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Abstract
Background: Malignant pleural mesothelioma (MPM) is one of the most aggressive
tumors with few effective treatments worldwide. It has been suggested that alternative
splicing at the transcriptome level plays an indispensable role in MPM.
Methods: We analyzed the splicing profile of 84 MPM patients from the TCGA
cohort by using seven typical splicing types. We classified MPM patients based on
their splicing status and conducted a comprehensive analysis of the correlation
between the splicing classification and clinical characteristics, genetic variation, path-
way changes, immune heterogeneity, and potential therapeutic targets.
Results: The expression of the alternative splicing regulator SRPK1 is significantly
higher in MPM tissues than in normal tissues, and correlates with poor survival.
SRPK1 deficiency promotes MPM cell apoptosis and inhibits cell migration in vitro.
We divided the MPM patients into four clusters based on their splicing profile and
identified two clusters associated with the shortest (cluster 3) and longest (cluster 4)
survival time. We present the different gene signatures of each cluster that are related
to survival and splicing. Comprehensive analysis of data from the GDSC and TCGA
databases revealed that cluster 3 MPM patients could respond well to the small-
molecule inhibitor CHIR-99021, a small-molecule inhibitor of GSK-3.
Conclusion: We performed unsupervised clustering of alternative splicing data from
84 MPM patients from the TCGA database and identified a cluster associated with the
worst prognosis that was sensitive to a GSK-3 inhibitor.
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INTRODUCTION

Malignant mesothelioma is one of the most aggressive tumors
with few effective treatments worldwide. Pleural mesothelioma
accounts for about 80% of malignant mesothelioma cases, and
asbestos exposure is the main risk factor resulting in malignant
pleural mesothelioma.1 More than 30 000 new diagnoses and
26 278 deaths from malignant pleural mesothelioma (MPM)
were reported in 2020 worldwide.2 The median survival time
for MPM patients is about 1 year, and few patients can be
cured.3 The three main histological subtypes of MPM are epi-
thelioid (50%–70%), sarcomatoid (10%–20%), and biphasic

(20%–35%).4 Tumor cells in epithelioid MPM are similar to
primitive mesothelial cells, resulting in the best patient survival;
sarcomatoid MPM cells exhibit a spindle morphology similar to
sarcoma, leading to the worst patient survival. Biphasic MPM
has features of both epithelioid and sarcomatoid MPM.5,6 Only
a small number of patients with early MPM can receive com-
prehensive surgery-based treatment at the time of diagnosis.
The first-line treatment for advanced MPM is cisplatin com-
bined with pemetrexed. However, the results are not satisfactory
for either chemotherapy or radiotherapy.

In recent years, targeted therapy and immunotherapy
have gradually become hot spots in cancer treatment. To
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date, several molecular pathways related to MPM have been
identified, including growth factor signaling (especially the
EGFR signaling), angiogenesis, cell cycle regulation, apoptosis,
and epithelial-mesenchymal transition (EMT) pathways.7–10

Unfortunately, a large number of clinical trials of drugs specifi-
cally targeting these pathways have proved that current targeted
therapies have very limited efficacy on MPM patients.11–15

Thus, it is extremely important to discover new treatments or
develop a new classification method of MPM that can distin-
guish patients with different treatment responses.

Large-scale genome and transcriptome research can pro-
vide new insights for the classification of MPM. Both Bueno
et al. and Hmeljak et al. proposed new classification schemes
based on MPM transcriptomic data.16,17 Bueno et al.
reported recurrent mutations in the splicing factor SF3B1
and identified splice alterations as a recurrent mechanism
for tumor suppressor gene inactivation in MPM,17 suggest-
ing that alternative splicing plays an indispensable role in
MPM. Here, we could classify MPM patients into new sub-
types based on the TCGA alternative splicing data reported
by Ryan et al.,18 and conducted a comprehensive analysis on
the correlation between this classification scheme and clini-
cal characteristics, genetic variation, pathway changes,
immune heterogeneity, and potential therapeutic targets.

METHODS

Cell culture and SRPK1 knockdown by SRPK1-
specific siRNA

The human malignant pleural mesothelioma NCI-H2452
cell line was purchased from FuHeng BioLogy (Shanghai)
and cultured in RPMI-1640 medium supplemented with
10% fetal bovine serum (FBS), 100 mg/ml streptomycin, and
100 U/ml penicillin. The cells were cultured at 37�C in the
presence of 5% CO2. SRPK1-specific siRNAs were synthe-
sized by RIBOBIO, Guangzhou. We designed two distinct
siRNAs specific to SRPK1 with the following target
sequences: GCCGTATCATCCACACTGA (siSRPK1-1) and
GCGCCAGGCAGAATTACTA (siSRPK1-2). An equimolar
mixture of the two siRNAs was used for the following assay.
The RNAiMAX reagent was used to transfect H2452 cells
with siSRPK1 and siControl following the manufacturer’s
instructions. The knockdown efficiency was verified by RT-
PCR, using the following SRPK1-specific primers:

SRPK1-Forward: GGGCATCATCTGCTCAAGTGGA;
SRPK1-Reverse: GTCAGTGTGGATGATACGGCAC.

Apoptosis assay

The cells were collected 48 h after transfection. Cell apopto-
sis was detected using the FITC annexin V apoptosis detec-
tion kit (BD) following the manufacturer’s instructions.
Labeled cells were then subjected to flow cytometry (BD) to
calculate the apoptotic cell fraction.

Transwell cell migration assay

Cell migration was analyzed using 8-μm pore filter cham-
bers (Costar). The cells were collected 48 h after transfec-
tion, counted, and diluted to a density of 5.0 � 105 cells/ml
in PMI-1640 medium without FBS. The chambers were
filled with 100 μl cell suspension and 650 μl RPMI-1640
medium supplemented with 10% FBS, and transferred to the
plates. After 12 h, the cells that adhered to the membrane
were fixed with methanol and stained with 0.05% crystal
violet. Images of cells that migrated to the underside of the
filter were acquired with a microscope and analyzed using
ImageJ software.

Data sources and processing

RNA sequencing data and somatic mutation data from
84 MPM tumor tissues from the Cancer Genome Atlas
(TCGA) database, processed by MuTect2, were downloaded
from the UCSC Xena website (https://xena.ucsc.edu/). Clini-
cal characteristics (age, gender, tumor node metastasis clas-
sification [TNM], and pathological type and stage) and
survival information for all patients were collected from the
TCGA database. Gene expression data were converted into
transcripts per kilobase million (TPM), and log2(TPM +-
0.01) was used for subsequent analysis. Neoantigen data of
these TCGA MPM patients was obtained from the Genomic
Data Commons website (http://api.gdc.cancer.gov/data/).

The microarray GSE42977 data, which were acquired on
the GPL6790 platform, were downloaded from the Gene
Expression Omnibus website (GEO, https://www.ncbi.nlm.
nih.gov/geo/), and 40 MPM tumor tissues and eight normal
pleura mesothelial tissues were used to calculate the differ-
ential gene expression between tumor and normal mesothe-
lial tissues.

Percent-spliced-in (PSI) values of alternative splicing
data (percentage of samples with PSI of more than 75%)
were collected from SpliceSeq (http://bioinformatics.
mdanderson.org/TCGASpliceSeq).18 A total of 328 and
splicing-related genes were extracted from the SpliceAid
2 website (www.introni.it/spliceaid.html).19

MPM clustering analysis

Dimensionality reduction for RNA alternative splicing data
using the t-distributed stochastic neighbor embedding
(t-SNE) method was performed using the Rtsne package
(version 0.15) using the default parameters, and visualiza-
tion was performed by ggplot2 (version 3.3.5) in R software.
To obtain a robust classification of MPM patients based on
alternative splicing data, the consensus cluster plus package
(version 1.56.0) was used under the implemented unsuper-
vised consensus approach to identify MPM splicing sub-
types. The patients were separated into four clusters
(clusters 1, 2, 3, and 4).
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Differential gene analysis and gene set variation
analysis (GSVA) analysis

The Limma package (version 3.48.3) was used to identify
differentially expressed genes and alternative splicing events
between tumor and nontumor tissues, and between the four
clusters. A fold change higher than 2 or lower than 0.5 and a
false discovery rate (FDR) value lower than 0.05 were set as
critical values for differential gene analysis. GSVA, a gene
set enrichment method that estimates the variation of path-
way activity over a sample population in an unsupervised
manner, was performed using the GSVA package (version
1.42.0) on TPM RNA sequencing data.20 The PSI value of
each alternative splicing event with an interquartile range
(IQR) greater than 0.05 and the mRNA expression levels of
splicing factors were used for correlation analysis using the
Hmisc package (version 4.6–0) in order to calculate the
GSVA score of each cluster.

Survival analysis

Kaplan–Meier analysis was used to evaluate the overall sur-
vival of MPM patients in the four clusters. In order to fur-
ther analyze whether classification in the splicing clusters
could serve as an independent prognostic factor, we used
the Cox proportional hazards model after adjusting for fac-
tors including gender, age, pathological type, TNM, stage,
and CDKN2A mutation status to determine whether the
splicing classification could predict survival rate of MPM
patients.

Immunological score

The geometric mean of the expression of GZMA, GZMB,
PRF1, GNLY, GZMH, GZMM, GZMA, and PRF, which are
directly correlated with the cytolytic activity of T/NK cells,
was defined as the cytolytic score. The geometric mean of
the expression of HLA II genes (HLA-DMA, HLA-DMB,
HLA-DPA1, HLA-DPB1, HLA-DRA, and HLA-DRB1) was
defined as the HLA II score. The geometric mean of the
expression of known HLA I genes (B2M, HLA-A, HLA-B,
and HLA-C) was defined as the HLA I score.21

Tumor-infiltrating immune cell analysis

EPIC and CIBERSORT were used to calculate the infiltra-
tion fraction of seven and 22 immune cell types, respec-
tively, in MPM tumor tissues. EPIC is based on the
comparison of gene expression levels between a library of
specific cell types and tumors, and can be used to predict
the fraction of each cell type.22 EPIC analysis was performed
online according to web instructions (http://epic.gfellerlab.
org/). CIBERSORT is based on the principle of linear sup-
port vector regression and is a computational tool for the

deconvolution of the expression matrix of human immune
cell subtypes. CIBERSORT analysis was performed using the
R software according to the authors’ instructions.23

Somatic mutation analysis

Somatic mutation data of MPM patients were processed by
MuTect2, and analyzed and visualized using the maftools
package (version 2.10.0).

Statistical analysis

All statistical analysis were performed using the R (version
4.0.2) and Graphpad Prism 8 software. The data analysis
and visualization toolkit in R software included ggplot2,
pheatmap, Rtsne, Upset, ConsensusClusterPlus, survminer,
survival, limma, Cibersort, maftool, ComplexHeatmap,
openxlsx, circlize, and pROC packages. All statistical tests
are two-sided. Unless otherwise stated, a p-value less than
0.05 was considered to denote statistical significance.

RESULTS

SRPK1 deficiency promoted MPM cell apoptosis
and inhibited cell migration

The activities of two key families of splicing factors, the fam-
ily of serine/arginine splicing activators and the heteroge-
neous ribonuclear protein family of splicing suppressors, are
both regulated by the SRPK protein kinase family.24,25

SRPK1 expression is dysregulated in most cancers, and is
higher in tissues from MPM patients than in their healthy
counterparts (Figure S1A and Figure 1a). The Kaplan–Meier
curves show that MPM patients with higher SRPK1 expres-
sion have a worse prognosis than those with lower SRPK1
levels (Figure 1b, p < 0.01). To verify the effects of SRPK1 in
cancer in vitro, we carried out SRPK1 knockdown experi-
ments in the human MPM NCI-H2452 cell line using
SRPK1-specific small interfering RNAs. We confirmed that
siSRPK1 transfection dramatically decreased SRPK1 expres-
sion in H2452 cells (Figure 1c). Compared to the control
group, SRPK1 deficiency significantly promoted H2452 cell
apoptosis and inhibited H2452 cell migration (Figure 1d
and e). Collectively, our data support the notion that SRPK1
and RNA splicing-related events play a vital role in MPM
patients. Although MPM histological types are an important
factor affecting patient survival, SRPK1 expression showed
no significant differences across the different histological
types for both TCGA and GEO data sets (Figure 1f; TCGA
data set, p = 0.54; GEO data set, p = 0.16). Evaluation of
the splicing profile in MPM patients showed that most splic-
ing events were shared among the three histological types
(40 883/43433, Figure S1B). t-SNE analysis also showed that
pooled samples from different histological types did not
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form discrete clusters (Figure 1g), suggesting that when ana-
lyzing MPM characteristics based on alternative splicing
events, a new classification method might be needed.

Subtype clustering and clinical features related
to MPM alternative splicing

We conducted a detailed analysis of the comprehensive
splicing profile in TCGA MPM patients, covering seven typ-
ical splicing types: alternative acceptor site (AA), alternative
donor site (AD), alternative promoter (AP), alternative ter-
minator (AT), exon skipping (ES), mutually exclusive exons
(ME), and retained intron (RI). A total of 43 433 alternative

splicing events in 10 144 genes were detected in the
84 MPM patient cohort, comprising 7.99% AA, 7.07% AD,
20.13% AP, 19.51% AT, 38.53% ES, 0.42% ME, and 6.35%
RI (Supplementary Table 1, https://figshare.com/s/
e7ce15a90f7e235b5da9). We used the k-means clustering
algorithm to perform an unsupervised analysis on MPM
patients according to their alternative splicing profile and
the elbow method to determine the optimal number of clus-
ters. Although k = 5 appeared to be the optimal choice
(Figure 2a), the fifth cluster contained only two samples,
prompting us to eventually divide the patients into four
clusters only: Cluster 1 (C1, n = 26, 31.0%), cluster 2 (C2,
n = 17, 20.2%), cluster 3 (C3, n = 29, 34.5%), and cluster
4 (C4, n = 12, 14.3%) (Figure 2b and Figure S2A). The two

a b
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F I G U R E 1 SRPK1 deficiency promotes H2452 cell apoptosis and inhibits H2452 cell migration (a) SRPK1 expression in 40 malignant pleural
mesothelioma (MPM) tumor tissues and eight normal pleura mesothelial tissues in GEO42977. Mann–Whitney U test, **, p < 0.01. (b) Kaplan–Meier survival
plot of SRPK1 in TCGA data. (c) The knockdown efficiency of SRPK1 expression was confirmed by agarose gel electrophoresis (AGE) and was compared to
siNC (siNegativeControl). The knockdown efficiency of SRPK1 expression by siSRPK1-1, siSRPK1-2, and the mixture of both siRNAs was tested by RT-PCR
and the products were subjected to AGE. GAPDH was used as an internal control. (d) Apoptotic fractions of H2452 cells treated with siNC or siSRPK1 were
analyzed by flow cytometry (left panel); the statistical summary is shown in the column at the right panel (data are shown as mean � SD, *p < 0.05, n = 3, three
independent experiments were performed and each experiment contains two replicates). (e) Following treatment with siNC or siSRPK1, cells that migrated on
the underside of the filter were imaged and analyzed using the ImageJ software (left panel); the statistical summary is shown in the column at the right panel
(data are shown as mean � SD, ***p < 0.001, n = 5, five independent experiments were performed and each experiment contains two replicates). (f) SRPK1
expression in different MPM histology types from the TCGA (left panel; one-way ANOVA test, p = 0.54) and GEO (right panel, one-way ANOVA test,
p = 0.16) data sets. (g) tSNE plot of the 84 MPM patients colored based on the different histology types from the TCGA data set.
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samples in the original cluster 5 (when k = 5), were grouped
in cluster 1 in the final classification. All 12 samples in clus-
ter 4 belonged to epithelioid histological types and were
associated with the best overall survival. Two of the five sar-
comatoid samples were classified into cluster 3, and the
remaining three were found in cluster 1. In cluster 2, except
for one biphasic sample, the remaining 16 samples were all
epithelial samples. Of the remaining 20 histological biphasic
samples, nine were found in cluster 1 and 11 in cluster
3. Cluster 3 was associated with a worse overall survival rate
compared to the other clusters (Figure 2c and d). Survival
rates showed statistically significant differences across the
four clusters (p < 0.001). Even after adjusting for histology
and the CDKN2A mutation status,26 two known molecular
prognostic factors in MPM (Figure S2B), the survival

differences were still significant (p < 0.01). Furthermore, the
analysis of relevant clinical information (gender, age, T, N,
and stage) showed significant differences in T, N, and stage
that were not randomly distributed across the four clusters
(Fisher’s exact test, p < 0.05, Figure 2e). In conclusion,
through unsupervised clustering based on alternative splic-
ing profiles, we divided MPM patients into four clusters
with different survival and clinical characteristics.

GSVA analysis in MPM clusters

Comprehensive analysis of splicing profiles in the above four
clusters of MPM patients identified 41 861 alternative splic-
ing events in 19 819 genes in cluster 1, 41 871 alternative
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F I G U R E 2 Consensus clustering and clinical features related to MPM alternative splicing events (a) Elbow plot for k-means clustering. (b) Consensus
clustering of the 84 TCGA MPM patients based on alternative splicing profile, k = 4. (c) Kaplan–Meier survival plot of consensus MPM clusters.
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information in the four clusters of MPM patients.
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F I G U R E 3 GSVA enrichment analysis in the four MPM clusters. (a) The numbers of alternative splicing events and associated genes in the four
clusters. (b) Venn diagram showing the numbers of alternative splicing events in the four clusters and their intersections. (c) Representative top upregulation
GSVA enrichment scores in each cluster. (d) Heatmap of gene expression involved in proliferation, extracellular matrix, and immune response pathways.
(e) Representative top upregulation GSVA enrichment scores of epithelioid histology types in cluster 3 and cluster 4.
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splicing events in 19 814 genes in cluster 2, 42 056 alternative
splicing events in 19 833 genes in cluster 3, 41 536 alternative
splicing events in 19 801 genes in cluster 4, and 41 271 alterna-
tive splicing events shared by all four clusters (Figure 3a and
b). Although the number of genes and alternative splicing
events appeared to be similar across these four clusters, GSVA
analysis revealed unique characteristics for each cluster at the
transcriptome level. GSVA analysis uses gene expression profile
information to evaluate changes in pathway activity in order to
better annotate biological functions.20 Here, we performed
GSVA analysis on all MPM samples using a 7481-gene set
from gene ontology (GO: biological process). Cluster 1 showed
a high level of oxidative phosphorylation characteristics, with
enhanced signals for ATP synthesis-coupled electron transport,
mitochondrial electron transport, NADH dehydrogenase com-
plex, and oxidative phosphorylation, and decreased signals for
migration and tyrosine kinase receptor signaling pathways.
Cluster 2, when compared with the other three clusters, had
stronger signals related to complement-dependent cytotoxicity
and fatty acid beta oxidation using Acyl-CoA oxidase, while
the activation level of mononuclear macrophages and the syn-
thesis of deoxyribonucleotide and pyrimidine were downregu-
lated. It is worth noting that cluster 3, associated with the
worst prognosis, was enriched in epithelial-to-mesenchymal
transition, DNA replication, negative regulation of cell aging,
and other related pathways that constitute cancer hallmarks,27

showing strong malignant characteristics. Cluster 4, the cluster
with the longest patient survival time, showed type I interferon
response characteristics (Figure 3c and Figure S3). We found
that the genes encoding PDGFRB, CSPG4, and COL1A2,
which are highly expressed in MPM and correlate with MPM
patient prognosis as reported earlier, were almost exclusively
expressed in cluster 3 (Figure 3d).28–30 All cluster 4 patients
and 55% of cluster 3 patients belonged to the epithelioid
pathology type, but showed significant differences in survival
time. Therefore, we explored the differences between cluster
3 and cluster 4 only in epithelial-type patients and found that
they exhibited similar overall characteristics, which indicated
that the difference in pathological type was not so important
after classification according to alternative splicing clusters. In
summary, cluster 3, which was associated with the shortest
patient survival time among all clusters, was enriched in antia-
poptosis and EMT signaling pathways, which are frequent phe-
nomena in MPM, whereas cluster 4, associated with the best
patient survival, showed stronger type I interferon characteris-
tics (Figure 3e). These data show that there was an enrichment
of immune signals such as type I IFN in cluster 4 patients with
longer survival, whereas cluster 3 patients with the worst sur-
vival showed increased EMT and antiapoptotic signals.

Correlation between alternative splicing events
and splicing factors in MPM subtypes

In order to study the correlation between splicing factors and
alternative splicing events, we further performed a Spearman
correlation analysis on samples from the four clusters and

identified highly expressed splicing factors in each cluster
(Figure S4A). We found that in cluster 1, patients could clearly
be divided into two subgroups based either on the expression
of splicing factors or their correlation with alternative splicing
events (Figure 4a and Figure S4B). Such classification was not
obvious in clusters 2 and 3, and almost invisible in cluster 4. In
cluster 1, RNA splicing genes with increased expression
(PQBP1, THOC6, LSM7, FAM50A, and C19orf43) were nega-
tively correlated with a greater number of alternative splicing
events, and genes with decreased expression (ZC3H11A,
RNF40, INTS3, RAVER1, and EIF3A) showed a strong posi-
tive correlation with alternative splicing events. In cluster 4, a
similar number of alternative splicing events was involved in
positive and negative gene regulation (Figure 4b). These obser-
vations are consistent with the heatmap results presented in
Figure 4a. These results partially illustrate the differences in
splicing regulation mechanisms among MPM clusters.

MPM patients in cluster 3 were sensitive to the
GSK-3 inhibitor CHIR-99021

Although the alternative splicing profile could help us to clearly
divide MPM patients into four clusters, this classification
method is not feasible for practical applications. Therefore, we
next asked whether specific gene expression patterns could dis-
tinguish between four clusters of patients. We established a
marker signature based on 3–6 genes for each cluster
(Figure S5). Our marker model achieved a sensitivity level of
88.5, 82.4, 89.7, and 91.7% and a specificity level of 84.5, 94.0,
85.5, and 94.4% for cluster 1, cluster 2, cluster 3, and cluster
4, respectively. Receiver-operating characteristics (ROC) showed
that the area under the curve (AUCs) of the model was 0.912,
0.942, 0.956, and 0.983 for the four clusters, respectively, and all
models exhibited good prediction effects (Figure 5a). We used
this marker model to cluster the 84 MPM patients to further
verify the classification effect (Figure 5b).

The development of new inhibitors for targeted therapy of
mesothelioma is particularly important for improving patient
survival, especially in cluster 3 patients, who have poor progno-
sis. The Genomics of Drug Sensitivity in Cancer (GDSC) data-
base contains multiple omics data from more than 1000 tumor
cell lines and responses to more than 200 drugs, and helps
researchers to explore potential tumor treatment targets.31 We
collected transcriptome data of 21 pleural mesothelioma cell
lines in GDSC and clustered them together with the data of the
84 MPM patients from the TCGA database based on the
expression of the marker signature. Pleural mesothelioma cells
in GDSC were divided into two main groups: 16 cell lines
highly similar to cluster 3 were labeled as GDSC-1, and the
remaining five cell lines were labeled as GDSC-2 (Figure 5c).
We selected 155 small molecule drugs with response records in
at least 18 mesothelioma cell lines for the follow-up analysis.
There are only three drugs, CHIR-99021, IOX2, and rTRAIL,
whose responses were recorded as sensitive in more than five
cell lines (Figure 5d-g). CHIR-99021 is an inhibitor of GSK-3α
and GSK-3β, which are involved in the WNT signaling
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pathway. IOX2 is an inhibitor of the egl-9 family hypoxia-
inducible factor 1 (EGLN). rTRAIL is a TRAIL receptor ago-
nist and is involved in the regulation of apoptosis regulatory
signaling pathways. We found that 50% of the cell lines in
GDSC-1 were sensitive to CHIR-99021, whereas all cell lines in
GDSC-2 were resistant to CHIR-99021, and there was a signifi-
cant difference in IC50 between the sensitive and resistant
groups. These results suggest that CHIR-99021, a small mole-
cule inhibitor of GSK-3α and GSK-3β, would elicit a good
therapeutic response in cluster 3 MPM patients but have no
effect for MPM patients in the other three clusters. Personal-
ized cancer treatment appears to be particularly important in
the current customization of cancer treatment plans.

Immune characteristics of MPM patients

We next explored the characteristics of immune cell infiltra-
tion, antigen presentation, and cancer-germline antigens
(CGAs) in MPM. CD8+ cytotoxic T lymphocytes (CTL) and

NK cells are considered essential for effective immunother-
apy. We used the EPIC and CIBERSORT algorithms to cal-
culate the infiltration fraction of different immune cells in
MPM (Figure S6A), and calculated the cytolytic score for
each sample, which could reflect CTL/NK abundance.21

CD8+ T cell scores calculated by both EPIC and CIBER-
SORT and the combined scores of CD8+ T cells and NK
cells calculated by CIBERSORT were correlated with higher
cytolytic scores (r > 0.6), while the CD4+ T cell scores
showed a weak correlation with cytolytic scores (Figure 6a
and Figure S6B). The cytolytic score was highest in cluster
4 and lowest in cluster 3 (one-way ANOVA test, p = 0.014,
Figure 6b). We also analyzed the scores of HLA I and HLA
II in each cluster to evaluate the transcription levels of
immune evasion drivers in each of them. The HLA I scores
were basically the same in all four clusters (one-way
ANOVA test, p = 0.993). The HLA II levels in clusters
2 and 3 were lower (one-way ANOVA test, p = 0.016),
which indicated the downregulation of HLA II gene tran-
scription and the avoidance of antigen presentation

F I G U R E 4 Correlation analysis of alternative splicing events and splicing factors (a) Spearman correlation analysis of splicing factors and alternative
splicing events in MPM with an interquartile range higher than 0.05. (b) Top five dysregulation splicing factors and their correlated alternative splicing events
(Spearman’s correlation, r > 0.5 or < �0.5, p < 0.05). The genes in blue were upregulated in the cluster, whereas the genes in red were downregulated.
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(Figure 6b). However, the cytolytic, HLA I, and HLA II
scores did not differ significantly between histopathological
subtypes (Figure S6C).

We next investigated the expression of ligands of T/NK
cell costimulatory and coinhibitory receptors and other
immunomodulators to identify potential targetable immune
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checkpoints in MPM. The inhibitory ligand CD274 (PD-L1)
was preferentially expressed in 10 samples in cluster 3, show-
ing lower expression levels in the other samples (Figure 6c).
Other inhibitory checkpoint ligands, such as LGALS9
(TIM-3 ligand) and NK cell inhibitory receptor KLRK1
ligands (MICA, MICB, ULBP1, ULBP2, and ULBP3) were
also highly expressed in cluster 3. All samples in cluster
4 highly expressed C10orf54, which encodes an inhibitory
T cell checkpoint of the B7 family.

We further conducted a systematic study on the expres-
sion of CGA in MPM. MPM tumor tissues showed

significantly higher expression of 11 CGAs than normal
mesothelial tissues (Figure 6d). Each cluster showed a spe-
cific CGA expression pattern (Figure 6e). The expression
levels of OIP5, ODF2, and ATAD2 were higher in cluster
3 than in the other clusters, whereas TSSK6 expression was
lower. In conclusion, among all MPM patients, cluster 3 pre-
sented the lowest cytolytic score and enrichment in a series
of inhibitory receptors, which may be a reason for the short-
est survival time of patients in this cluster.

We ranked cytolytic, HLA I, and HLA II scores from
high to low, and found no significant change in mutated
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genes and mutation frequencies in MPM patients in all four
clusters (Figure S7A and S7B). Meanwhile, there were no
significant differences between mutated genes and mutation
frequencies and the number of neoantigens in all four clus-
ters (Figure S7C, one-way ANOVA test, p = 0.68).

DISCUSSION

In this study, we systematically described alternative splicing
events and clinical, transcriptomic, and immunologic character-
istics of MPM patients, and focused on developing a new MPM
classification model and potential therapeutic targets with prac-
tical value for clinical diagnosis and treatment. We confirmed
that in MPM, interference with the expression of protein kinase
SRPK1, which regulates alternative splicing, resulted in a change
of the malignant phenotype of MPM cell apoptosis and migra-
tion. The 84 MPM patients from the TCGA project were clus-
tered into four clusters based on their alternative splicing
profile, and showed significant differences in survival. Each
cluster had its own transcription characteristics and potential
alternative splicing regulatory mechanisms. Enrichment of
EMT and antiapoptotic signaling and high expression of
immune inhibitory receptors induced an unfavorable overall
survival outcome for patients in cluster 3. The increase in type I
interferon signaling pathway in cluster 4 patients might be an
important factor for their best overall survival. Moreover, using
the drug sensitivity database GDSC, we found that the GSK-3
inhibitor CHIR-99021 showed sensitivity only for patients in
cluster 3, whereas all other patients were resistant.

Although several studies have used MPM microarray
and transcriptome sequencing data for unsupervised cluster
analysis,16,17,32,33 these molecular classifications based on
the whole mRNA, miRNA, or lncRNA transcriptome are
difficult to be applied in MPM clinical diagnosis. Therefore,
we tried to build a diagnostic model with 3–6 genes in each
cluster, with the perspective of possible clinical applicability.
Of all genes used in diagnostic models, only LOXL2 has
been reported as a potential diagnostic biomarker for
MPM.34 Three of the six genes in the signature of cluster
3 (ADAM12, EDIL3, and LOXL2) were involved in cell
adhesion processes, consistent with the enrichment of EMT
processes. EMT has been widely recognized as an important
malignant MPM phenotype, and TCGA data showed that
MPM ranked second in the EMT score among all tumor
types.16,33 Cluster 4 identified by Hmeljak et al. and the sar-
comatoid cluster identified by Bueno et al. were both sub-
clusters characterized by high expression of EMT signals
after unsupervised clustering analysis based on mRNA, and
both had VIM as one of the most significantly upregulated
genes.16,17 However, although VIM was significantly upre-
gulated in cluster 3 in our data as well (one-way ANOVA
test, p < 0.01), its fold change was only 1.14, which suggests
that it is not the most significantly upregulated gene
(Figure S8A). Meanwhile, in the GDSC data, VIM expres-
sion was not significantly different between the GDSC-1 and

GDSC-2 groups (Mann–Whitney U test, p = 0.40,
Figure S8B). These results show that although our classifica-
tion based on alternative splicing profiles appeared similar
to previously reported classification schemes, our groupings
are indeed different.

GSK-3 is a serine/threonine kinase encoded by GSK-3A
and GSK-3B and CHIR-99021 is a specific inhibitor of
GSK3.35 Studies have shown that GSK-3 is an important
antitumor target, which is involved not only in the regula-
tion of malignant phenotypes such as tumor growth, prolif-
eration, and metastasis, but also in the regulation of the
antitumor immune response of immune cells. In tumor
cells, GSK-3 is involved in PI3K/AKT, NF-κB, WNT, and
other important signaling pathways.36,37 The drug suscepti-
bility results of GDSC showed that in the GDSC-1 group,
which is highly similar to the MPM cluster 3, 50% of MPM
cell lines were sensitive to CHIR-99021, suggesting that
CHIR-99021 might have a better therapeutic effect in cluster
3 patients. The limitation of this drug susceptibility test was
that it was performed in vitro in an independent tumor cell
line, which fails to mimic the complex tumor microenviron-
ment in vivo. Current immunotherapies targeting the PD-
L1/PD-1 axis have shown promising clinical responses in
multiple tumor types. However, their benefit for patients’
overall survival has been unsatisfactory due to intrinsic or
acquired resistance.38,39 Furthermore, PD-1 and PD-L1 are
localized not only on tumor cells but also on normal cells;
therefore, nonselective blockade of the PD-L1/PD-1 interac-
tion, inevitably, will adversely affect immune homeostasis.40

In tumor cells, GSK3β mediates PD-L1 phosphorylation,
which promotes ubiquitin E3 ligase recognition and subse-
quent PD-L1 ubiquitination and degradation.41 Interest-
ingly, in T cells, inhibition of GSK3 inhibited the expression
of both PD-1 and another inhibitory immune checkpoint,
LAG3.42,43 GSK3 inhibition promoted NK cell maturation
and enhanced their antitumor activity.44 These observations
suggest that GSK3 inhibitors might have an inhibitory and
immunomodulatory effect on tumor cell growth in the
intact tumor immune microenvironment in vivo, generating
more satisfying results.

In summary, our study highlighted the important role of
alternative splicing events in MPM and proposed a new clas-
sification model with significant prognostic value. We also
identified the clinical features, biological processes, immune
signature, and diagnostic model correlated with each cluster.
Moreover, we identified a small molecule inhibitor, CHIR-
99021, with good therapeutic effect only in cluster 3 patients,
which can be a candidate target for personalized MPM treat-
ment. These data offer fundamental knowledge and poten-
tial clinical implications of alternative splicing profiles
in MPM.
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