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With the increasing impact of climate instability on agricultural and ecologi-
cal systems has come a heightened sense of urgency to understand plant
adaptation mechanisms in more detail. Plant species have a remarkable
ability to disperse their progeny to a wide range of environments, demon-
strating extraordinary resiliency mechanisms that incorporate epigenetics
and transgenerational stability. Surprisingly, some of the underlying versati-
lity of plants to adapt to abiotic and biotic stress emerges from the
neofunctionalization of organelles and organellar proteins. We describe evi-
dence of possible plastid specialization and multi-functional organellar
protein features that serve to enhance plant phenotypic plasticity. These fea-
tures appear to rely on, for example, spatio-temporal regulation of plastid
composition, and unusual interorganellar protein targeting and retrograde
signalling features that facilitate multi-functionalization. Although we
report in detail on three such specializations, involving MSH1, WHIRLY1
and CUE1 proteins in Arabidopsis, there is ample reason to believe that
these represent only a fraction of what is yet to be discovered as we begin
to elaborate cross-species diversity. Recent observations suggest that plant
proteins previously defined in one context may soon be rediscovered in
new roles and that much more detailed investigation of proteins that show
subcellular multi-targeting may be warranted.

This article is part of the theme issue ‘Linking the mitochondrial
genotype to phenotype: a complex endeavour’.
1. Plant adaptive features
As climate instability intensifies the challenges, both agricultural and ecological,
to plant performance, increasing attention has been directed toward under-
standing natural mechanisms for plant resilience. Plants have diverse and
active means of surviving abiotic and biotic stress. Much of their responsiveness
is the consequence of rapid signalling and transport mechanisms [1] that inte-
grate with response systems to evade [2], confront [3] or adjust to [4] the
effects of stress. A plant’s response to change in local environmental conditions
can incorporate short-term memory, so that encountering a stress can leave the
plant pre-primed for its recurrence later in the plant’s life cycle [5]. Such
‘memory’ phenomena generally involve changes to local chromatin features
that can facilitate more rapid gene response subsequently [6]. These genetic
network and chromatin features represent important acclimation behaviours
that allow the plant, as a sessile life form, to survive local, short-term
environmental change.

Angiosperm evolution has produced remarkable species diversity due, in
part, to the expansion of seed dispersal mechanisms, from pod shatter for
1m distance to animal dispersal over kilometre distances [7]. Species invasion
of new habitats requires mechanisms that accelerate evolution and adaptation;
these can involve polyploidy [8,9], transposable element activity [10,11] and
reproductive adaptations to cope with isolation [12]. Yet, these adjustments,
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which facilitate genomic plasticity, require a certain lag time.
Consequently, more recent modelling of plant phenotypic
plasticity in response to chronic changes in environmental
conditions incorporates the role of epigenetics in the process.

Epigenetics is generally defined as heritable modifications
in gene expression that do not involve genetic changes.
Heritable epigenetics may refer to mother–daughter cell
transmission or evidence of transgenerational effects [13].
Modelling an evolutionary scheme for accelerated and versa-
tile resilience in plants, when contemplating ecological
diversity, generally invokes some form of bet hedging in
response to environmental fluctuation. A bet hedging
model assumes that organisms have the capacity to suffer
reduced fitness under ideal conditions in exchange for
increased fitness under stressful conditions [14]. In plants,
the most common examples include variation in seed germi-
nation rates, so that a smaller population number in the first
year affords an opportunity for staggered multi-year germi-
nation [15]. Flower timing can also display variation to
accommodate reproduction under unfavourable conditions
that might improve over time [16]. Other, more subtle
examples of bet hedging behaviours, and their molecular
mechanisms, remain to be discovered.
 182
2. Epigenetic control of phenotypic plasticity
A robust literature exists in support of epigenetic influence
on plant environmental responses that may impact a popu-
lation transgenerationally. A plant species in the forest
understory experiences a diversity of light conditions. In
the case of the herbaceous plant Campanulastrum americanum,
individuals that experience excess light develop heritable
high light tolerance, which serves to pre-adapt progeny and
displays maternal transmission when crossed to correspond-
ing shaded individuals [17,18]. Transgenerational effects of
the environment on plant phenotype in natural populations
can also affect drought response in species of Trifolium [19].
Not surprisingly, plants that reproduce asexually provide
an excellent model for investigating epigenetic variation for
environmental resilience in natural habitats. In apomictic
dandelion, for example, epigenetic variation appears to con-
tribute to heritable flowering divergence [20], ecological
range expansion [21] and heritable drought stress [22].

The most well-studied epigenetically controlled trait in
plants is flower time and, in particular, vernalization
response. Arabidopsis, a particularly valuable model for
studies of vernalization, relies on cold-induced epigenetic
silencing of the floral repressor gene FLC during the vernali-
zation process [23,24]. Studies of vernalization timing across
natural accessions of Arabidopsis taken from a range of habi-
tats show epigenetic variation to be important to this
adaptive response [25].

There is evidence to suggest that other central plant gene
networks may be targets for epigenomic effects as well. Cir-
cadian clock, jasmonate and ethylene response, and cold
and light response are pathways that are regulated by HIS-
TONE DEACETYLASE 6 (HDA6) [26], which participates in
nucleosome compaction but also interacts directly with the
cytosine methyltransferase MET1 [27]. Transcription factor
recruitment of chromatin-modifying components can provide
targeting specificity for the epigenomic reprogramming of
gene networks that are important to plant environmental
responses [28–33]. For example, TOPLESS (TPL) binds and
regulates the promoter of circadian clock genes CCA1 and
LHY [34]. TPL also interacts with HDA6, serving to recruit
histone deacetylation and differential methylation activity
to alter the expression of these loci [35]. These types of inter-
actions have significant implications for integrating gene
network responses to environmental cues.
3. Organellar influences on plant adaptation
behaviours

Plant mitochondria and plastids contain their own genetic
information, distilled down following a series of post-
endosymbiotic organelle-to-nucleus gene transfers that have
left these genomes fairly rudimentary gene collections. The
genes retained are thought to remain within the organelle to
facilitate their redox regulation [36]. Organelles carry out
their essential roles in energy transduction and environmental
sensing but also conduct complex and multidimensional
interorganellar communications within the cell [37]. Numer-
ous excellent recent reviews have described the nature of
what is termed retrograde regulation, comprised of orga-
nelle-originating signals that produce changes in nuclear
response [38–40]. A number of organelle-derived molecules
have been identified as signalling molecules in retrograde
regulation, including reactive oxygen species and metaboli-
tes like β-cyclocitral [41], MEcPP (2-C-methyl-D-erythritol
2,4-cyclodiphosphate) [42,43], PAP (30-phosphoadenosine
50-phosphate) [44,45] and intermediates of the tetrapyrrole
biosynthesis pathway [46]. More recently, it has become
clear that multi-functional organellar proteins are also able
to function within this retrograde signalling process. In
many cases, these proteins may reside on an organellar
inner or outer membrane in such a manner that a reactive
oxygen species (ROS) or redox shift can trigger a change in
conformation and transit of the protein to the nucleus [47].

Studies of post-endosymbiotic evolution provide valuable
clues about plant adaptation to land. Polyplastidity, the pres-
ence of multiple dividing plastids per cell as opposed to a
singular organelle, is uncommon among early algal lineages
but was likely essential to land-plant adaptation [48]. The
ability of particular plant lineages to adopt polyplastidity is
thought to have influenced the magnitude of plastid-to-
nucleus genetic transfers [49] as well as the subsequent
specialization of plastid types [50]. The co-evolution of mito-
chondria and plastids as highly specialized cellular
compartments has led to enhanced functional versatility of
many nuclear-encoded organellar proteins by virtue of their
dual targeting. Redirection of a protein to a new cellular
location can be an important impetus to protein neofunctio-
nalization [51]. Likewise, the spatio-temporal regulation of
nuclear-encoded plastid proteins following promoter special-
ization [52] is an essential component of plastid multi-
differentiation [53]. As a consequence, plastids are able to
specialize for roles in photosynthesis, pigment biosynthesis,
primary and secondary metabolic functions and stress signal-
ling, to name a few. The distinct features of a plastid type are
a function of their proteome composition. Because the
majority of the proteome is nuclear-encoded [54], plastids
can acquire distinct properties via spatio-temporal coordi-
nation of nuclear genes that encode these novel plastid
functions [53].
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Recent evidence indicates that plastids residing within
the epidermal cell layer and in vascular parenchyma and
bundle-sheath cells display features that are distinct from
photosynthetic mesophyll chloroplasts. Epidermal and
vascular plastids are 30% the size of a chloroplast and have
a distinct proteome composition [55]. These small-sized
organelles have been termed ‘sensory’ plastids due to their
demonstrated enrichment for stress-associated proteins [53].
Separation of chloroplasts and sensory plastids, by GFP-
assisted flow cytometry, reveal the chloroplast proteome to
be enriched for photosynthesis and electron transport
components, whereas sensory plastids contain a number of
additional stress-related and vascular tissue-associated fac-
tors that function in stress response [53]. Perturbation of the
sensory plastid can also result in epigenomic reprogramming
and altered fitness phenotypes in the plant [53,56].

With regard to plant mitochondria, genome size and
recombination activity are distinctively variable across
vascular plants, ranging widely in size and configuration
even among members within a genus [57]. This property
contrasts with animal mitochondrial genomes, which are
generally much more conservative in size, structure and
gene composition. This seeming disparity between plant
and animal evolutionary lineages is not well understood,
but plant mitochondrial DNA recombination can produce
dominant mutations that influence the reproductive biology
of the plant. Maternally inherited mitochondrial mutations
can induce male sterility, contributing to a natural repro-
ductive system of gynodioecy [58]. This system involves
plant transitions between hermaphrodite, with a capacity
for self-pollination, and female, requiring a pollen donor for
reproduction. When exploited by crop breeders, the male
sterility component of a gynodioecious system constitutes
an economical option for hybrid seed production [59].
Examples of this cytoplasmic male sterility (CMS) have
been described in over 80 plant species [60], generally associ-
ated with the expression of mitochondrial gene chimaeras
that arise from aberrant intragenic recombination [61].

CMS mutations generally encode proteins with hydro-
phobic domains and homology to components of the
energy transduction pathway [61]. Expression of the mito-
chondrial sterility factor can be countermanded by nuclear
genes known as fertility restorers. However, induction and
suppression of the male sterility trait can also be controlled
by regulating mitochondrial genome recombination, so that
a subgenomic DNA molecule that encodes the sterility
factor can be adjusted in relative copy number to influence
its expression. Substoichiometric forms of the mitochondrial
sterility gene are retained in the mitochondrial genome with-
out influencing plant phenotype until amplified in copy
number, leading to their detectable expression [62–64]. In
an agricultural context, it is feasible to manipulate the CMS
trait, together with fertility restorer genes, to permit the pro-
duction of hybrid seed without manual emasculations. The
system has proven to be a significant economic advantage
for a variety of crops including rapeseed, onion, carrot,
beet, sorghum, corn and rice [65].

In a natural ecosystem, the process is more complex.
Plants within a population benefit from genetic diversity
accrued through intercrossing, although plants finding them-
selves in isolation must rely on self-pollination to propagate
[66]. A facultative system of gynodioecy interchanges both
reproductive modes in response to environmental cues,
with reproductive trait plasticity to facilitate reversibility
within the system [66–68]. Sporadic incidence of CMS can
arise in a population due to changes in mitochondrial recom-
bination behaviour that lead to amplification of a quiescent
CMS mutation, or by mutation of a nuclear restorer gene
[58]. Male sterile individuals in the population facilitate
population intercrossing and genetic diversity.

Nuclear fertility restorer genes most often comprise mem-
bers of the expansive gene family of pentatricopeptide repeat
(PPR) proteins [61]. This gene family has undergone remark-
able expansion in size during plant evolution, often
numbering in the hundreds of genes, with the vast majority
participating in the regulation of organellar gene functions
[69]. It appears reasonable to assume that the incidence of
mitochondrial male sterility mutations, of selective advantage
to the population, has been accompanied by concomitant
selection for nuclear suppressors that may have served to
diversify the PPR gene family [69]. This sterility gene-restorer
gene dynamic bears resemblance to the coevolution of patho-
genicity and plant disease resistance systems, which are
similarly characterized by host gene family expansion as a
means of diversifying defence [70].

The male sterile plant that finds itself isolated, however,
will undergo flowering but must await successful pollination
by a compatible pollen source. Recurrent, unsuccessful flow-
ering in the absence of a pollination signal can lead to the
incidence of spontaneous reversion to fertility, generally late
in the life cycle [64,71,72]. In this situation, the mitochondrial
genome again shifts its recombination behaviour to suppress
the copy number of the male sterility-associated DNA
molecule, thus recovering pollen fertility and successful,
albeit low-frequency, self-pollination to the plant. This on/
off mitochondrial switch for male sterility, and its environ-
mental responsiveness, is an intriguingly overt example of
phenotypic plasticity impacting fitness.
4. The protein MSH1 as a component of
organellar stress signalling and plasticity

Detailed studies of the sensory plastid in angiosperms reveal
organellar proteins with a unique influence on stress signal-
ling. One such protein is MUTS HOMOLOG 1 (MSH1), a
homologue to the mismatch repair and recombination
factor MutS. MSH1 is nuclear-encoded, dual-targeted to
mitochondria and plastids [63] and may be universally pre-
sent in plants based on surveys to date of available algal,
moss, fern and angiosperm species [73,74]; Y Wamboldt &
SA Mackenzie 2016, unpublished). Characterized by six
domains [73], the MSH1 protein encodes a DNA-binding
motif (Domain I), an ATPase domain (V) and a GIY-YIG
homing endonuclease domain (VI) [73], features implicating
the protein in DNA binding and suppression of illegitimate
recombination. These attributes presumably derive from its
evolutionary origin.

MSH1 protein is expressed in epidermal, vascular par-
enchyma, meristem and reproductive tissues, and the gene
is responsive to environmental stress. Under conditions of
heat, cold, drought and excess light, MSH1 steady-state tran-
script levels are markedly suppressed [55,75–77], while
conditions of plant growth on sucrose result in a sharp
increase in MSH1 transcripts ([78]; J Yang, N Zhao and SA
Mackenzie 2019 unpublished). This sugar effect appears
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specific to sucrose and is not observed with other sugar
sources. The spatio-temporal and environmentally responsive
features of MSH1 are controlled by the gene’s promoter [55].

Hemi-complementation experiments contrast phenotypic
outcomes for the msh1 mutant by complementing with mito-
chondrially targeted versus plastid-targeted forms of the
MSH1 protein [79]. Thus, it is feasible to separate phenotype
implications of the gene’s mitochondrial versus plastid
functions. Mitochondrial depletion of MSH1 enhances mito-
chondrial DNA recombination, producing asymmetric DNA
exchange at unusually short intervals of sequence homology
[80]. This change in recombination behaviour drives substoi-
chiometric shifting in relative copy number of subgenomic
DNA molecules [80,81] and a male sterility phenotype
can emerge [64,82]. Thus, MSH1 suppression following
a change in environmental conditions can produce low-
frequency transition to CMS. Enhanced MSH1 expression in
response to increased sucrose availability [78] implies that
MSH1 also responds to pollination cues. A sucrose increase
signals successful pollination and may prove to be a regulator
of fertility reversion. During flowering, a CMS plant in iso-
lation receives no pollination cue, which triggers MSH1
suppression and spontaneous reversion to fertility (J Yang,
N Zhao and SA Mackenzie 2019, unpublished).

In the plastid, depletion of MSH1 signals a systemic stress
state in the plant, and msh1 mutant or RNAi suppression
lines undergo dramatic changes in the expression of abiotic
and biotic stress, circadian clock, phytohormone response
and spliceosome pathways [83]. The msh1 mutant also dis-
plays a range in altered phenotype intensity, with delayed
maturation and flowering, altered leaf morphology, day-
length sensitivity [79] and enhanced tolerance to drought
[55], heat [75], cold [77] and excess light [76]. These effects
are accompanied by genome-wide cytosine methylation
changes that reflect epigenomic reprogramming [56].

To analyse msh1 behaviour in more detail, it is feasible to
create RNAi suppression lines that induce the msh1 effect but
segregate away the RNAi transgene in the subsequent gener-
ation. Resulting progeny segregates for the presence or
absence of the transgene, which provides a test for epigenetic
memory following MSH1 reprogramming. Approximately
20% of the transgene-null progeny gives rise to an altered
‘memory’ phenotype more uniform than the original msh1
parent phenotype, showing delays in maturity and flowering,
reduced plant growth, altered circadian clock behaviour
and a pale green leaf phenotype (figure 1; [56,79]). These
‘memory’ plants produce progeny that show 100% pene-
trance of the phenotype transgenerationally, a phenomenon
that is recapitulated in Arabidopsis, soya bean, tomato,
sorghum and tobacco [79].
5. MSH1 suppression leads to heritable
epigenomic reprogramming in plants

The msh1 memory state is transgenerationally stable and
demonstrates genome-wide cytosine methylation repattern-
ing. Because segregation of the MSH1-RNAi transgene
produces both memory and ‘non-memory’ plants (trans-
gene-null plants with no visible memory phenotype), it is
feasible to compare wild-type, memory and non-memory
types to discriminate epigenomic memory features. Surpris-
ingly, gene-associated cytosine methylation levels are
similar between the memory and non-memory full-sibs;
what distinguishes the memory state is substantial methyl-
ation repatterning with particular reference to four gene
networks: circadian clock, auxin response, phytohormone
signal transduction and RNA spliceosome functions [84].
These observations are significant because memory and
non-memory individuals derive from a single parent, so
methylome changes that distinguish the two types are pre-
sumed to be associated with the memory phenotype. These
observations are also crucial because they indicate that the
methylome effects arising with stress memory are changes
that appear to create a novel epigenomic state [84]. This find-
ing contrasts with DNA methylation changes during gene
silencing, which generally involve high-density, high-magnitude
hypermethylation [85,86].

To understand how msh1 memory might influence natu-
ral plant fitness, genetic crossing and grafting experiments
have been carried out in various plant species. Reciprocal
crossing of msh1 memory lines with isogenic wild-type pro-
duces F2 populations with markedly enhanced variation in
growth vigour, resilience and seed yield. Similar patterns of
growth vigour have been observed in Arabidopsis [56,79],
tomato [87], soya bean [88] and sorghum [89]. The enhanced
vigour responds to selection over generations and diminishes
to wild-type levels by the F6 generation. Such reversibility
may be a key characteristic of epigenetic effects [90].

Grafting experiments that use msh1 as rootstock with an
isogenic wild-type scion also produce progeny that displays
enhanced growth vigour, plant size and yield. Again, this
augmented growth phenotype is differentially heritable for
at least four generations, eventually diminishing back to
wild-type levels. This epigenomic behaviour has been docu-
mented in soya bean [88], tomato [87] and Arabidopsis [56]
and further confirmed by large-scale testing. The underlying
basis for the robust growth outcomes, and any possible
relationship to classic heterosis, remains to be uncovered.
6. Epigenomic reprogramming for msh1
transgenerational memory, a component of
ecological diversified bet hedging?

Figure 1 shows theMSH1-mediated process of epigenetic repro-
gramming to an enhanced fitness outcome. The MSH1 gene
may be widespread in plant lineages, although male sterility
and epigenetic memory effects have only been documented
in angiosperms, both monocot and dicot. Its association with
both reproductive and stress response behaviours in the plant
implicates MSH1 in environmental adaptation. Methylome
and gene expression changes in themsh1mutant and its derived
memory state appear to target pathways that are central to plant
stress response: circadian rhythm, auxin-related pathways,
phytohormone signal transduction, spliceosome functions.
Similarly, MSH1 regulation confers the ability to elicit and
suppress a male sterility phenotype in response to changes in
local population features. If these laboratory-derived patterns
reflect naturally occurring behaviours, they insinuate plant
mechanisms capable of adjusting heritable environmental
responsiveness independent of genetic diversity.

From detailed ecological studies has emerged a model of
adaptation by diversified bet hedging, which compromises
maximal fitness under ideal conditions to improve fitness
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under stressful conditions [14], perhaps incorporating epige-
netic processes [91]. This concept of compromised fitness
may be pertinent to MSH1 phenomena. MSH1 suppression
signals chronic stress to the plant through sensory plastid-
mediated changes, triggering system-wide stress responses.
This perturbation results in a spectrum of effect intensity
among msh1 individuals, with significant differences in mag-
nitude and diversity of gene expression responses across
individuals within a single population [83]. Surviving
plants give rise to a proportion of their progeny displaying
heritable memory. In a natural habitat, this memory phenom-
enon can presumably provide transgenerational stress
tolerance as the population enlarges. Crosses between
memory plants and unmodified individuals produce pro-
geny with enhanced fitness features that would be expected
to expand local population competitiveness.

Studies have shown that organellar effects contribute to
phenotypic canalization and the control of metabolic stochas-
ticity in Arabidopsis [92]. Whereas phenotypic stability is
important to maintaining metabolic homeostasis, the ability
to retain and control some level of stochasticity within the
system at different metabolic levels may contribute to bet
hedging-based phenotypic plasticity in plants. Moreover, it
is possible that particular core gene networks are interlinked
with organellar signalling to permit rapid, programmed
phenotypic responsiveness [93].
7. Are there other examples?
(a) WHIRLY1
As unusual as the MSH1 system appears to be, its multi-
functional properties are not unique. Other plant organellar
proteins display multi-functional behaviour to participate in
environmental responsiveness. Whirly proteins are single-
strand DNA-binding proteins that localize to the plastid, in
the case of WHY1 and WHY3, and to the mitochondrion
for WHY2 [94]. These proteins share structural and DNA-
binding features in common [95], and their disruption, with
why1why3 double mutations or why2 overexpression, leads
to organellar genome instability [95–97]. The proteins
appear to be associated with organellar nucleoids and
likely suppress aberrant DNA recombination.

WHY1 has also been associated with stress responses
within the nucleus. Evidence suggests that the WHY1 protein
translocates to the nucleus from the plastid [98]. The nuclear-
localized form of the protein has been shown to bind and
influence telomere homeostasis in Arabidopsis [99], and to
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participate in salicylic acid signalling [100].WHY1may function
in transcriptional repressionof theKP1Kinesin-likeproteingene
[101], thought to function within the mitochondrion, implying
that plastid-directed effects influencing WHY1 may alter mito-
chondrial regulation. WHY1 has also been suggested to
repress WRKY53 expression, which leads to delayed leaf senes-
cence [102]. All of these events are thought to confer changes in
the plant in response to stress and ROS effects [103].

An intriguing hypothesis for WHY1 action was developed
formodelling its behaviour in the plant cell [47]. Cross-tolerance
or the general increase in resistance to a range of stresses follow-
ing exposure to one, often leads to the activation of signalling
pathways that alter both abiotic and biotic stress responses
[104]. Redox and phytohormone signalling, in association
with accumulation of ROS [105–107], can trigger this complex
response, and WHY1 may participate in the retrograde signal-
ling process initiated by plastid redox perturbation.

Similar to modelling of the NONEXPRESSOR OF PR
GENES 1 (NPR1), which exists in oligomeric form within the
cytosol but disperses to monomeric form for transit to the
nucleus [108],WHY1hasbeen speculated to exist as anoligomer
[95] at the interface of thylakoidmembrane and nucleosome but
asamonomerduringnuclear transit [47]. Suchaconformational
change might be redox regulated. What makes this speculation
particularly interesting is that both MSH1 and WHY1 appear
to be involved in organellar DNA binding, thus nucleoid-
associated, yet both appear to function beyond their DNA
binding roles,withnuclear transitingbyWHY1andepigenomic
reprogramming by MSH1. In both cases, it is likely that plastid
perturbation, inciting changes in ROS levels and redox,
condition these unusual stress signalling behaviours (figure 2).

(b) CUE1
Plastids interconnect with mitochondria on multiple levels,
often with the exchange of metabolic products [110].
For example, plastids import phosphoenolpyruvate
(PEP), a glycolytic intermediate produced in mitochondria,
as a precursor for at least four pathways, including the
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shikimate pathway [111]. Two plastid PEP transporter pro-
teins are known in Arabidopsis, PPT1 and PPT2, that
localize to the plastid inner envelope membrane [112]. The
PPT2 protein is found within mesophyll chloroplasts,
whereas PPT1 is specifically expressed within the epidermal
and vascular parenchyma cells and localizes to the sensory
plastid [53,113]. Several observations suggest that the dupli-
cation and spatio-temporal regulation of PPT1 and PPT2
expression have resulted in PPT1 neofunctionalization.

PPT1, also known as CAB UNDEREXPRESSED 1 (CUE1),
has been confirmed to translocate PEP as a precursor to the shi-
kimate pathway within the sensory plastid. The cue1mutant is
characterized by defective expression of several light-regulated
geneswithin themesophyll but not in vascular tissue or epider-
mal cells, resulting in defective mesophyll chloroplast
development [112,113]. These observations indicate that sen-
sory plastid processes control mesophyll chloroplast
development, and a cue1mutant displays a reticulated leaf phe-
notype of dark green venation with pale green lamina sections
[114]. Double mutation of cue1 with eno1, a plastid localized
enolase that catalyses the glycolytic conversion of 2-phospho-
glycerate to PEP, is lethal [115]. This observation implies that
the mesophyll chloroplast-associated PPT2 is not able to com-
pensate for cue1 function and that the enolase and CUE1
functions may be adjoined within the sensory plastid.

Because PEP participates in the shikimate pathway, cue1
can be complemented by exogenous application of aromatic
amino acids [116]. This pathway is important to numerous
stress processes as well as secondary cell wall biosynthesis
[117]. Unexpectedly, this pathway also represents a potential
link between sensory plastid processes and epigenetic func-
tions in the plant. A cue1 mutant acts as a second-site
suppressor to mutants of ROS1 [118], the demethylase (gly-
colase) that acts as a DNA methylation rheostat in the plant
genome [119] and functions in genome-wide cytosine
demethylation. The relationship of CUE1 to genome
methylation may be indirect and is not yet well understood.

CUE1 also appears to participate directly in sensory plas-
tid stress signalling. CUE1-mediated import of PEP is the first
step in the biosynthesis of tyrosine, a precursor to tocopherols
[117]. Tocopherol biosynthesis is essential for the accumu-
lation of PAP. PAP is a component of plastid retrograde
signalling and translocates from the plastid to the nucleus.
Nuclear-localized PAP inhibits a class of exoribonucleases
that degrade miRNAs so that under stress conditions, PAP
signalling from the plastid serves to stabilize nuclear
miRNAs that participate in stress response processes [109].
Likewise, PAP participates in ABA signalling to regulate sto-
matal closure [45] and drought response in the plant [44].
These observations point to an integrated sensory plastid–
chloroplast–mitochondrial coordination that functions in
metabolic, developmental and stress response processes of
the plant (figure 2). The co-opting of metabolic linkages,
gene duplications and protein dual targeting has supplied
the system with a level of complexity that facilitates local
and systemic stress responses that are vital to plant
adaptation.
8. How did these systems evolve?
The evolutionary process of endosymbiosis was followed by
the capacity of genes to transit, occasionally via RNA inter-
mediates [120] or more often as entire genomic DNA
fragments [121], to the nucleus. These transferred organellar
sequences must undergo two subsequent processes, the
acquisition of targeting presequences that provide the oppor-
tunity for protein transit back to the organelle and the
procurement of a functional promoter to permit expression
within the nuclear genome. It is these two functions that
create intrigue regarding the evolutionary impetus for
protein neofunctionalization. Studies have shown that the
acquisition of an amino-terminal protein targeting prese-
quence, and its expansion from singular to dual targeting,
may involve mechanisms as seemingly incomplex as alterna-
tive translation initiation and leaky ribosome scanning [122–
124]. Dual or mistargeting events serve to position proteins
within new cellular environments, a stimulus for protein
modification. Coupled with promoter evolution for spatio-
temporal and environmental responsiveness, these factors
appear to participate in MSH1, CUE1 and WHIRLY pre-
sent-day multi-functionality. Interestingly, numerous
proteins within the sensory plastid do not appear to be
shared with the mesophyll chloroplast [53], implying that
the sensory plastid may house additional components of
environmental sensing yet to be characterized. Not sur-
prisingly, numerous environmental responses have been
mapped to plastids within the epidermis and vascular tissues
[125–128]. The intensive research efforts now being directed
toward abiotic and biotic stress effects in plants promise to
reveal an even greater array of robust organelle-mediated
defences in the future.
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