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IntroductIon

The human visual cortex is immature at birth, and acquires 
deep perception at approximately 6 months after birth, 
with complete maturation in late childhood.[1] Prior to 
maturation, the visual cortex is subjected to internal and 
external influences, which modulate the neural signal 
pathway and synapsis, and irreversibly alter the developing 
visual cortex and pathway.[2] This experience–dependent 
neural plasticity is mainly present in the developing 
visual cortex. The best time to correct congenital cataract 
is before 6 months of age, whereas the best time to 
correct strabismus is before 7 years of age. However, the 
experience–dependent neural plasticity exists in not only 
the immature visual cortex, but also the adult visual cortex. 
For example, the learning process and visual restoration 
after certain visual system diseases in adulthood are 
based on experience‑dependent neural plasticity. To 

date, increasingly robust evidence supports the potential 
plasticity in the adult visual cortex.[3]

Jenkins et al. demonstrated that adult optic neuritis (ON) 
patients with improved vision exhibit an enhanced response 
in the lateral occipital complex (LOC) in functional magnetic 
resonance imaging (fMRI) scans, and a stronger fMRI 
response is associated with a better vision prognosis. It is 
likely that the increased response in the LOC is involved in 
synaptic regeneration, which is exactly the basis for vision 
recovery.[4] Gallo et al. identified a significant disconnection 
in the visual‑resting network in normal‑sighted multiple 
sclerosis (MS) patients compared with healthy controls, as 
well as enhanced neural activity in the extrastriate visual 
cortex in the MS patients with previous ON compared 
with the patients without previous ON.[5] These findings 
confirm that visual recovery after ON might be associated 
with cortical reorganization within the extrastriate visual 
areas. Visual cortex plasticity is diversified in form and 
includes, declarative memory, location face event encoding 
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and perceptual learning (vision perception improvement 
following repeated practice).[6] Because declarative memory 
and perceptual learning extend throughout the lifespan, the 
cortical plasticity based on these processes should not be 
restrained by any period.[ 2] Polat et al. determined that after 
systemic correction exercises, adult strabismus patients had a 
significant improvement in visual acuity (letter recognition).[7] 
These previous studies demonstrated that the adult visual 
cortex has potential plasticity, and vision improvement is 
associated with a corresponding neural reconstruction.

Pituitary adenoma (PA) originates from the anterior lobe 
of the pituitary gland. When a PA is sufficiently large to 
compress the visual pathway (typically the optic chiasm, 
optic nerve and optic tract), the patients often present visual 
deficiencies, including a visual acuity impairment and/or 
visual field defect. The current treatment for PA includes 
medicine, a craniotomy and a microscopic or endoscopic 
transsphenoidal operation.[8,9] Our study recruited PA 
patients with improved vision after transsphenoidal surgery. 
A transsphenoidal tumor resection surgery primarily involves 
an epidural manipulation, which can decompress the anterior 
visual pathway and do little influence on the visual cortex 
and other adjacent constructions.

Our study is focused on the changes in the vision‑related 
resting‑state network (V‑RSN) in PA patients after vision 
improvement. Furthermore, it is aimed to explore the 
plasticity of the visual cortex after vision improvement 
in terms of the functional changes of both some specific 
subareas within the visual cortex and higher cognitive 
networks that extend beyond the visual cortex.

Methods

Study population
Pituitary adenoma patients with visual damage who 
underwent transsphenoidal tumor resection surgery and 
had restored vision were recruited at the Department of 
Neurosurgery, Beijing Tiantan Hospital. PA patients with 
visual damage were selected according to the following 
inclusion criteria: Age ranged from 18 to 60 years; prior to the 
operation, the corrected vision acuity was below 1.0 (20/20) 
or the visual field defect was more than 50% at least 
unilaterally; the tumor was not sufficiently large to distort 
or displace the visual cortex; ophthalmologic diseases or 
other intracranial lesions that involved the visual pathway or 
cortex were excluded, as assessed by a neuro‑ophthalmologic 
evaluation (see details below) and MRI; significant vision 
improvement after the operation (the corrected vision 
acuity improved by more than 0.2 or the visual field defect 
decreased more than 30% at least unilaterally) were required; 
and no severe electrolyte disturbance, hypopituitarism or 
other complications presented at the 3‑month follow‑up 
after the operation.

Standard protocol approvals, registrations, and patient 
consents
This study was approved by the Institutional Review Board 

of Beijing Tiantan Hospital Affiliated to Capital Medical 
University and an informed consent form was signed by 
all participants.

Clinical and neuro‑ophthalmologic assessments
The cognition of all participants was evaluated using the 
mini‑mental state examination, which has been widely 
used to clinically screen for cognitive impairment prior 
to the operation.[10] The patients underwent a complete 
neuro‑ophthalmologic examination within 2 weeks prior to the 
operation and at approximately 3 months after the operation. 
The best‑corrected visual acuity for distance was measured with 
the E chart (which works on the same principle as Snellen’s 
distant vision chart) and was reported in the decimal scale. The 
visual field examination was performed with a standardized 
automated perimetry (Octopus 900 Perimetry, Switzerland). 
An ophthalmic fundus examination was performed with a 
nonmydriatic retinal camera (Topcon, Japan).

Magnetic resonance imaging scanning protocol
All functional and structural images were acquired on a 3.0 
Tesla scanner (Siemens Trio, Erlangen, Germany) using 
12‑channel head coil. Head movement was minimized 
using foam pads, and earplugs were used to attenuate 
acoustic noise during scanning. During the resting‑state 
fMRI (RS‑fMRI) scan, the participants were instructed to 
remain still and keep their eyes closed, not to fall asleep 
nor think of anything systematic. RS‑fMRI data were 
acquired using an echo‑planar image pulse sequence (41 
axial slices, slice thickness/gap = 3.5/0.7 mm, repetition 
time = 2500 ms, echo time = 30 ms, flip angle = 90°, and field 
of view [FOV] = 240 mm × 240 mm with in‑plane resolution 
of 3.75 mm × 3.75 mm). A T1‑weighted sagittal anatomical 
image was also obtained using a gradient echo sequence (176 
slices, slice thickness/gap = 1/0 mm, inversion time = 900 ms, 
repetition time = 2300 ms, echo time = 3 ms, flip angle = 7°, 
number of excitations = 1, FOV = 240 mm × 240 mm with 
in‑plane resolution of 0.9375 mm × 0.9375 mm).

Resting‑state functional magnetic resonance imaging 
analysis
Data preprocessing
The RS‑fMRI data were preprocessed using SPM8 (http://
www.fil.ion.ucl.ac.uk/spm) and a pipeline analysis toolbox, 
DPARSF (http://www.restfmri.net/).[11] To avoid transient 
signal changes before the longitudinal magnetization reached 
a steady state, the first ten volumes were discarded. The 
remaining images were preprocessed using a procedure, 
which included slice timing correction, head motion 
correction, T1‑weighted image based spatial normalization 
to the Montreal Neurological Institute space, linear trend 
removal, and band‑pass filtering (0.01–0.08 Hz). All of 
the participants’ head motion parameters were <3 mm in 
translation and <3° in rotation. To further reduce the effects 
of head motion on estimates of resting‑state activity, we 
censored volumes within each participant’s fMRI time series 
that were associated with sudden head motion.[12,13] For each 
participant, fMRI volumes were censored if the framewise 
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displacement of head position, calculated as the sum of 
the absolute values of the derivatives of the realignment 
estimates, was above 0.5.

Regional homogeneity analysis
Regional homogeneity analysis is the analysis of ReHo, 
which reflects the local synchrony of neural activity. 
Kendall’s coefficient of concordance (ranged from 0 to 1) 
was used as a measurement of ReHo for each voxel, an 
indication of similarity between the time series of that voxel 
and its nearest neighboring voxels.[14] It was measured in a 
voxel‑wise way for each participant within a whole brain 
mask provided by REST.[15] To reduce nuisance sources 
of variation,[16] individual ReHo maps were divided by 
the global mean value within the whole brain mask for 
normalization. Then, all normalized ReHo maps were 
subsequently spatially smoothed with a 6‑mm full width at 
half‑maximum Gaussian isotropic kernel. Two‑sample t‑tests 
were used to analyze the differences in the V‑RSN between 
the pre‑ and post‑operation groups based on the ReHo maps. 
The AlphaSim method, which has been implemented in 
REST, was used to correct for multiple comparisons. The 
corrected P < 0.05 (uncorrected P < 0.001 and minimum 
60 voxels in a cluster) was used as threshold.

results

Studied population
According to the inclusion criterion, 12 patients were 
recruited in our study. As a result of head motion or the lack 
of sufficient data after scrubbing, 2 patients were excluded; 
thus 10 patients (male/female 4:6) were included in the final 
analyses. Mean age was 34.4 (Range 23–51) years, while 
mean education years were 15.3 (Range 7–22). Range of 
mean MMSE was 29.

Ophthalmologic evaluation
Detailed results of the neuro‑ophthalmologic evaluation are 
reported in Table 1.

Resting‑state functional magnetic resonance imaging 
analysis
Compared with the preoperative counterparts, the PA patients 
with improved visual results after the operation exhibited 
reduced ReHo in spots of the bilateral thalamus, globus 
pallidus, caudate nucleus, putamen nucleus, supplementary 
motor area, and left hippocampal formation, and increased 
ReHo in the bilateral cuneus gyrus, calcarine gyrus, right 
lingual gyrus, and fusiform gyrus [Figure 1].

dIscussIon

Regional homogeneity primarily reflects the synchrony of 
neural activity.[17] The synchronized oscillation of the cortex 
is indispensable for anatomically separated, yet functionally 
connected neural units to complete the temporal and spatial 
integration and concordance. Increased ReHo may indicate an 
abnormal enhancement of intraregional neural activity.[17,18] 
In contrast, decreased ReHo reflects the destruction of the 

intraregional neural activity synchronization and implies 
functional deficits.[17,18]

Increased regional homogeneity within the visual cortex
In our study, the PA patients with improved visual results 
after the operation exhibited increased ReHo in the bilateral 
cuneus gyrus, calcarine gyrus, right lingual gyrus, and 
fusiform gyrus, all of which are within the visual cortex. 
Increased ReHo indicates improved neural activity. It is 
justified that improved vision associates increased ReHo. 
Toosy et al. demonstrated that ON patients with improved 
vision exhibit an enhanced response in LOC in fMRI scans, 
and a stronger fMRI response is associated with a better 
vision prognosis.[4,19] The LOC, which is located in the 
ventral pathway, is composed of the lateral occipital cortex 
and the posterior fusiform gyrus. It comprises the cognitive 
visual cortex, which specializes in object recognition and 
confirmation.[20] It is suggested that the LOC is involved in 
visiual cortex reconstruction and functional compensation. 
In an fMRI study, Giulia et al. demonstrated that one female 
patient who restored her vision after keratoprosthesis 
exihibited enhanced responses in the fusiform, lingual and 
calcarine gyri, but a decreased response in the visiual cortex 
that engaged the dorsal pathway especially the middle 
temporal complex (MT+).[21] Consistent with these results, 
our study also identified increased ReHo in part of the 
LOC (fusiform), lingual gyrus and calcarine gyrus in patient 
with improved vision after the transsphenoidal surgery. 
However, a large‑sample study and multiple‑model research 
design are necessary to clarify the key points regarding the 
vision recovery mechanism.

Decreased regional homogeneity beyond the visual 
cortex
Compared with the preoperative counterparts, the PA patients 
with improved visual results after the operation exhibited 
reduced ReHo in spots of the bilateral thalamus, globus 
pallidus, caudate nucleus, putamen nucleus, supplementary 
motor area, and left hippocampal formation. These regions are 
subareas of the multisensory system. The multisensory regions 
at the cortex are mainly located in the parietal lobe, temporal 
lobe, frontal lobe, and insular, whereas the regions beneath the 
cortex are mainly located in the superior colliculus, and basal 
ganglia (globus pallidus, caudate nucleus, putamen nucleus, 
amygdaloid body, claustrum nucleus).[22‑24] The insular has 
previously been confirmed as a multisensory region.[25] Insular 
lesions can lead to a multisensory deficiency.[26] The anterior 
insular has far‑reaching connections with the orbital – frontal 
lobe, thalamus and limbic lobe and whereas the posterior 
insular has close interactions with the frontal, temporal, and 
parietal lobe as well as thalamus.[27,28] Increasingly converging 
evidence suggests the thalamic nuclei (the thalamus pulvinar, 
and the dorsal and medial divisions of the medial geniculate 
body) have anatomical connections to structures of different 
sensory modalities and/or corresponding neurons to integrate 
multisensory information, sometimes even before the 
information has reached the neocortical areas.[29,30] Other 
thalamic nuclei (the suprageniculate, posterior intralaminar, 
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laterodorsal, lateral, ventral posterior and posterior thalamic 
nuclei) also exhibit diverse multisensory responses and have 
multiple connections with the subcortical and cortical areas 
of various sensory modalities.[31‑33] The putamen, also as a 
multisensory neucleus, has different types of neurons, which 
receive visual information, somatosensory information, or 
both visual and somatosensory information.[34,35] Gentile 
et al. in his high power fMRI study demonstrated that 
the coexistence of visual tactile and tactile signal could 
significantly enhance the blood oxygen level dependent 
signal in the putamen, which confirms the important role 
of the putamen in the integration of visual and tactile 
signals.[36] The superior temporal sulcus and adjacent cortex 
are both multisensory and multisensory integration regions, 
especially regarding social information, for example, face 
and voice recognition, and face and voice integration.[37] The 
claustrum neucleus has complicated projections with the 
visual cortex, and modulates the earlier visual cortex (lingual, 
cuneus, and calcarine gyri) and vision‑related thalamic 
nucleus.[38] The claustrum neucleus receives visual and 
hearing information, and mediates the integration of visual 
and tactile information.[39,40] Multisensory convergence 
and modulation are two common classes of multisensory 
interaction. Multisensory convergence involves bringing 
together information from distinct sensory streams. 
Multisensory modulation, in contrast, involves activity from 
one sensory channel that modulates the activity in another 
sensory channel. The multisensory modulation can influence 
the perception threshold of one sensory modality under 
the coexistence of different sensory modalities, and it can 
modulate the priority of multiple sensory information.[41,42] 
In a visual stimulus fMRI study, Werring et al. determined 

that healthy individuals exhibit a reaction in only occipital 
lobe, whereas ON patients with corrected‑to‑normal vision 
exhibit reactions in not only occipital cortex, but also the 
insular, putamen nucleus, pallidus nucleus, claustrum 
neucleus, posterior parietal region, and thalamus.[43] These 
regions beyond the vision cortex, can not be normally 
activated by a simple visual stimulus, however, they have 
wide connections with visual function, as subareas of the 
multisensory system or multisensory interaction.[22‑37,44,45] 
The multisensory interaction can modulate attention, and 
bias the vision processing by top‑bottom regulation.[46‑48] It 
is proposed that additional activation of the multisensory 
region is initiated by vision impairment, as a type of feedback 
mechanism to enhance the perception of decreased visual 
input, and it is involved in the neural reconstruction for 
vision recovery. With vision improvement, this compensatory 
mechanism was correspondingly attenuated. Thus in line with 
these findings, the activation in the multisensory region in 
PA patients with vision improvement is weakened compared 
with the activation before the operation. We may conclude 
that decreased visual input leads to the feedback excitation 
of neural activity within the multisensory system, and with 
visual recovery, the feedback excitation of neural activity 
within the multisensory system is inhibited.

In conclusion, visual improvement can promote the 
reconstruction within the visual cortex, and initiate the 
compensatory mechanism in the multisensory/multimodel 
system beyond visual cortex. Thus the visual network 
is continuously modified through the process of neural 
plasticity even after maturation. Further studies are needed 
to unravel the mechanism of neural plasticity and provide us 

Table 1: Ophthalmologic data of pituitary tumor patients

ID Age 
(Years)

Vision impairment 
onset and side 
(by complaint)

Visual 
acuity 
(left)

Visual 
acuity 
(right)

Vision field defect (left) (%) Vision field defect (right) (%)

1‑preoperation 38 10 months (bilateral) 0.8 0.5 40 (temporal quadrants) 40 (temporal quadrants)
1‑postoperation 1.2 1.2 0 0
2‑ preoperation 43 1.5 years (bilateral) 0.15 0.6 90 (tubular vision field left) 50 (temporal quadrants)
2‑postoperation 0.5 0.6 50 (inferior quadrants) 40 (temporal quadrants)
3‑preoperation 51 6 months (bilateral) 0.6 0.1 60 (temporal quadrants) 90 (tubular vision field left)
3‑postoperation 0.8 0.5 Normal 50 (temporal quadrants)
4‑preoperation 40 6 months (bilateral) 0.8 0.06 10 (temporal quadrants) 80 (temporal and nasal superior quadrants)
4‑postoperation 0.8 0.25 0 10 (superior temporal quadrants)
5‑preoperation 50 4 months (left) 0.01 1.2 95 (tubular vision field left) 0
5‑postoperation 0.6 1.5 25 (superior temporal quadrants) 0
6‑preoperation 46 3 months (bilateral) 0.3 0.6 45 (temporal quadrants) 50 (temporal quadrants)
6‑postoperation 0.4 0.8 0 45 (temporal quadrants)
7‑preoperation 49 1‑year (bilateral) 0.25 0.12 50 (temporal quadrants) 50 (temporal quadrants)
7‑postoperation 0.12 0.3 20 (temporal quadrants) 20 (temporal quadrants)
8‑preoperation 26 1‑year (bilateral) 0.8 0.1 50(temporal quadrants) 90 (tubular vision field left)
8‑postoperation 1 0.3 0 0
9‑preoperation 24 1‑year (left) 0.12 0.2 10 (temporal quadrants) 45 (temporal quadrants)
9‑postoperation 0.4 0.25 0 0
10‑preoperation 23 9 days (bilateral) 0.25 0.05 10 (temporal quadrants) 0
10‑postoperation 0.25 0.4 10 (temporal quadrants) 0
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new perspectives to enhance the plasticity for patients with 
specific visual diseases.
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