
nanomaterials

Article

Rationally Designed CdS-Based Ternary Heterojunctions:
A Case of 1T-MoS2 in CdS/TiO2 Photocatalyst

Wenqian Chen 1,2,*,† , Shaomei Zhang 1,3,†, Ganyu Wang 1,3, Gang Huang 4, Zhichong Yu 1,3, Yirui Li 1,3 and
Liang Tang 1,3,*

����������
�������

Citation: Chen, W.; Zhang, S.; Wang,

G.; Huang, G.; Yu, Z.; Li, Y.; Tang, L.

Rationally Designed CdS-Based

Ternary Heterojunctions: A Case of

1T-MoS2 in CdS/TiO2 Photocatalyst.

Nanomaterials 2021, 11, 38. https://

doi.org/10.3390/nano11010038

Received: 26 November 2020

Accepted: 18 December 2020

Published: 25 December 2020

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional claims

in published maps and institutional

affiliations.

Copyright: © 2020 by the authors. Li-

censee MDPI, Basel, Switzerland. This

article is an open access article distributed

under the terms and conditions of the

Creative Commons Attribution (CC BY)

license (https://creativecommons.org/

licenses/by/4.0/).

1 Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education,
Shanghai 200444, China; shaomeizhang@shu.edu.cn (S.Z.); wgy@shu.edu.cn (G.W.);
zhichongyu@shu.edu.cn (Z.Y.); yiruili@shu.edu.cn (Y.L.)

2 Shanghai Institute of Applied Radiation, Shanghai University, 20 Chengzhong Road, Shanghai 201800, China
3 School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
4 Physical Science and Engineering Division King Abdullah University of Science and Technology (KAUST),

Thuwal 23955-6900, Saudi Arabia; gang.huang@kaust.edu.sa
* Correspondence: wenqianchen@shu.edu.cn (W.C.); tang1liang@shu.edu.cn (L.T.)
† These authors contributed equally to this work.

Abstract: As promising heterojunction photocatalysts, the binary CdS-based heterojunctions were
investigated extensively. In most of the reported CdS-based heterojunctions, however, electrons come
from the semiconductor with wide band gap (e.g., TiO2) would limit the visible-light absorption of
CdS and hence lower the performance. In this work, we introduced 1T-MoS2 to form a novel ternary
heterojunction, namely CdS/1T-MoS2/TiO2, in which 1T-MoS2 has more positive conduction band
than CdS and TiO2. The hydrogen evolution rate of CdS/1T-MoS2/TiO2 reaches 3.15 mmol g−1 h−1,
which is approximately 12 and 35 times higher than that of pure CdS and CdS/TiO2 binary hetero-
junction under the same conditions, respectively. This performance enhancement could be attributed
to the presence of 1T-MoS2 and a plausible mechanism is proposed based on photoelectrochemical
characterizations. Our results illustrate that the performance of CdS-based heterojunctions for solar
hydrogen evolution can be greatly improved by appropriate materials selection.

Keywords: heterojunction; photocatalyst; hydrogen evolution; CdS/1T-MoS2/TiO2

1. Introduction

Semiconductor-based photocatalyst have been widely employed in the water splitting
and treatment of various environmental pollutants [1]. Photocatalytic water splitting using
semiconductor heterojunctions has gathered great interest recently, mostly due to efficient
utilization of visible light [2]. In the past few decades, CdS-based heterojunctions have
investigated extensively due to the narrow band gap of CdS (2.4 eV) [3]. Furthermore, the
conduction band potential of CdS is more negative than the reduction potential of protons.
Hence, CdS has a sufficient potential to reduce protons into H2 [4,5]. The CdS-based
photocatalysts have been extensively explored for the hydrogen evolution due to its suitable
band gap structure and strong capacity of light absorption. However, CdS suffer from
the problem of photo-corrosion wherein S2− ions get easily oxidized by photogenerated
holes [6]. The strategy to overcome the photo-corrosion of CdS is therefore highly desirable.
Solutions including anion substitution [7,8] and the formation of a heterojunction have
been proposed. In contrast to the anion substitution, combing a semiconductor with wide
band gap to form heterojunctions is an alternative which is synthetically easier.

Numerous wide band gap semiconductors have been used in combination with CdS
to form a Z-type heterojunction to overcome the photocorrosion of CdS by photo-generated
holes h+ [9]. Among them, TiO2 with a band gap of ca. 3.2 eV is good choice [10]. On the
one hand, both materials are cheap for practical applications. On the other hand, the CdS
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with narrower band gap could use visible light more efficient. However, deeper valence
band (VB) of CdS could allow the transfer of electrons from TiO2-CB (conduction band)
to CdS-VB, as illustrates in Scheme 1a. Hence, under a visible light irradiation, the binary
heterojunction CdS/TiO2 cannot effectively solve the problem of easy recombination of
electrons and holes, which reduces the catalytic activity. Therefore, a third component with
more positive CB to form a ternary heterojunction is a possible solution [11], as shown in
Scheme 1b.
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For the third component, many compounds have been tested at several concentration
ranges, such as WO3 [11], ZnIn2S4 [12], SiO2 [13], and Fe3O4 [14]. Herein, we focus
on the MoS2, which belongs to the family of layered transition metal dihalides [15–18].
MoS2 has four morphologies: Twisted tetragonal phase (1T), hexagonal phases (1H and
2H), and rhombic phase (3R) [19]. The semiconductor phase 2H-MoS2 is the most stable
phase. 1T-MoS2 (metal phase) can usually be obtained by chemical exfoliation of 2H-MoS2
and embedding of various ions (Li+, Na+, K+) [20]. The conductivity of 1T phase is 107

times higher than 2H phase [21], which facilitates the rapid flow of charge and improves
the reactivity and hence were investigated widely for photocatalytic water splitting.

In this work, the CdS/1T-MoS2/TiO2 ternary heterojunction was synthesized by
hydrothermal method. We discovered that the introduction of two-dimensional sheet-like
1T-MoS2 can accelerate the charge transfer and increase the rate of photocatalytic hydrogen
production, and the use of nanosheet 1T-MoS2 coated around the CdS nanoparticles can
prevent them from photocorrosion. Through a specific hybridization method and the
energy band modification of each substance, an internal electric field is constructed to form
the directional transfer of photo-generated carriers. The photocatalytic hydrogen activity
reached 3.15 mmol g−1 h−1 (35 times that of binary CdS/TiO2), indicating an important
role of 1T-MoS2 in the CdS-based heterojunctions.

2. Materials and Methods
2.1. Preparation of Photocatalysts

The CdS/TiO2 binary heterojunction was synthesized by a hydrothermal method with
anatase TiO2 nanoparticles. TiO2 was prepared by solvothermal method, as previously
reported [22]. The Cd(CH3COO)2·2H2O (AG, Adamas, 1.38 mmol) and thiourea (AG,
Adamas, 5.52 mmol) were dispersed in 35 mL pure water, then the obtained TiO2 was
added, the molar ratio of TiO2 is 15%, 25% and 35% of the Cd amount. Stir evenly and
transfer to the 50 mL Teflon-lined stainless-steel autoclave. The mixture was reacted at
453 K for 5 h, followed cooled to room temperature naturally. The samples were washed
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with pure water and ethanol for several times, then vacuum dried at 333 K overnight. Bare
CdS was synthesized by the same method without TiO2 [23].

The ternary CdS/1T-MoS2/TiO2 heterojunction was synthesized with the addition of
CTAB and (NH4)6Mo7O24·4H2O. First, CdS (0.1444 g) was added into 50 mL pure water.
10 mL of CTAB (AR, Sinopharm Chemical Reagent Co., Ltd. Shanghai, China) aqueous
solution (0.01 M) was then added into above orange suspension. (NH4)6Mo7O24·4H2O
(AG, Adamas) and thiourea (n(Mo):n(S) = 7:15, AG, Adamas) were further added to the
above mixture with the Mo atoms are 25%, 35%, and 45% molar ratio of CdS. The mixture
was transferred into 100 mL Teflon-lined stainless-steel autoclave, and reacted at 473 K for
24 h. The samples were centrifuged and washed with pure water and ethanol for several
times, then vacuum dried at 333 K overnight. Second, the obtained binary heterojunction
“CdS/1T-MoS2-45” (45% of MoS2) was put into 45 mL ethanol (AR, Adamas) and stirred to
form suspension A, the corresponding amount of TiO2 (the molar amount is 15%, 25%, and
35% of CdS) was then added into 15 mL ethanol and ultrasonic for 2 h to form suspension
B, then suspension B was poured into suspension A. The mixture was transferred to 100 mL
Teflon-lined stainless-steel autoclave, and reacted at 393 K for 2 h. The samples were
obtained after washed and vacuum dried at 333 K overnight. The ternary products were
named as CdS/1T-MoS2/TiO2-45-15, CdS/1T-MoS2/TiO2-45-25 and CdS/1T-MoS2/TiO2-
45-35. The pure 1T-MoS2 can be obtained by (NH4)6Mo7O24·4H2O and thiourea in accor-
dance with the above proportion {n(Mo):n(S) = 7:15} and reaction conditions [24].

2.2. Characterization

X-ray diffraction (XRD) patterns were obtained from DX-2700 X-ray diffractometer
with Cu-Kα radiation operated at 40 kV and 40 mA. Scanning electronic microscopy (SEM)
images were conducted on ZEISS MERLIN Compact. Transmission electron microscopy
(TEM) and high-resolution transmission electron microscopy (HRTEM) observations were
performed on a JEOL JEM-2010F electron microscope operating at 200 kV. X-ray photoelec-
tron spectroscopy (XPS) was tested on Thermo ESCALAB 250XI using Al-Kα excitation
source (hν = 1486.6 eV) and C1s = 284.60 eV combined energy standard was used for
charge correction. Raman spectra were detected by a Japan HORIBA system with a 532 nm
laser. UV-vis diffuse reflectance spectra (DRS) were carried out on a UV-vis spectrometer
(UV-2600, Shimadzu, Japan), BaSO4 as whiteboard to deduct background value. The pho-
toluminescence (PL) spectra were measured by a F-320 Fluorescence Spectrophotometer
that excitation wavelength is 494 nm.

2.3. Photocatalysis

The photocatalytic reaction was conducted on an all glass automatic on-line trace gas
analysis system (Labsolar-6A) and SHIMAZU gas chromatograph (GC-2014C). The hydro-
gen generated in the reactor was automatically entered into the gas chromatograph for
detection. Fifty milligrams of catalyst was placed in the reactor and a 100 mL aqueous solu-
tion containing 10 mL of lactic acid was poured into the reactor. The reactor temperature
was kept at 278 K by a low temperature thermostatic bath. The light source is a 300 W Xe
lamp (λ ≥ 350 nm).

2.4. Photoelectrochemical Measurements

Mott–Schottky analysis, ampere i-t curve analysis, and electrochemical impedance
spectroscopy (EIS) were performed by electrochemical workstation (CHI660E instrument).
The electrodes were prepared by spin-on-conductive glass process, as previously re-
ported [25]. A three-electrode system with the electrolyte of 0.5 M Na2SO4 solution was
used, in which the counter electrode was platinum, the reference electrode was saturated
calomel electrode (SCE), and the working electrode was conductive glass coated with pho-
tocatalyst. The Mott–Schottky measurement was measured using an impedance-potential
model with a voltage range of −1.5~1.5 V. The amperometric i-t curve was measured by a
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300 W Xe lamp (CEL-HXF300). The EIS test was performed at a frequency range between
10−2 and 105 Hz.

3. Results and Discussion
3.1. Structural Analysis

Figure 1 presents the XRD patterns of the binary and ternary CdS heterojunctions. XRD
pattern of the bare CdS sample is consistent with the hexagonal standard CdS card (JCPDS
card no. 89-2944) (Figure S1a). SEM image shown the CdS is formed by the aggregation of
small nanoparticles with the particle size of ca. 100 nm (Figure S1b). Figure S1c,d shows
the XRD and SEM topography of TiO2. It can be seen that the TiO2 is a square nanosheet of
about 50 nm. Figure S2 provides the structural analysis of 1T-MoS2 nanosheets. The 1T-
MoS2 nanosheets in this work were grown in situ on the surface of CdS nanoparticles,
forming a binary heterojunction CdS/1T-MoS2. Figure S3a shown the characteristic peak of
binary heterojunction is the CdS, and there is no 1T-MoS2 peaks were observed. This could
be due to the low crystallinity of 1T-MoS2. Moreover, the formation of CdS/1T-MoS2 do not
change the structure of CdS. A similar XRD pattern of binary CdS/TiO2 (Figure S3b) and
ternary heterojunctions were observed. Because the 2theta value of the TiO2 (101) crystal
plane and the CdS (100) crystal plane are very small, the corresponding peak of TiO2 is not
visible in Figure S3b, but it is obvious that the peak intensity around 25◦ is significantly
enhanced. This indicates that TiO2 and 1T-MoS2 only interacts with the surface of CdS and
does not change the crystal structure of each material. These results have confirmed the
successful loading of the molybdenum disulfide and titanium dioxide on the CdS surface.
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heterojunctions.

As shown in Figure 2a, the ternary heterojunctions are clustered together in the form
of nanoparticles. At the edge of the particles, unlike pure CdS (Figure S1b), it can be clearly
seen that the transparent flakes 1T-MoS2 wrap the CdS nanoparticles, and the small square
nanosheets TiO2 are scattered and uniformly distributed on the flakes. By magnifying the
edges of particles, a high-resolution transmission electron microscopy (HRTEM) is obtained.
The corresponding diffraction pattern can be obtained by fast Fourier transform (FFT) at the
lattice fringe of HRTEM. The distance from the diffraction spot to the center is consistent
with the lattice fringe spacing on the HRTEM image. The lattice spacing calculated from
FFT also matches the corresponding d value of the XRD pattern. The lattice spacing marked
2.48 Å, 9.32 Å, and 3.48 Å in the HRTEM image (Figure 2b), which respectively represent
(102) crystal planes of CdS, (002) crystal planes of 1T-MoS2, and (101) crystal planes of
TiO2. The close contact between the three substances is beneficial to the rapid transfer of
photogenerated electrons, and thus facilitating the production of hydrogen. Moreover,
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compared to the 2H phase, the expanded layer spacing of 1T-MoS2 speeds up the electron
flow this improves the catalytic performance of the heterojunctions. EDS element mapping
(Figure 2c) shown the existence of Cd, S, Mo, Ti, O and their uniform distribution in the
composites. In addition, EDS spectrum (Figure S4) provides the semi-quantitative value
of each element in the sample of CdS/1T-MoS2/TiO2-45-15. This indicates that the main
content in the heterojunction is Cd and S, while other elements exist in a small amount.
This EDS result agreement well with the XRD patterns that the characteristic peaks of both
binary and ternary heterojunctions are consistent with that of CdS.
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Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) were conducted for
further analysis of the ternary heterojunctions, as shown in Figure 3. The characteristic
peaks at 299 cm−1 and 597 cm−1 in CdS/1T-MoS2/TiO2-45-15 are attributed to the longitu-
dinal optical phonon mode of CdS in the Raman spectra [26]. When CdS was coupled with
1T-MoS2 and TiO2, 150 cm−1 corresponding peaks of 1T-MoS2 and 397 cm−1 corresponding
peaks of TiO2 are observed in the Raman spectrum of the composite CdS/1T-MoS2/TiO2-
45-15 (Figure 3a), indicates the CdS has a close interaction with other two compounds.
Figure S5 shown the XPS full spectrum of ternary heterojunction, which involves the
composite elements of Cd, S, Mo, Ti, and O. Figure 3b shown the peaks at 404.69 eV and
411.43 eV of CdS/1T-MoS2/TiO2-45-15 heterojunction represent the 3d5/2 and 3d3/2 orbits
of Cd2+, respectively. Compared to the bare CdS (404.81 eV and 411.55 eV) [27], the low
energy peaks in the heterojunctions may be due to the interaction of CdS with 1T-MoS2
and TiO2. Figure 3c shown the Mo peaks of 229.82 eV and 232.92 eV in the heterojunction
are respectively represented by the 3d5/2 and 3d3/2 of Mo4+ [28]. Compared to the bare
1T-MoS2, the peaks are shifted to the high energy, indicating the change of electronic den-
sity around Mo element. After deconvoluting the Mo 3d environment (Figure S6), the 1T
phase content remains high, and an additional Mo-O bond peak appears at 233.19 eV and
235.46 eV [29,30]. As shown in Figure 3d, when the binary heterojunction CdS/1T-MoS2-45
was coupled with TiO2, the 2p orbital energy of Ti element is also shifted, indicates the
interaction between TiO2 and 1T-MoS2. Therefore, Raman and XPS results further revealed
the successful synthesis of CdS/1T-MoS2/TiO2 hetero-structured composites.
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Figure 3. (a) Raman spectra of the bare CdS, TiO2, and CdS/1T-MoS2/TiO2-45-15 samples. High resolution XPS spectra of
(b) Cd 3d in bare CdS and CdS/1T-MoS2/TiO2-45-15; (c) Mo 3d in 1T-MoS2 and CdS/1T-MoS2/TiO2-45-15; (d) Ti 2p in
TiO2 and CdS/1T-MoS2/TiO2-45-15(CMT-45-15).

3.2. Photocatalysis

The catalysts were photocatalyzed to produce hydrogen under a simulated sunlight
irradiation (λ ≥ 350 nm), and lactic acid was used as a reversible electron donor. Figure 4
and Figure S7 shown the hydrogen production of different materials. It can be seen
from Figure S7 that the hydrogen production increases linearly with the irradiation time
increased. Figure 4a shown the activity was greatly enhanced with the combined of 1T-
MoS2 in the binary CdS/TiO2 heterojunctions. Interestingly, the activity of binary CdS/TiO2
heterojunctions is lower than that of bare CdS, suggesting an electron transfer limitation
between the wide band gap TiO2 and CdS. Moreover, the best composition of ternary
heterojunctions is CdS/1T-MoS2/TiO2-45-15. We will discuss the relationship between the
activity and composite differences in the later section. Figure 4b provides the three times
of cycle hydrogen evolution experiments on CdS/1T-MoS2/TiO2-45-15, indicating a stable
ternary heterojunction semiconductor-based photocatalyst was obtained. Furthermore,
the structure of CdS/1T-MoS2/TiO2-45-15 was maintained after photocatalytic reactions
(Figure S8) as evidenced by XRD.
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3.3. Light Absorption Properties

UV-visible DRS spectra of the heterojunctions are shown in Figure 5a. The heterojunc-
tion has absorption edges at around 570 nm, which is close to the bare CdS and binary
CdS/1T-MoS2. However, different with the CdS, the visible light absorption of binary
and ternary heterojunctions was enhanced in the ranges of 570–780 nm, indicates the
formation of heterojunction can promote the light absorption. Figure S9a,b shown the
effect of 1T-MoS2 and TiO2 concentrations on the light absorption of binary heterojunctions.
Apparently, the absorbance increases after the addition of 1T-MoS2, which could partly
explain the hydrogen production gradually increases as its loading amount increased in
heterojunctions (Figure 4a). However, the absorbance did not increase significantly when
TiO2 amounts were increased. It is due to the weak light absorption ability of white TiO2.
This suggest the addition of 1T-MoS2 plays a key role in the enhanced light absorption
properties.

3.4. Charge Carrier Dynamics

Photoluminescence (PL) spectra and photocurrent response were performed on the
catalysts to further study the dynamics of photogenerated electron-hole pairs. As shown in
Figure 5b, it is clear that CdS has a relatively high PL intensity. The appearance of 1T-MoS2
will weaken the PL intensity. This result is supported by the hydrogen release amount
of different samples of binary heterojunction CdS/1T-MoS2. Afterwards, the addition
of TiO2 greatly weakened the PL intensity, indicating that the photogenerated carriers
were largely captured by TiO2, thereby inhibiting the recombination of electron-hole pairs.
The EIS Nyquist plots of the catalysts were shown in Figure 5c. It is well known that
the smaller the EIS spectra the lower of the charge-transfer resistance, and hence an en-
hanced electron transfer capability and high separation effectiveness of the photogenerated
electron-hole pairs. Compared to the bare CdS and binary CdS/1T-MoS2, the ternary
CdS/1T-MoS2/TiO2-45-15 contain a quite small arc radius, indicates the low impedance
and hence high charge separation efficiency in the ternary heterojunctions. The photocur-
rent response (Figure 5d) can also further illustrate the efficiency of photogenerated charge
carrier separation. After repeated on-off light irradiation for several times, the response
current of CdS/1T-MoS2/TiO2-45-15 is strong and relatively stable, which is consistent
with the experimental data of PL, EIS and hydrogen evolution experiments. These results
clearly indicate the presence of 1T-MoS2 in the CdS/TiO2 binary heterojunction promotes
the electron transfer and reduces the recombination of electron hole pairs.
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3.5. Band Potential Analysis

We further analysis the band positions of three substances to explore the possible
mechanism of ternary heterojunctions. Figure S10a shown the UV-vis diffuse reflection
spectrum of these three single substances. Use the diffuse reflection data to obtain (αhν)1/2

against hν plots and it provides the band gaps in Figure S10b, where the band gaps of
CdS and TiO2 are 2.02 eV and 2.93 eV, respectively. 1T-MoS2 is metallic with no band
gap [31]. This further confirmed by XPS in Figure S11d, which shown that the EVB position
of 1T-MoS2 is ~0 V.

Furthermore, the Mott–Schottky analysis was used to determine the flat band potential
(EFB) of semiconductor materials. Figure S11 shows the Mott–Schottky plots of CdS, TiO2,
and 1T-MoS2 with the frequency ranges from 300–1000 Hz. In each case, the C−2 values
decreased as the applied potential E became more negative. This is a typical behavior for
an n-type semiconductor. The EFB can be estimated by extrapolating the Mott–Schottky
plot linearly to the x axis intercept. The ECB positions of CdS, TiO2 and 1T-MoS2 were
estimated as −1.20 ± 0.01 V, −0.97 ± 0.02 V, and −0.43 ± 0.02 V (vs. SCE), respectively
(equivalent to −0.96 V, −0.73 V and −0.19 V vs. NHE). It is known that the conduction-band
minimum (ECBM) is 0.1–0.3 V more negative than the EFB in an n-type semiconductor [32].
Hence, the ECBM values are located at ca. −1.06 V for CdS, −0.83 V for TiO2, and −0.29 V
for 1T-MoS2 (vs. NHE). The resulting hydrogen production mechanism diagram is shown
in Figure 6. It can be seen that the ECBM of 1T-MoS2 is more positive than that of TiO2.
Therefore, 1T-MoS2 is suitable for the third substance in CdS/TiO2 binary heterojunction.
This is the origin of the high performances on ternary heterojunction.
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4. Conclusions

This study set out an efficient CdS/1T-MoS2/TiO2 ternary heterojunction, synthesized
by a simple hydrothermal method. The presence of 1T-MoS2 greatly promotes the photo-
catalytic property of binary CdS/TiO2 heterojunctions (35 times that of binary CdS/TiO2).
This could be explained by the improvement of charge carrier dynamics (electron-hole
pairs) and has been systematically discussed on the basis of PL, EIS, and photocurrent
results. In addition, the metallicity and two-dimensional layered structure of 1T-MoS2 are
conducive to accelerate the electron transfer, and its coating can avoid the photo-corrosion
of CdS. This greatly enhance the catalytic performance of the material and thus has great
potential for CdS-based heterojunctions.

Supplementary Materials: The following are available online at https://www.mdpi.com/2079-499
1/11/1/38/s1, Figure S1: (a) XRD pattern and (b) SEM image of the pure CdS nanoparticles, (c) XRD
pattern and (d) SEM image of the TiO2 nanosheets, Figure S2: (a) XRD pattern, (b) TEM image,
(c) HRTEM image, (d) EDS element mapping images of S, Mo, and (e) Raman spectra of 1T-MoS2
nanosheets, Figure S3: XRD patterns of binary heterojunctions CdS/1T-MoS2 (a) and CdS/TiO2
(b), Figure S4: EDS spectrum of CdS/1T-MoS2/TiO2-45-15 heterojunctions, Figure S5: SEM-EDS
image of CdS/ TiO2, CdS/1T-MoS2 and CdS/1T-MoS2/TiO2, EDS element mapping shows the
existence of Cd, S, Mo, Ti and their uniform distribution in the composites, Figure S6: Full XPS
spectrum of CdS/1T-MoS2/TiO2-45-15, Figure S7: Deconvolutions of Mo 3d XPS analyses of 1T-MoS2
(a) and CdS/1T-MoS2/TiO2-45-15 (b) samples, Figure S8: FTIR of pure CdS, 1T-MoS2 and CdS/1T-
MoS2/TiO2-45-15 nanocomposites, Figure S9: (a) Nitrogen sorption isotherms and (b) corresponding
pore size distribution curves of CdS and CdS/1T-MoS2/TiO2-45-15, Figure S10: Total amount of
photocatalytic hydrogen production in 3h of (a) CdS/TiO2, (b) CdS/1T-MoS2, and (c) CdS/1T-
MoS2/TiO2, Figure S11: XRD pattern after hydrogen production cycle of CdS/1T-MoS2/TiO2-45-15,
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