01385 × expression of
CACNA1H + (-0.00535) × expression of P4HA1 + 0.011698 ×
expression of TSTA3 + 0.026129 × expression ofMXI1 + 0.00305 ×
expression of STC1. We then analyzed the mutational status of
these 11 selected genes in TCGA BC samples in the cBioPortal
database. Figure S1A shows the alterations in 11 genes. We also
performed differential analysis of the expression of 11 genes in
adjacent normal and BC tissues. Eleven genes were all
significantly upregulated in tumor tissues (P < 0.05, Figure S1B).

We calculated each patient’s risk scores in the training set
based on the 11-gene signature. Patients with a high-risk score
had a higher mortality rate than those with a low-risk score (P <
0.0001, log-rank test) (Figure 3A). The area under the curve
(AUC) values for 1-, 3-, and 5-year OS, were 0.719, 0.762, and
0.742, respectively (Figure 3B). Figures 3C, D show the risk
scores rank distribution and survival status in BC patients in the
training set. The expression patterns of 11 GRGs in high/low risk
groups are shown in the heatmap (Figure 3E). To assess the
robustness of the 11-GRG signature, we assessed its performance
using validation cohorts from the ICGC and GEO databases.
Similar to that in the previous analysis, the patients in the high-
risk subgroup had poorer survival than those in the low-risk
group (P < 0.05; Figures 4Aa–Da). The 1-, 3-, and 5-year AUC
values were 0.782, 0.79, and 0.675 in the ICGC cohort (Figure
4Ab), and 0.683, 0.723, and 0.752 in the GSE42568 cohort,
TABLE 1 | Clinic pathological characteristics of extracted patients with breast cancer.

Characteristic Group No. of cases (%)

Age (years) <60 571 (54.02)
≥60 485 (45.88)
Unknown 1 (0.09)

Pathological stage Stage I 181 (17.12)
Stage II 599 (56.67)
Stage III 237 (22.42)
Stage IV 19 (1.80)
Unknown 21 (1.99)

Pathological T T1 278 (26.30)
T2 607 (57.43)
T3 132 (12.49)
T4 37(3.50)
Unknown 3 (0.28)

Pathological N N0 500 (47.30)
N1 351 (33.21)
N2 119 (11.26)
N3 72 (6.81)
Unknown 15 (1.42)

Metastasis M0 880(83.25)
M1 21 (1.99)
Unknown 156 (14.76)

ER positive 774(73.23)
negative 234(22.14)
Unknown 49 (4.64)

PR positive 673 (63.67)
negative 333 (31.50)
Unknown 51 (4.83)

HER2 positive 165 (15.61)
negative 629 (59.51)
Unknown 263 (24.88)

Adjuvant therapy No 416 (39.36)
Yes 534 (50.52)
Unknown 107 (10.12)

Vital status Alive 908 (85.90)
Dead 149 (14.10)
ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth
factor 2.
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respectively (Figure 4Bb). The AUC for OS was 0.715 at 1 year,
0.701 at 3 year and 0.76 at 5 year in the GSE7390 cohort (Figure
4Cb), and 0.711 at 1 year, 0.822 at 3 year, and 0.795 at 5 year in
the GSE58812 cohort (Figure 4Db).

Establishment and Assessment
of a Nomogram
Univariate analyses were performed to examine the prognostic
values of several clinicopathological features (age, pathological
stage, ER, PR, and HER2). Consequently, the 11-GRG risk
signature correlated with OS (hazard ration [HR] = 1.178; 95%
confidence interval [CI], 1.128−1.231, P < 0.001) (Table 3). And
age >60, (HR = 1.047; 95% CI, 1.030–1.064, P < 0.001), high
pathological stage (III/IV) (HR = 2.022; 95% CI, 1.541−2.654, P <
0.001) were also risk factors for BC. Furthermore, after the
multivariate analyses, the results showed that risk score (HR =
1.136; 95% CI, 1.083−1.191), age (HR = 1.047; 95% CI, 1.030–
1.065), and stage (HR = 1.986; 95% CI, 1.522−2.591) remained
independent prognostic factors with an adjusted P value <0.001.
In addition, the ROC analysis revealed that the sensitivity and
specificity of the 11-gene signature were greater than those of the
other clinicopathological features (Figure 5A). Additionally, the
Frontiers in Oncology | www.frontiersin.org 4
gene risk model was proven to be a competitive prognostic factor
for BC survival prediction. These results suggested that the
signature can be a promising prognostic indicator for
predicting OS in patients with BC. To develop a quantitative
method that can predict the OS of patients with BC, a nomogram
was constructed. The predictors included risk score, age, and
tumor stage which produced significant P value in multivariate
Cox analysis (Figure 5B). The result of C-index (0.812), AUC (1-
year, 0.836; 3-year, 0.767 and 5-year, 0.792) and calibration plot
showed the nomogram predicts with high accuracy (Figures
5C, D).

Data Stratification Analyses
The results of the univariate Cox regression analysis of OS
showed that age and stage could effectively predict survival in
BC patients. The Kaplan–Meier curves revealed that the clinical
features and results were consistent. BC patients who were older
than 60 years and had stages III–IV disease were associated with
poor prognosis (Figures 5E, F). In the TCGA cohort, subgroup
analyses were conducted based on the clinicopathological
variables (age, tumor stage, T/M/N stage, ER status, PR status,
HER2 status and adjuvant chemotherapies). According to the
TABLE 2 | Gene sets enriched in breast cancer.

GS follow link to MSigDB SIZE ES NES NOM p-val FDR q-val

BIOCARTA_GLYCOLYSIS_PATHWAY 3 0.94 1.54 0.0141 0.0141
GO_GLYCOLYTIC_PROCESS 106 0.45 1.63 0.0210 0.0210
HALLMARK_GLYCOLYSIS 200 0.58 2.06 0.0000 0.0000
KEGG_GLYCOLYSIS_GLUCONEOGENESIS 62 −0.36 −1.25 0.2064 0.2064
REACTOME_GLYCOLYSIS 72 0.63 2.05 0.0020 0.0020
Janu
ary 2021 | Volume 10 | Art
FIGURE 1 | Enrichment plots of five gene sets which had significant difference between normal tissues and BC tissues by performing GSEA.
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Kaplan–Meier curves, in patients with BC who were stratified by
age, tumor stage, T/N stage, ER status, PR status, HER2 status
and adjuvant chemotherapies (No/Yes), the risk score remained
a stable prognostic factor (Figures 6A–D, F–I). Nevertheless, the
risk score played different roles in the subgroups or in patients
stratified by metastasis stage. Patients in the high-risk group had
a significantly shorter OS than those in the low-risk group in the
subgroup of patients without distal metastasis (P < 0.001), while
no significant difference was observed between the two groups
with distal metastasis (P = 0.324) (Figure 6E). This result
indicated that the risk model had better predictive value for
clinical outcomes in BC patients without metastasis than in those
with distal metastasis and more evidence and larger cohorts are
necessary for further validation.

Comparison With Other Prognostic
Signatures
A comparison of our nomogram and signature with other known
prognostic hallmarks was performed. In order to exclude the
impact of heterogeneity, all of these hallmarks that were
Frontiers in Oncology | www.frontiersin.org 5
developed based on TCGA database were included. Considering
that our research is based on all types of BC and total TCGA BC
cohort was used as the training set, so we further excluded the
studies with the model construction for specific BC subtype (42–
44) and studies which TCGA cohort was randomly divided into
training and testing sets (45, 46). Finally, 15 related prognostic
signatures were included to compare with our gene signature and
nomogram (Table 4). The AUCs of the signature and the
nomogram in our study at 1-, 3-, and 5-years were 0.719, 0.762,
0.742 and 0.836, 0.767, 0.792 respectively. Table 4 showed that the
AUCs of four prognostic signature including 12 stemness-related
lncRNA signature (0.813 at 5 years) (47), 11 immune-related
lncRNA signature (0.836 at 5 years) (52), 27 immune-related gene
signature (0.844 at 5 years) (54) and four methylated gene
signature (0.791 at 5 years) (61) were distinctly higher than that
of other biomarkers. Moreover, our signature also performed
better in the prediction of BC patients’ OS than the signature
based on the hallmarks related to autophagy (48), tumor
microenvironment (immune, stromal, and proliferation) (49),
tumor mutation burden (50), hypoxia (51), DNA repair (55),
A B

C

FIGURE 2 | GRGs selection using the LASSO model and multivariable Cox model. (A) Ten-fold cross-validation for the coefficients of 326 GRGs in the LASSO
model. (B) X-tile analysis of the 21 selected GRGs. (C) Forest plot illustrating the multivariable Cox model results of each gene in 11-GRG risk signature.
January 2021 | Volume 10 | Article 596087
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lncRNA (56) and miRNA (57, 58). The larger the AUC value of
the biomarkers, the better the predictive ability of the hallmarks.
This clearly shows that our nomogram and GRG signature are
superior to other models after the four high-quality models in
predicting the OS of BC patients.
DISCUSSION

BC is the most common cause of cancer-related mortality among
malignancies and women worldwide (6, 62). It is difficult to
predict prognosis in BC due to its phenotypic and molecular
diversity. The application of prognostic models is useful for
guiding clinical decisions and is essential for precision medicine.
Subtype identification, risk stratification, and characterization of
the underlying mechanisms are critical for the improvement of
the existing treatment methods, development of more precise
and personalized therapies, and prolongation of survival time.
Glycolysis is a multi-step enzymatic reaction and is considered to
be the root of the development and progression of cancer (63).
Since an increasing number of studies have identified prognostic
markers of GRGs, a GRG-based risk signature for predicting the
survival in BC patients must be established to improve the
accuracy in prognosis.

GSEA is a method for evaluating whole-genome expression
profile chip data, which can integrate data from different levels
and sources. In the present study, GSEA was conducted using the
data on mRNA expression profiles in the 1,096 BC patients. Four
gene sets with P values <0.05 exhibited significant differences and
were chosen for subsequent analyses. Univariate, multivariate
Frontiers in Oncology | www.frontiersin.org 6
Cox, and LASSO regression analyses were performed to identify
11 prognostic genes for BC patients. Based on the 11 most
valuable biomarkers, we developed and verified an effective
model to predict clinical outcomes in BC patients. Survival
analysis showed distinctly different prognoses between high-
and low-risk BC patients. The model was also verified in the
GEO and ICGC datasets, demonstrating favorable clinical
predictive ability. In addition, the prediction model for BC
patients could act as an independent prognostic tool through
multivariate Cox analyses. We also found that patients with
higher risk scores in our prediction model tended to be older,
have advanced stage disease, and a poorer prognosis. The
prediction model in our study had similar or better clinical
application potential compared to traditional clinical factors.
Moreover, we integrated the prediction model and clinical
characteristics to establish a novel nomogram. The nomogram
took advantage of the complementary values of clinical
characteristics and the prediction model and provided superior
estimation of OS. The result showed that C-index, ROC and
calibration plot performed well in our study. Additionally,
the gene signature could further stratify clinically defined
groups of patients (e.g., groups stratified according to
age, stage, T/N/M stage, ER status, PR status, HER2 status and
adjuvant chemotherapies) into subgroups with different survival
outcomes. The risk model could effectively predict the prognosis
of patients with BC in all subgroups, but it could not be applied
to the subgroup of BC patients with distal metastasis. The
underlying mechanisms of this result should be explored in
depth in the future. The results showed that the calculation of
risk scores has great prognostic significance for BC patients. This
not only increases the means of predicting the prognosis but can
A B

D E

C

FIGURE 3 | KM survival analysis, risk score assessment by the GRG‐related gene signature and time-dependent ROC curves in the TCGA cohort. (A) KM survival
analysis of high‐ and low‐risk samples. (B) ROC curve for overall survival of the training set. The AUC was assessed at 1, 3, and 5 years. (C) Risk score distribution,
(D), survival status, and (E). Eleven GRGs expression patterns for patients in high- and low-risk groups by the 11-GRG signature.
January 2021 | Volume 10 | Article 596087
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A

B

D

C

FIGURE 4 | KM survival analysis and time-dependent ROC curves in the ICGC and GEO cohorts. (A) (ICGC), (B) a (GSE42568), (C) a (GSE7390), (D) a
(GSE58812), Kaplan–Meier analysis with two-sided log-rank test was performed to estimate the differences in OS between the low-risk and high-risk group patients.
(A) b (ICGC), (B) b (GSE42568), (C) b (GSE7390), (D) b (GSE58812), 1-, 3- and 5-year ROC curves of the 8-GRG signature were used to demonstrate the
sensitivity and specificity in predicting the OS of BC patients.
Frontiers in Oncology | www.frontiersin.org January 2021 | Volume 10 | Article 5960877
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A B
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FIGURE 5 | ROC curve with respect to clinical features and risk model, nomogram and Kaplan–Meier survival analysis for BC patients with clinical features:
(A) Time-dependent ROC curve with respect to single clinical features and risk model. (B) The nomogram for predicting probabilities of BC patients overall survival.
(C) 1-, 3- and 5-year ROC curves for the nomogram. (D) The 1-, 3- and 5-year nomogram calibration curves, respectively. Kaplan–Meier survival analysis for BC
patients with different clinical features that can predict patient survival (E, Age, F, Stage).
TABLE 3 | The risk score generated from the 11-GRG signature as an independent indicator according to Cox proportional hazards regression model.

Variable Univariate analysis Multivariate analysis

HR (95%CI) P-value HR (95%CI) P-value

Age (>60/≤60 years) 1.047 (1.030–1.064) <0.001 1.047 (1.030–1.065) <0.001
Pathological stage (I/II/III/IV) 2.022(1.541–2.654) <0.001 1.986(1.522–2.591) <0.001
ER (Negative/Positive) 0.736(0.474–1.142) 0.171 0.846(0.434–1.651) 0.624
PR (Negative/Positive) 0.782(0.520–1.175) 0.236 0.803(0.435–1.483) 0.484
HER2 (Negative/Positive) 1.240(0.764–2.014) 0.384 1.080(0.661–1.765) 0.759
Eleven-GRG risk scores (H/L) 1.178(1.128–1.231) <0.001 1.136(1.083–1.191) <0.001
Frontiers in Oncology | www.frontiersin.org
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GRG, glycolysis-related gene; ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor 2. H, High; L, low.
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FIGURE 6 | KM survival subgroup analysis of all patients with BC according
to the GRG‐related gene signature stratified by clinical characteristics.
(A) Age <60 y, Age >=60 y. (B) Early stage (stages I–II), Late stage (stages
III–IV). C, T1-2, T3–4. (D) Lymph node-negative patients, Lymph node-
positive patients. (E) Patients without distal metastasis, patients with distal
metastasis. (F) ER-negative patients, ER-positive patients. (G) PR-negative
patients, PR-positive patients. (H) HER2-negative patients, HER2-positive
patients. (I) No adjuvant therapy, adjuvant therapy. GRGs, glycolysis-related
genes; BC, breast cancer; ER, estrogen receptor; PR, progesterone receptor;
HER2, human epidermal growth factor 2.
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also help clinicians to choose more suitable treatment options
for patients.

Chemotherapy is still an important way of cancer treatment.
Chemotherapy drugs have an oxygen-dependent effect on the
killing of tumor cells, most of which kill cells by oxidizing free
radicals and reactive oxygen species in cells. Hypoxia can
significantly reduce the efficiency of chemotherapy (64). The
Warburg effect is aerobic glycolysis in cancer cells, which has
been found to be involved in chemotherapy resistance in various
types of human cancers (65, 66). The Warburg effect promotes
epigenetic and genetic changes leading to the occurrence of
multiple new cell phenotypes including the existence of drug
resistance cells (67). To confirm whether our signature can
provide an effective prediction method for the prognosis of
patients receiving adjuvant chemotherapy, we conducted a
subgroup analysis and the results showed the risk model could
effectively predict the prognosis of patients with BC in both
receiving and not receiving adjuvant chemotherapy groups. This
also shows the extensive clinical application of our model.

To further explore the predictive ability of our nomogram, a
comparison was performed among several significant molecular
signatures which were employed for predicting OS of BC
patients. The studies (47, 48, 52, 54, 61) we included were that
the model was built based on the entire TCGA cohort and
involved all types of breast cancer, not a certain subtype. The
final results showed that our signature and another four
prognostic signature including 12 stemness-related lncRNA
signature (47), 11 immune-related lncRNA signature (52), 27
immune-related gene signature (54) and four methylated gene
signature (61) performed better in the prediction of BC patients’
OS than the signature based on the hallmarks related to
autophagy (48), tumor microenvironment (immune, stromal,
and proliferation) (49), tumor mutation burden (50), hypoxia
(51), DNA repair (55), lncRNA (56) and miRNA (57, 58).
Considering that the clinical application cost of our model may
be lower than that of the two gene models [12 stemness-related
lncRNA signature (47) and 27 immune-related gene signature
(54)] and glycolysis is closely related to the prognosis of BC, our
signature may be necessary to enrich the clinical prediction
methods. What’s more, the AUC of the nomogram is greater
than that of the signature in our study, suggesting that the
combination of the risk score with clinical factors is more
promising than the methylation signature alone in predicting
the OS of BC patients.

The 11 GRGs identified in this study included PGK1, SDC1,
NUP43, NT5E, IL13RA1, GCLC, CACNA1H, P4HA1, TSTA3,
A

B

D

E

F

G

I

H

C

FIGURE 6 | Continued
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MXI1, and STC1. Of these genes, PGK1 (phosphoglycerate
kinase 1) has been identified to promote BC progression and
metastases via forming a positive feed-forward loop with HIF-
1a. High PGK1 expression predicted poor prognosis in BC (63).
SDC1 (syndecan-1), a heparin cell surface proteoglycan, can act
as a co-receptor for growth factors and chemokines (68). High
expression of SDC1 has been identified in BC tissues as
associated with an aggressive phenotype and poor clinical
behavior (69). Nup43 (nucleoporin 43 kDa) is a stable
component of the Nup107 160 complex, which is localized at
kinetochores in mitosis and regulates mitotic progression and
chromosome segregation (70). Higher expression of NUP43 is
often accompanied by DNA amplification and is related to poor
OS in luminal A and HER2+ BC (71). NT5E (ecto-5-
nucleotidase), also designated CD73, is a promising prognostic
factor, and its high expression was significantly related to lymph
node metastases in BC patients (72). A study reported that the
interactions between interleukin-13 and interleukin-13 receptor
alpha 1 (IL13RA1) contributed to cancer cell growth and
metastasis, and IL13RA1 expression was associated with poor
prognosis in invasive BC patients (73). Collagen prolyl 4-
hydroxylase alpha 1 (P4HA1) is the major isoform in most cell
types and tissues, and it can also enhance the activity of most
prolyl 4-hydroxylases (74). During the development of BC,
P4HA1 expression is induced (75). When the P4HA/HIF-1 axis
is activated, the cancer cell stemness is enhanced, while the levels
of oxidative phosphorylation and reactive oxygen species are
reduced (76). The malignant transformation of cells and tumor
development were promoted by abnormal glycosylation, which
depends on TSTA3 gene function (tissue-specific transplantation
antigen P35B) (77). The survival rates in BC patients with a
higher expression of TSTA3 were lower (78). MYC-associated
protein X interactor-1 (MXI1) is an antagonist of the oncogenic
MYC protein, and the deletion of the MXI1 gene causes many
kinds of human cancers (79). The low expression of MXI1 was
related to poor prognosis in BC patients (80). Stanniocalcin-1
(STC1) is a secreted glycoprotein, and its high expression levels
were associated with tumor growth and metastasis in BC (81).
However, other genes (GCLC and CACNA1H) were identified for
Frontiers in Oncology | www.frontiersin.org 10
the first time to have prognostic value in BC patients. Deeper
investigations of the biological functions of these genes in BC
are warranted.

To our knowledge, our study is the first one to identify and
comprehensively analyze prognostic GRGs for the prediction of
survival in BC patients by evaluating the data from the public
TCGA database. Moreover, a novel risk signature based on 11
GRGs was identified and verified. This signature can be used as a
screening tool for patients at high risk of developing BC and to
stratify patients to increase the effectiveness of targeted therapy.
Additionally, we successfully established a GRG-related
nomogram combining clinical factors and molecular markers
to predict the OS of BC patients with in an effective quantitative
approach. We also analyzed the mutational status of the nine
selected genes in the cBioPortal database. Our research not only
allowed to better understand the genetics of BC, but also had
significance for guiding future research.

There are some limitations in our study. First, it was a
retrospective study, and all BC patients were identified from
public databases. Second, large-scale multicenter cohorts are
necessary to validate the predictive performance of our model
and to evaluate its clinical applicability for better management of
BC. Furthermore, future basic experiments in our hospital will be
required to conduct to verify our findings and elucidate the
functional roles of GRGs involved in the initiation and
development of BC. Moreover, the gene signature may be
more effective to predict survival in BC patients without distal
metastasis, and its prognostic role warrants further evaluation.
CONCLUSION

We constructed a valid, innovative, and reliable 11-GRGs
prognostic model (PGK1, SDC1, NUP43, NT5E, IL13RA1, GCLC,
CACNA1H,P4HA1,TSTA3,MXI1, andSTC1) topredictBCpatient
outcomes. Our signature was an independent and important risk
factor for BC. Furthermore, a nomogram combining the prediction
model and clinical factors was constructed, which could be a useful
tool to predict prognosis and guide clinical practice.
TABLE 4 | The area under the ROC curve (AUC) show the sensitivity and specificity of the known signatures in predicting the prognosis of BC patients.

Author Year Gene Signature AUC for OS

Li X, et al (47) 2020 12 stemness-related lncRNA signature 0.813 (5-year)
Lin Q, et al (48) 2020 12 autophagy-related gene signature 0.739(1-year), 0.727(3-year), 0.742(5-year),
Wang J, et al (49) 2020 four ISP gene signature 0.742 (5-year)
Wang F, et al (50) 2020 six gene TMB-based signature 0.705 (5-year)
Wang J, et al (51) 2020 14-gene hypoxia−related signature 0.728 (1-year), 0.726 (3-year), 0.736 (5-year)
Shen Y, et al (52) 2020 11 immune-related lncRNA signature 0.836 (5-year)
Xu H, et al (53) 2020 eight immune-related gene signature 0.753 (3-year), 0.72 (5-year)
Zhao Y, et al (54) 2020 27 immune-related gene signature 0.844 (5-year)
Zhang D, et al (55) 2020 eight DNA repair–related gene signature 0.708 (3-year), 0.704 (5-year)
Sun M, et al (56) 2019 eight lncRNA signature 0.725 (1-year), 0.727 (3-year), 0.721 (5-year)
Kawaguchi, et al (57) 2019 three miRNA signature 0.71 (5-year)
Lai J, et al (58) 2019 six microRNA model 0.705 (3-year), 0.701 (5-year)
Liu L, et al (59) 2019 seven RNA signature 0.705 (5-year)
Tao C, et al (60) 2019 seven DNA methylation site signature 0.704 (5-year)
Feng L, et al (61) 2018 four methylated gene signature 0.791 (5-year)
OS, overall survival; ISP, immune, stromal, and proliferation; TMB, tumor mutation burden.
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