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Abstract: Properly measuring the complexity of time series is an important issue. The permutation
entropy (PE) is a widely used as an effective complexity measurement algorithm, but it is not suitable
for the complexity description of multi-dimensional data. In this paper, in order to better measure
the complexity of multi-dimensional time series, we proposed a modified multivariable PE (MMPE)
algorithm with principal component analysis (PCA) dimensionality reduction, which is a new multi-
dimensional time series complexity measurement algorithm. The analysis results of different chaotic
systems verify that MMPE is effective. Moreover, we applied it to the comlexity analysis of EEG
data. It shows that the person during mental arithmetic task has higher complexity comparing with
the state before mental arithmetic task. In addition, we also discussed the necessity of the PCA
dimensionality reduction.

Keywords: complexity; PCA; multivariable; permutation entropy; chaotic series; EEG signal

1. Introduction

The complexity measurement algorithms and their applications are the current re-
search hotspots in the field of nonlinear signal processing. It is widely used to evaluate
the irregularities of time series obtained from various systems, such as EEG signals [1–3],
ECG signals [4,5], walking stride interval signals [6], stock fluctuations [7] and weather
prediction [8]. At the meantime, many researchers have conducted in-depth analysis on
the complexity of chaotic systems [9–12]. These researches give us a deeper understanding
about the characteristics of chaotic systems.

In order to measure the complexity of time series, many complexity algorithms were
proposed, such as the approximate entropy (ApEn) [13], sample entropy (SampEn) [14],
fuzzy entropy (FuzzyEn) [15], dispersion entropy (DE) [16] and permutation entropy
(PE) [17]. These algorithms have a variety of different advantages. For instance, ApEn does
not need to perform binarization or other coarse-grained processing on the time series,
and only needs a shorter sequence to estimate a more reliable approximate entropy value.
SampEn has a powerful ability to quantify sequence complexity, but the calculation speed
is slow. In order to meet the needs under different conditions, researchers have made many
improvements on their basis. For example, Coast et al. [18] proposed the multi-scale coarse
graining process and designed the multiscale entropy to analyze the time series on multiple
time scales. Subsequently, a variety of different multi-scale complexity algorithms were
proposed, such as multiscale SampEn (MSE) [19], multiscale fuzzy entropy (MFE) [20], mul-
tiscale dispersion entropy (MDE) [21] and multiscale permutation entropy [22]. Obviously,
designing of entropy algorithms and complexity measure methods for nonlinear time series
developed greatly. Meanwhile, among the algorithms mentioned above, PE algorithm
has the characteristics of good anti-noise ability and fast calculation speed. Thus, it is an
effective algorithm and was commonly used to analyze the complexity of one-dimensional
time series.
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Moreover, there exist many high-dimensional systems and multivariate data in the
applications. For example, the EEG signals have 21 channels, generally. Thus, it is necessary
to design multivariate complexity measures. Until now, there are several different kinds
of multivariate complexity measures are proposed, such as multivariate SampEn [23] and
multivariate FuzzyEn [24]. Moreover, Ahmed M.U. et al. [25] proposed multivariate multi-
scale entropy for multivariate data. It adapts to biological and physical systems with the
characteristics of multivariate, correlation and noise in the real world, and reveals the long-
range correlation between channels. Later, Francesco C.M. et al. [22] proposed multivariate
multiscale PE to analyze EEG signals of Alzheimer’s patients. However, in the absence of
noise, this algorithm has a lower complexity value in low-frequency signals. In order to
preserve the information of the original multi-dimensional data to a large extent, to save the
storage space and to speed up the calculation, some researchers used the principal compo-
nent analysis (PCA) method for data dimensionality reduction [26–28]. Marisa M. et al. [26]
used the PE algorithm to classify the data set processed by PCA and showed obvious
advantages. However, its results did not show the superiority of taking multiple principal
components over a single principal component. However, PCA provides a way to shrink
the dimension of the data and keep as much as information of the multivariate data.

At present, it is very interesting to employ the linear or non-linear methods to classify
EEG signals in different states. Some researchers used neural network methods to clas-
sify EEG in different states [29–33], such as emotion recognition [30], fatigue detection [31],
epilepsy prediction [32,33], and some other diseases. Furthermore, other researchers achieved
the purpose of state classification by calculating the complexity of EEG signals [12,34]. In
2015, Nadia M. et al. [34] proposed permutation Renyi entropy (PEr), and it was success-
fully applied to analyze the changes in childhood epilepsy EEG signals. Soon multiscale
permutation Renyi entropy (MPEr) [12] was proposed. In order to fully consider the multi-
channel characteristics of EEG signals, some researchers used multivariate algorithms and
PCA dimensionality reduction [25,26]. Obviously, these studies lay a good foundation for
the applications of EEG signals.

Motivated by the above discussions, in this paper, we proposed a modified multivari-
ate PE measure method to analyze EEG signals with 21 channels, where PCA is employed
to shrink the dimension of the data. In fact, we try to improve the method based on the
Bandt–Pompe ordinal patterns [26] from the multiple time series. Specifically, we use the
Bandt–Pompe ordinal patterns of corresponding positions to build new patters and to
increase the number of patterns for better performance. For the one hand, we provide a
new method for the multivariable time series, for the another hand, EEG signals before
mental arithmetic task and during the mental arithmetic task are analyzed.

The rest of this paper is divided into the following parts. Section 2 introduces the
basic principles of PCA and permutation entropy, then gives the derivation process of two
multivariate permutation entropy in detail. Section 3 illustrates the complexity analysis of
chaotic systems. We apply the new algorithm to analyze the EEG signals and make some
comparisons in Section 4. Finally, we summarize this article and indicate the future work.

2. Complexity Measure Methods
2.1. PCA and Normalization of the Multivariable Time Series
2.1.1. PCA

In nature, there are many signals that require multi-channel data to be relatively accu-
rately described (for example, the EEG signals). The selection of signal channels becomes
a problem to solve. Some are solved by designing the channel selection algorithm, while
some are solved by fusing different channels to retain the main information and remove
the redundant information, so as to achieve the purpose of dimensionality reduction. The
dimensionality reduction method is divided into linear and non-linear dimensionality
reduction. Here, we mainly introduce the PCA method in linear dimensionality reduction.
The steps of PCA is given as follows [35,36].
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Step 1: Suppose that there is a multivariable time series {xi = [xi,1, xi,2, · · ·, xi,k]
T} with

k dimensional, where i = 1, 2, · · ·, n, and n is the length of time series. Let n > k, construct
sample matrix, where the following normalized transformation is applied

Zi,j =
xi,j − x:,j

sj
, (1)

where x:,j =
∑n

i=1 xi,j
n and sj =

√
∑n

j=1 (xi,j−x:,j)
2

n−1 . In this paper, x:,j
∼=
{

xi,j, i = 1, 2, · · ·
}

and
xi,:
∼=
{

xi,j, j = 1, 2, · · ·
}

.
Step 2: Calculate the correlation coefficient matrix of matrix Z, and it is denoted as

R =
ZTZ
n− 1

. (2)

Step 3: Solve the characteristic equation of matrix R, which is |R− λIk| = 0. Thus, we
can get a series of characteristic roots

{
λj : j = 1, 2, · · · , k

}
. Then the shrinked dimension

m is estimated by
m
∑

j=1
λj

/
k
∑

j=1
λj ≥ 0.85. It makes the utilization rate of information reach

more than 85%.
Step 4: For each λj(j = 1, 2, · · · , k), solve the equations Rb = λjb, we can obtain the

unit eigenvector bo
j .

Step 5: Transfer the standardized index variable conversion to the main component,
and it is

Ui,j = zT
i bo

j (3)

where j = 1, 2, · · · , m, and zi is the ith vector in the matrix Z. Thus, we get a m-dimensional
time series with length n.

2.1.2. Normalization

Suppose that the original time series is defined by

X =


x1,1 x1,2 · · · x1,n
x2,1 x2,1 · · · x2,n

...
...

. . .
...

xk,1 xk,2 · · · xk,n

, (4)

where n is the length of sequence and k is the dimension of the time series. To obtain the
normalization of the multivariable time series, there are three steps.

Step 1: Normalize the original time series, and it is given by

x̃i,j =
max(xi,:)− xi,j

max(xi,:)−min(xi,:)
, (5)

where i = 1, 2, · · · , k, j = 1, 2, · · · , n, and xi,: represents the ith line of the time series.
Step 2: PCA of the time series x̃i,j, and shrinks the dimension of the time series. The

new m-dimensional time series is denoted as

Y =


y1,1 1,2 · · · y1,n
y2,1 y2,2 · · · y2,n

...
...

. . .
...

ym,1 ym,2 · · · ym,n

, (6)

where m < k.
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Step 3: Normalize the m-dimensional time series, and it is given by

ỹij =
max(yi,:)− yi,j

max(yi,:)−min(yi,:)
(7)

where i = 1, 2, · · · , m; j = 1, 2, · · · , n, and yi,: represents the ith line of the time series.

Thus, the obtained time series Y =


ỹ1,1 ỹ1,2 · · · ỹ1,n
ỹ2,1 ỹ2,2 · · · ỹ2,n

...
...

. . .
...

ỹm,1 ỹm,2 · · · ỹm,n

 can be used to measure

the complexity.
It should be noted that, if the PCA process is not employed to the multi-dimensional

time series X, only Step 1 is necessary for the normalization. In the coming sections, the
complexity algorithm is designed based on the normalized time series.

2.2. Multivariable Ordinal Pattern Representations

Bandt and Pompe [17] proposed the ordinal patterns to detect the complex patterns
in the nonlinear time series. For a given time series {xn : n = 1, 2, 3, · · · , N} and a given
parameter d, the reconstructed vectors are defined by

Φi = {xi, xi+1, · · · , xi+d−1}, (8)

where i = 1, 2, · · · , N − d + 1. For each vector Xi, it is resorted by ascending sort as

xi+r0 ≤ xi+r1 ≤ · · · ≤ xi+rd−1
(9)

where π = (r0, r1, · · · , rd−1) are the index of the vector Φi. Obviously, there are d! possible
π. If d = 3, there are six ordinal patterns, namely, {π1, x1 ≤ x2 ≤ x3}, {π2, x1 ≤ x3 ≤ x2},
{π3, x2 ≤ x1 ≤ x3}, {π4, x3 ≤ x1 ≤ x2}, {π5, x2 ≤ x3 ≤ x1}, {π6, x3 ≤ x2 ≤ x1}. The six
patterns are presented in Figure 1. Let πθ = θ(θ = 1, 2, · · · , d!). If Xi is of pattern πθ and
si = θ, then we can get a symbol time series {si, i = 1, 2, · · · , N − d + 1}.

π1=1 π2=2 π3=3 π4=4 π5=5 π6=6π1=1 π2=2 π3=3 π4=4 π5=5 π6=6

Figure 1. The six patterns for d = 3.

Remark 1. For convenience, we use symbols to represent the obtained patterns. Thus, a pattern
time series is introduced.

Suppose that there is a multivariable time series after normalization, and it is de-
fined by

{
xi,j : i = 1, 2, · · · , m; j = 1, 2, · · · , n

}
=


x1,1 x1,2 · · · x1,n
x2,1 x2,2 · · · x2,n

...
...

. . .
...

xm,1 xm,1 · · · xm,n

, (10)

where m is the dimension, and n is the length of the time series.
By using the Bandt–Pompe pattern for each time series {xi,j : j = 1, 2, . . . , n}, we can

get pattern series for each time series xi,:, and define the pattern series by{
si,j : i = 1, 2, · · · , m, j = 1, 2, · · · , n− d + 1

}
(11)
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Above pattern series is obtained based on the principle of the original Bandt–Pompe
method. Recently, Mohr M. et al. [26] improved the patterns for multi variable time series.
This method is to capture new patterns based on the obtained patterns. The new pattern
vector is given as

gj =
[
s1,j, s2,j, · · · , sm,j

]
. (12)

In simulations, we need to change the patters to symbols or numbers. Here, it is defined by

ϕj = s1,j × d!m−1 + s2,j × d!m−2 + · · ·+ sm,j × d!0. (13)

As a result, a symbol time series related to the patterns {ϕi, i = 1, 2, · · · , N − d + 1} is
obtained for entropy estimation.

Here, we consider the combination of obtained multivariate ordinal patterns, which
means that there could be d!m possible patterns from the vectors. Specifically since each
s has d! possiblities and thus there are d!m patterns in the new symbol time series. Let
m = 2, d = 3, as shown in Figure 2, an example is presented to show the details of the new
patterns and the case for d = 3(s1,i = π1). Thus, there are six possible patterns for each
pair of symbols (s1,j, s2,j), and there are 62 = 36 possible patterns for the final results.

(π1,π1) (π1,π2) (π1,π3)

(π1,π4) (π1,π5) (π1,π6)

(π1,π1) (π1,π2) (π1,π3)

(π1,π4) (π1,π5) (π1,π6)

Figure 2. The six possible cases for d = 3(π1) and variable-dimension m = 2.

For the modified multivariable PE (MPE) compelxity measure method, the vectors Xi
is defined by

Xi = {x1,i, x2,i, · · · , xm,i}, (14)

to build the pattern series, where i = 1, 2, · · · , n. According to the Bandt–Pompe patterns,
we have a symbol time series {si : i = 1, 2, · · · , N}.

2.3. Multivariable Permutation Entropy Algorithms

The PE algorithm [17] is calculated based on {si : i = 1, 2, · · · , N − d + 1}, and it is
defined by

p(πθ) =
#{si|i ≤ N − d + 1; si = θ }

N − d + 1
, (15)

where symbol # represents the number, and θ = 1, 2, · · · , d!. According to the Shannon
entropy definition, the PE algorithm is denoted as

PE(x, d) = − 1
Smax

d!

∑
θ=1

p(πθ) ln p(πθ), (16)

where Smax = S[Pe] = ln(d!).
The multivariable PE (MPE) algorithm is also defined based on the pattern series. For

the obtained symbol series {si : i = 1, 2, · · · ,N}, the corresponding probability distribution
is denoted as

p(πθ) =
1
N

#{si|i ≤ N; si = θ }, (17)



Entropy 2021, 23, 931 6 of 19

where symbol # represent number. According to the Shannon entropy definition, MPE is
denoted as

MPE(x, d) = − 1
Smax

d!

∑
θ=1

p(πθ) ln p(πθ), (18)

where θ = 1, 2, · · · , d!, and Smax = S[Pe] = ln(d!).
In this paper, based on the symbol time series {ϕi, i = 1, 2, · · · , N − d + 1}, a complex-

ity measure method for multivariable time series is proposed. Obviously, it is a modified
multivariable complexity measure algorithm, and we call it modified MPE (MMPE) algo-
rithm. For the symbol time series from the multivariable time series, and its probability
distribution is defined by

p(πθ) =
#{ϕi|i ≤ N − d + 1; ϕi = θ }

N − d + 1
, (19)

where symbol # represents number. According to the Shannon definition, the MMPE is
denoted as

MMPE(x, d) = − 1
Smax

d!

∑
θ=1

p(πθ) ln p(πθ). (20)

Here, θ = 1, 2, · · · , d!m, and Smax = S[Pe] = ln(d!m).
The three algorithms mentioned above are all designed based on the Shannon entropy,

but the pattern series is obtained through different methods. The PE algorithm measures
complexity of a single time series, while MPE and MMPE estimate complexity of multiple
time series. The embedded dimension of MPE is the dimension of the phase space or the
dimension of the multiple time series, so it is fixed. However, the embedded dimension of
MMPE can be adjusted for better estimation results.

2.4. Discussion of the Complexity Measurement Methods

Firstly, the characteristics of the proposed MMPE algorithm are summarized, and we
discussed how to choose proper algorithm.

(1) The new approach can have more patterns compared with the existing methods like PE
and MPE algorithms, and there are d!m patterns in the new approach for multivariate
time series, where d is the embedding dimension and m is the dimension of the time
series.

(2) Generally, if d takes larger values, there are more patterns. In the real applications, the
embedded dimension d can be {2, 3, 4, 5}.

(3) When m becomes to be larger, the number of patterns increase significantly. In the
real applications, m could be a large value. Thus, we need a method to shrink the
dimension. In this paper, the PCA algorithm is employed to decrease the dimension
of the multivariable time series. In the real application, we suggest that the value of m
could be smaller than 5.

(4) In general, more patterns mean better recognition of nonlinearity in the time series.
Two reasons are presented. Firstly, less patterns mean less computation, but it losses
more information. Secondly, if there are more items, the obtained patterns contain
more information regarding the nonlinearity in the time series.

(5) In simulations, it is found that there are some “missing” Bandt–Pompe ordinal patterns
for some chaotic systems. In fact, the chaotic time series are not random time series.
So there is always some “missing” ordinal patterns for the chaotic time series and
other nonlinear time series if they are not totally random.

(6) MMPE is an improved version of PE algorithm and MPE algorithm. Its time complex-
ity is On.

Secondly, until now, there is no uniform definition for the concept of complexity.
Scientists define the complexity in their own fields. For instance, in year 1995, Horgan [37]
pointed out that there are more than 45 different kinds of complexity definitions such
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as information, entropy, time complexity, space complexity, semantic complexity and
Kolmogorov complexity. As a result, lots of complexity measure methods are proposed
for nonlinear time series. Those methods have different characteristics. Moreover, we
summarize the advantages or disadvantages of several widely used complexity measure
methods, and the results are illustrated in Table 1. Those methods are designed for the one
dimensional nonlinear time series.

Table 1. Comparison of several complexity measure methods.

Method Characteristic Advantages Disadvantages

ApEn [13]
SampEn [14]
FuzzyEn [15]

Time domain,
Phase-space reconstruction
Distance between the vectors.

Short time series.
On2 , slow,
Not for time series
with long length

PE [17]
Time domain,
Patters from vectors,
Shannon entropy.

On, Fast.
It cannot detect the periodic
state some times,
Limited by the patters.

Dispersion
entropy [16]

Distribution,
Patters,
Shannon entropy

On, fast,
Improved version
of PE

−

Intensive
statistical
complexity
measure [38]

It combines PE
algorithm and the
probability distribution

On, fast,
Improved version of PE Similar as PE algorithm

C0 [39] Frequency domain FFT, Fast −
Spectral
entropy [40] Frequency domain Fast; FFT

Shannon entropy −

Thirdly, at present, except MPE, there are also many other multivariable complexity
measure algorithms. Overall, these methods are designed based on the existing complexity
measure methods which contain phase-space reconstruction. For instance, PE algorithm
has phase-space reconstruction for the one dimensional time series for patterns, so it can
be modified for complexity measure of multivariable time series. MMPE is different from
those multivariable complexity measure algorithms, although it is also designed based on
the phase-space reconstruction. This method gets its patterns based on the Bandt–Pompe
patterns of each time series. Thus, we can estimate complexity using more information.
Meanwhile, we introduced the PCA method to shrink the dimension of the multiple time
series and to keep more information for the whole system.

Fourthly, it is still a challenge to analyze complexity of nonlinear time series accurately.
Meanwhile, those entropy methods and complexity methods cannot be used to detect the
existence of chaos in the nonlinear systems. There are also some methods which can be used
to detect nonlinearity in the time series. For instance, the ANNs has been implemented to
predict the chaos in larger horizons [41]. Moreover, it is found that the physiological time
series can be chaotic time series since they have positive Lyapunov exponents. Specifically,
Yang et al. [42] investigated the chaotic feature of EEG signal based the Poincaré surface.

3. Complexity Analysis of Chaotic Systems

Firstly, complexity of 2D-SIMM chaotic map [43] is analyzed. The system is defined by xi = a sin(ωyi−1) sin
(

b
xi−1

)
yi = a sin(ωxi) sin

(
b

yi−1

) , (21)

where a, b and ω are the system parameters, and a, b, ω ∈ (0, + ∞). Let ω = π, b = 3, and
a varies from 0.4 to 4 with step size of 0.0064. The bifurcation and Lyapunov exponents
(LEs) of the system are plotted in Figure 3. It shows that the system has rich dynamics with
the variation of parameter a. Specifically, there are periodic windows and chaotic intervals
with the increase of parameter a. The length of time series for complexity measure about
this system is 10,000.
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1 1.5 2 2.5 3 3.5 4

a

-4

-2

0

2

4

6

L
E

s

(a) (b)

Figure 3. Dynamical analysis results of the 2D-SIMM system with the variation of parameter a. (a) Bifurcation diagram;
(b) Lyapunov exponents.

Firstly, fix ω = π, a = 1, b = 3, and the initial condition as x0 = 0.45, y0 = 0.95, a
segment of time series is obtained to test different algorithms. When d = 3, the probability
distribution of PE algorithm is shown in Figure 4a, while the probability distribution of
MMPE algorithm is given in Figure 4b. It shows that there are more patterns in the MMPE
algorithm compared with PE algorithm. Moreover, when d = 4, the probability distributions
of PE and MMPE are illustrated in Figure 4c,d. As shown in Figure 4d, there are about
400 recognized patterns. In fact, there are 576 possible patterns. Thus, compared with PE
algorithm, MMPE algorithm can estimate complexity using more patterns and it should
have better analysis results. As shown in Figure 5, compared with the complexity analysis
of PE, analysis results of MMPE algorithm have better performance with the parameter a
and better degree of differentiation with different embedded dimension d. In conclusion,
MMPE has better performance for complexity measure of the discrete chaotic system.

1 2 3 4 5 6

Pattern

0

0.05

0.1

0.15

0.2

p

0 5 10 15 20 25 30

Pattern

0

0.02

0.04

0.06

p

0 5 10 15 20 25

Pattern

0

0.01

0.02

0.03

0.04

0.05

p

0 100 200 300 400

Pattern

0

0.002

0.004

0.006

0.008

0.01

p

(a) (b)

(c) (d)

Figure 4. Probability distribution of the system based on different algorithms and d. (a) d = 3 and PE algorithm; (b) d = 3
and MMPE algorithm; (c) d = 4 and PE algorithm; (d) d = 4 and MMPE algorithm.
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1 1.5 2 2.5 3 3.5 4

a

0

0.2

0.4

0.6

0.8

1
P
E

d=3

d=4

d=5

1 1.5 2 2.5 3 3.5 4

a

0

0.2

0.4

0.6

0.8

1

M
M
P
E

d=3

d=4

d=5

(a) (b)

Figure 5. Complexity measure results of the 2D-SIMM system with the variation of parameter a and different algorithms.
(a) PE algorithm; (b) MMPE algorithm.

Sun et al. [44] simplified the Lorenz system, and it is defined as
ẋ = 10(y− x)
ẏ = −xz + (24− 4c)x + cy
ż = xy− 8

3 z
, (22)

where c is the bifurcation parameter. When c ∈ (−1.59, 7.75), the system is generally
chaotic. Moreover, the length of time series for complexity measure about this system
is 20,000.

Complexity analysis results using PE algorithm, MPE algorithm and MMPE algorithm
are presented. Firstly, the probability distribution of different algorithms and embedded
dimension d are shown in Figure 6. For the MPE algorithm, its embedded dimension d
is fixed, which is the dimension of the system. For system (21), it is 3. There could be six
possible patterns, and the probability distribution of the 6 patterns is shown in Figure 6e.
When d = 3, compared with PE algorithm, MPE algorithm and MMPE algorithm show
more information regarding the nonlinearity of the time series. When d = 4, PE and MMPE
show more patterns, but the number of patterns increases remarkably in MMPE algorithm.
Meanwhile, the complexity analysis results are presented in Figure 7. It shows that the
PE algorithm and MMPE algorithm can measure complexity of the continuous chaotic
system effectively, and the trend agrees better with the corresponding Lyapunov exponents.
In Figure 7c the MPE algorithm does not show a satisfying result when comparing with
the results form the largest Lyapunov exponents. It shows that the MMPE algorithm are
effective for the complexity measurement of the chaotic systems.

For the continuous chaotic systems, it is important to choose a proper time step for
the simulation and then for the complexity measurement. It should be noted out that the
simplified Lorenz system is solved by using the fourth-order Runge–Kutta method with
h = 0.01. If we want to obtain time series with larger time step, we can sample the obtained
time series. It shows that the step size is a key factor for dynamics of the time series from
the continuous chaotic systems [45]. Here, for the obtained time series, different τ is used
to sample the data. Since the time series are discrete sequence, the value of τ in this paper is
integer numbers. Complexity results versus the sample periodic τ is presented in Figure 8a.
It shows that MPE analysis results do not increase with the sample periodic τ, while both
PE and MMPE analysis results increase with the sample periodic τ. However, PE analysis
results reach one while MMPE reach a certain value. Moreover, let τ = 25, complexity
of the simplified Lorenz system with c is analyzed, and the results obtained by PE, the
MMPE and MPE as shown in Figure 8b–d, respectively. It shows that more satisfying
results are obtained compared the time series with original time series (τ = 1). However,
results from the MMPE algorithm and PE algorithm match better with the corresponding
Lyapunov exponents.
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Figure 6. Probability distribution of the simplified Lorenz system based on different algorithms and d. (a) d = 3 and PE
algorithm; (b) d = 3 and MMPE algorithm; (c) d = 4 and PE algorithm; (d) d = 4 and MMPE algorithm; (e) d = 3 and
MPE algorithm.
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Figure 7. Complexity measure results of the simplified Lorenz system with the variation of parameter
a and different algorithms. (a) PE algorithm; (b) MMPE algorithm; (c) MPE algorithm.

According to the analysis above, the proposed MMPE algorithm can extract more
patterns comparing with the existing methods. Thus, in this paper, we will use it to analyze
the complexity of EEG data of different states.
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Figure 8. Complexity of the simplified Lorenz system with different sample periodic τ. (a) Complex-
ity with different sample periodic τ; (b) PE algorithm and τ = 25; (c) MMPE algorithm and τ = 25;
(d) MPE algorithm and τ = 25.

4. Determine State of EEG Signals
4.1. Data Description

The EEG signal database used in this article is a public database provided by physionet.
The website is https://www.physionet.org/content/eegmat/1.0.0/ (17 December 2018.
Version: 1.0.0). This database was contributed by Igor Zyma, Sergii Tukaev, and Ivan
Seleznov, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Insti-
tute”, Department of Electronic Engineering [46,47]. The EEGs were recorded monopolarly
using Neurocom EEG 23-channel system (Ukraine, XAI-MEDICA). The silver/silver chlo-
ride electrodes were placed on the scalp. According to the International 10/20 scheme,
all electrodes are referenced to the interconnected ear reference electrode. The database
contains EEG records of subjects before and during the execution of mental arithmetic
tasks. All signals are filtered with a high-pass filter with a cut-off frequency of 30 Hz and a
power line notch filter (50 Hz). Then the artifacts are removed by independent component
analysis, which is a clean signal that can be directly used for analysis. The database has a
total of 36 samples. The sample age is 16–26 years old. Each sample collected two segments
of signals, and recorded their EEG data when they were calm and the EEG data when
they performed simple arithmetic tasks. The lengths are, respectively, three minutes and
one minute. The simple arithmetic task is the subtraction of two numbers. We use all
36 samples to get a valid systematic conclusion. There are 21 channels of data for each
subject. As an example, time series of Subject02 during mental arithmetic task are presented
in Figure 9, where Figure 9a shows the original time series and Figure 9b illustrates the
PCA results with dimension four.

https://www.physionet.org/content/eegmat/1.0.0/
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Figure 9. Sample data from Subject02_2 of 60 s. (a) All the data; (b) PCA results with dimension four.

4.2. Complexity Analysis
4.2.1. MMPE Analysis

The data set has 31,000 points of data for the 60 s. Here, we divide the data into some
windows with the length 10,000. The distance of two neighbor windows is to check their
index of the first data and the distance is 500. For instance, the first window contains the
data points with index 1~10,000, while the second window contains the data points with
index 501~10,500. As a result, there are 40 measuring results of each subject for the two
states. As for the transient behaviors in the used EEG data, it has already been handled in
the data base. Moreover, we use the mean values as the final results, and use the box plots
to illustrate the difference.

Figure 10 illustrates that the analysis results for the Subject01, Subject16, Subject30
and Subject36. It shows that MMPE can distinguish the two states, where the dimension of
data after PCA is four. It shows that the subjects during mental arithmetic task have higher
complexity comparing with the state before mental arithmetic task.

To further confirm the analysis results as shown in Figure 10, we calculate the MMPE
complexity of all the 36 subjects. As mentioned above, the complexity is measured under
different windows. For each subject, we have 40 measure values for each state and the
mean value is used for the statistic analysis.
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Figure 10. Complexity measure results of different subject with different windows. (a) Subject01; (b) Subject16; (c) Subject30;
(d) Subject36.

Firstly, statistic analysis of the three cases with d = 3, 4 and 5 are carried out, where the
mean values are used to represent the complexity of each subject for different states. The
whole process for complexity analysis and its statistic analysis of EEG signals can be found
in Figure 11. For a given d and the obtained time series, the following steps are applied.

Step 1: We checked the distribution of the MMPE values. It shows that the two
segments of data (SeqB = [B1, B2, · · · , B36] and SeqD = [D1, D2, · · · , D36]) obey the normal
distribution. As a result, SeqB is the MMPE values drawn from the subjects before mental
arithmetic task, and SeqD is the MMPE values drawn from the subjects during mental
arithmetic task.

Step 2: The two independent test data simulated based on the EEG signals, namely,
SeqB and SeqD, are used to do the statistical analysis. Thus, the factor is the ‘Group’, group
SeqB and group SeqD. They are measured from same subjects but two different states.

Step 3: Here, the null hypothesis means that subjects during mental arithmetic task
and before mental arithmetic task have the same MMPE complexity as they are during
mental arithmetic task.

Step 4: We use the Matlab function “[p, anovatab, stats] = anova1(x, group)” to do the
statistic test. We take p = 0.05 as the level of statistical significance for the tests.
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Figure 11. The steps of complexity analysis of EEG signals. Here, we suppose that the complexity of
subjects before mental arithmetic tasks represented by B1∼36, while complexity of subjects during
mental arithmetic tasks represented by D1∼36.

Secondly, the measure results are plotted using box plots for each subject, and the
results are shown in Figures 12a and 13a,c. Obviously, for very few subjects, MMPE shows
higher complexity for those before mental arithmetic tasks. Most of the subjects show
higher MMPE complexity during mental arithmetic tasks, and we should consider the
sample differences and the data validation. Moreover, as shown in those figures, when
d takes larger values, the analysis results are more accurate due to that there are more
patterns are identified.

The detail information for d = 4 is illustrated in Table 2. It shows that the p-value is
0.001. Since it is smaller than 0.05, we could reject the null hypothesis. It means that the
MMPE complexity measure results can identify the two states, and the state during mental
arithmetic tasks has higher complexity. Meanwhile, the rank of p-values is ‘(p-value = 0.0014)
d = 3’ > ‘(p-value = 0.001), d = 4’ > ‘(p-value = 5.62 × 10−8), d = 5’. Obviously, MMPE
algorithm with d = 5 shows the best analysis results, and it shows the effectiveness of the
proposed MMPE algorithm.

Table 2. ANOVA analysis.

Source SS df MS F Prob > F

Columns 0.01202 1 0.01202 16.91 0.001
Error 0.04978 70 0.00071
Total 0.0618 71

4.2.2. MPE Analysis

In Section 2, we introduced an MPE algorithm. Here we use the MPE algorithm to
measure the complexity of the EEG data after PCA, where the dimension is four. The
analysis results are shown in Figure 14. It shows that MPE cannot identify the two states.
Furthermore, p-value is 0.6006 which is larger than 0.005. Thus, it means the two states
cannot be distinguished statistically.
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Figure 12. MMPE measure results with d = 4. (a) Analysis results for each subject using boxplot; (b) Boxplot of the two states.
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Figure 14. MPE analysis results. (a) Analysis results for each subject using boxplots; (b) Boxplot of the two states.

Furthermore, as mentioned above, Figures 12a, 13a,c and 14a are the complexity analysis
results of all subjects, and the results are presented as box plots. Thus, we have distinguished
the state before mental arithmetic task and the state during the mental arithmetic task
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EEG states from the population in general. Meanwhile, the Matlab anova1(·) function
documentation clearly states that its inputs are assumed to be independent. Since there are
two kinds of box plots, to avoid the possible misunderstanding, two remarks are presented.
In our experience, the inputs of anova1(·) function are two independent states.

Remark 2. Figures 12a, 13a,c and 14a are the complexity analysis results of all subjects, and
the results are presented in box plots since the complexity of each subject are calculated using the
sliding windows.

Remark 3. Figures 12b, 13b,d and 14b are plotted based on the mean values of the 40 windows in
each subject under the two states. Thus, the input of function anova1(·) can be divided into two
parts. One is a sequence contains the mean values of subjects before mental arithmetic task. The
other is a sequence contains the mean values of subjects during the mental arithmetic task. It means
that the inputs include two independent parts.

4.2.3. The Necessity of PCA

Here, we investigate the fact that whether PCA is necessary for the MMPE algo-
rithm. We randomly choose four channels to estimate MMPE complexity and calculate
the p-values. The experiments are run 50 times and the results are illustrated in Figure 15.
When p-value is smaller than 0.05, the four channels chosen can be used to estimate MMPE
complexity and identify the two states. It shows in Figure 15 that the minimum p-value is
0.0154, and it is larger than the PCA based analysis. Obviously, the rate for p-value larger
than 0.05 is 56%. Thus, we can see that the PCA is necessary for the MMPE algorithm when
the dimension of the system is high or the number of time series is large.

5 10 15 20 25 30 35 40 45 50

number

0

0.05

0.1

0.15

0.2
p>0.05=56%

minp=0.0154

 p
v
al

ue
 p

v
al

ue

1 5 10 15 20 25 30 35 40 45 50

number

0

0.05

0.1

0.15

0.2
p>0.05=56%

minp=0.0154

 p
v
al

ue

1

Figure 15. MMPE measure results using randomly chosen data where m = 4 and d = 4.

According to the experiment results, MMPE is effective for complexity analysis of
multiple time series. In addition, PCA is necessary to shrink the dimension of the phase
space since it can extract necessary information from the phase space. Moreover, it shows
that MPE algorithm cannot be used to analyze complexity of the EEG signals, although it
has the similar effect for the complexity analysis of chaotic systems.

5. Conclusions

In this paper, in order to measure the complexity of multi-dimensional time series,
we proposed a modified multivariate permutation entropy. The analysis results showed
that the proposed MMPE algorithm can extract more patterns comparing with the existing
methods. The analysis of discrete chaotic system shows that, compared with the complexity
analysis of PE, the analysis results of MMPE algorithm have better performance with the
parameter a and better degree of differentiation with different embedded dimension d.
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Meanwhile, the simulation analysis results prove that MMPE is effective for the complexity
measurement of continuous chaotic systems.

As an application, MMPE was applied to analyze the complexity of EEG including
the person before mental arithmetic task and during mental arithmetic task. In order to
decrease the dimensionality of the signals, we firstly reduced the dimensionality of the
EEG signals by PCA. The measure results show that participants during mental arithmetic
task have higher MMPE complexity. Moreover, when d takes larger values, the analysis
results are better due to that more patterns are identified. Then a statistical analysis was
performed on all the samples, and the results showed that the larger d, the better the
two different states are distinguished. According to the analysis of anoval and boxplot,
MMPE can effectively distinguish the two states. As a comparison, we performed the same
analysis with MPE, and the results showed that it could not distinguish the two states.
Finally, it was proved that PCA is necessary by comparing with the calculation results
of the complexity of randomly selected channel data. Our next work will focus on the
analysis of EEG signals of different types of diseases, and find a more effective way which
combines the neural networks to make more precise distinctions.
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