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Dependence of the sliding distance 
of a one-dimensional atom chain on 
initial velocity
Jian-Wen Li1,4, Tong-Biao Wang2, Nian-Hua Liu3 & Tianbao Yu2

In our daily lives, a body with a high initial velocity sliding freely on a rough surface moves a longer 
distance than that with a low initial velocity. However, such a phenomenon may not occur in the 
microscopic world. The dynamical behavior of a one-dimensional atom chain (1DAC) sliding on a 
substrate is investigated in this study by using a modified Frenkel–Kontorova model, in which the 
vibration of atoms on the substrate is considered. The dependence of sliding distance on initial velocity 
is examined. Result shows that although sliding distance is proportional to the initial value for most 
velocities, such a linear relation does not exist in some special velocities. This phenomenon is explained 
by a theoretical analysis of phonon excitation. The physical process is divided into three stages. The first 
stage is a superlubric sliding process with small amplitude of the vibrication of the atoms. The single-
mode phonon is excited in the second stage. In the third stage, the system exhibits instability because 
of multiple-mode phonon excitations. In addition, the dependence of the coupling strength between 
1DAC and the substrate is investigated. The findings are helpful in understanding the energy dissipation 
mechanism of friction.

Friction at the micro-/nano-scale has elicited much attention in the past two decades because of its important 
influence on the fabrication of micro-/nano-electromechanical systems1–4. The energy dissipation process accom-
panied by friction is highly complex, and understanding such a process is cumbersome. Therefore, various mech-
anisms have been proposed to study energy dissipation in friction5–11, and several models have been developed 
to investigate the physical mechanism of friction at the microscopic scale12–19. The mechanism of energy dissipa-
tion differs in different systems. For example, Sokoloff et al. proposed that the non-equilibrium phonons created 
during sliding are the major mechanism of energy dissipation7–9. Ciraci et al. studied energy dissipation when 
a nanoparticle (asperity) is connected to a surface of a sample sliding over the surface of another sample11–14. A 
microscopic analysis of the transient properties of energy dissipation via phonon discharge toward the substrate 
was presented14.

Aside from theoretical studies, several experimental investigations have also shown that phonons play 
important roles in energy dissipation15,16. For example, friction and dissipation in single and bilayer graphene 
films grown on SiC are different because of their significant difference in electron–phonon coupling; this dif-
ference can be observed through angle-resolved photoemission spectroscopy15. Given the fact that friction 
depends on the vibrational properties of surfaces, experimental studies have shown that the friction between 
hydrogen-terminated single-crystal diamond and silicon are higher than that between deuterium-terminated sur-
faces and silicon16. Several other factors can also lead to energy dissipation in the sliding process20,21. Excitation of 
electron–hole pairs is also a mechanism of frictional energy dissipation17,18,22. Such a dissipation channel has been 
demonstrated experimentally in the contact between two solids23.

In addition to the frictions between tips and substrates, frictions between surfaces have also been studied24–27. 
Many experiments have demonstrated that superlubricity exists between graphite microflakes. The self-retracting 
motion of graphite microflakes creates gigahertz-level nanoelectromechanical systems25. However, generating a 
stable oscillation is difficult because of the rapid loss of the kinetic energy of the microflakes in the self-retracting 
process. Although several mechanisms have been proposed to investigate energy dissipation in sliding friction, to 
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the best of the authors’ knowledge, the mechanism of energy dissipation of sliding microflakes remains ambigu-
ous. In particular, the dependence of the sliding distance of a microflake on its initial velocity has not been studied 
quantitatively. The current study used a modified Frenkel–Kontorova (FK) model and demonstrated that the 
sliding distance of a 1D atom chain (1DAC) is mainly determined by its initial velocity. When the initial velocity 
of a 1DAC is at a special value, although this value is very large, the 1DAC cannot move far. The physical mecha-
nism of such a strange phenomenon was investigated in detail. The results showed that when the initial velocity 
of 1DAC is at a special value, the kinetic energy of 1DAC dissipates because of phonon excitations, which lead 
to a short sliding distance of 1DAC. All other initial velocities lead to superlubric sliding of 1DAC. In addition, 
the coupling strength between 1DAC and the substrate and the size of 1DAC exert a significant influence on the 
relationship between sliding distance and initial velocity.

Model and Methods
The modified FK model shown in Fig. 1 was used to study the dynamical behavior of a 1DAC sliding against a 
substrate. The finite 1DAC of N atoms and the substrate with periodically arranged atoms were assumed to be 
made of the same type of atom. The interaction between the atom in the 1DAC and the atom in the substrate was 
described with the van der Waals (vdW) potential, and the interaction among the nearest-neighbor atoms in the 
same train was described by a harmonic force with spring stiffness β which is a constant determined by bond 
energy between the nearest neighbor atoms for the given 1DAC. The displayed simple model is suitable for the 
qualitative description of the physical process of sliding. Compared with the standard FK model in which the 
substrate is regarded as a fixed periodic potential28–30, the modified FK model used in this study assumes that the 
substrate atoms are vibrating with time. The atoms in the chain obey the following equation of motion.

∑β β θ= − − − − − −+ −md u
dt
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where ui is the displacement of the ith atom in the atomic chain, m is the chain atom mass, a is the lattice constant, 
and rij is the distance between atom i in the chain and atom j in the substrate. θij denotes the angle between the 
direction that atom i points to atom j and the sliding direction of the 1DAC.

The vdW potential between the atoms in the chain and the substrate is of the Lennard–Jones (LJ) type as 
follows31:

ε σ σ
=





















−





















.U

r r
4

(2)
ij

ij ij

12 6

The parameters of the LJ potential used in this study were ε = .2 39 meV, σ = .0 341 nm (diameter of the 
carbon atom). We calculate the interaction energies between 1DAC and substrate with help of Eq. (2) under dif-
ferent distance c, and find that the interaction energy is the lowest when c = 0.3626. The cutoff distance of the 
potential was set to σ8 . A parameter was defined to characterize coupling intensity χ ε σ= m24 / / , which has the 
same dimension as frequency. Thus, Eq. (1) is reduced to
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Considering the substrate’s vibration, which can lead to phonon excitation, is practical because if two bodies 
sliding relative to each other have the same spring stiffness, then they have the same eigenfrequency. As a result, 
phonon excitation easily occurs. We assumed that the substrate vibrates parallel to the sliding direction and that 
the displacement of atom j follows u kja k tcos[ ( ) ]s s s0 ω− . us0 is the vibrational amplitude, k( )sω  is the frequency of 
phonon, its value can be determined by the dispersion relation of the phonon modes

k ak( ) 2 sin( /2) , (4)s s0ω ω=

where ω β= m/s0  and k is the wave vector. Thus, the position of the jth atom on the substrate can be written as

ω= + −u ja u kja k tcos[ ( ) ], (5)j s s s s0

Figure 1.  Schematic of the modified FK model.
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where as is the lattice constant of the substrate. The value of vibrational amplitude us0 can be estimated from the 
ordinary thermal motion of the atom. The average value of the kinetic energy of a classical harmonic oscillator 
within one period is

E m u m u1
2

1
4 (6)s s s s0

2 2
0
2

0
2ω ω< > = < > = .

According to the theorem of energy equipartition, us0 can be written as u k T2 /s B0 β= , where kB is the 
Boltzmann constant and T is temperature. On the basic of the phonon dispersion relation and the range of pho-
non energy of graphene in refs32,33, the value of 180s0ω ≈  THz can be evaluated. Furthermore, we can obtain the 
value of β ω= ms0

2 . Therefore, us0 has a magnitude of about 10−3 nm at room temperature. We set us0 to 0.1a in the 
following calculations.

Prior to the calculation of dynamics of the sliding of the 1DAC, we considered its eigenmodes. In our numer-
ical calculations, time, length and velocity were normalized with ε=t h/0 , a as =  and =v a t/s0 0 respectively, 
where h is the Planck constant. Under free boundary conditions at the two ends, the motion equation of an arbi-
trary atom in the 1DAC is
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Supposing that ω∝ −u i texp( )i , the displacement between neighbor atoms can be connected by the transmis-
sion matrix
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where /2
s0
2ξ ω ω=  and ω is the eigenfrequency. For a chain with N + 1 atoms, the atoms at two ends can also be 

connected by the matrix equation
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The Nth power of matrix M was calculated with Chebyshev’s identities. Furthermore, considering the free 
boundary conditions at both ends, the eigenvalue equation was obtained as

ξ ξ α ξ α− + − + − − =N N( 4 3)sin( 1) ( 2)sin( 2) 0, (10)2

where α satisfies α ξ= −cos 1 /2. Thereafter, the amplitude of the eigenmodes for a given ξ was obtained. The 
eigenfrequencies of 1DAC with 15 atoms were obtained by solving Eq. (10) numerically. The displacements of 
atoms in the 1DAC for different / s0ω ω  are shown in Fig. 2.

Numerical Results and Discussion
A high initial velocity results in a large displacement of a macroscopic body in a free sliding process. However, by 
calculating the sliding of the 1DAC, we found that this condition is not always applicable for a nano-sized body.

To simulate the dynamical evolution of 1DAC, Eq. (3) was solved numerically with the fourth-order Runge–Kutta 
algorithm. We assumed that each atom of 1DAC is at its equilibrium position initially which is indicated in Table 1 for 
N = 15. Thus, we can obtain that the initial CM of 1DAC is u a/ 7 5c s = . . Furthermore, the positions of atoms relative 
to CM can be obtained. All of the atoms move at the same velocity of vi initially. Hence, the velocity of the center of 
mass (CM) is =v vc i, and the elastic potential energy is zero. The displacement uc of CM as a function of initial veloc-
ity after the time range of t t/ 40000 =  is shown in Fig. 3 for coupling strength χ ω = ./ 0 3s0 . If the velocity of CM does 
not decrease, then CM displacement satisfies the linear relation u v tc i= ; this corresponds to the case in which the 
1DAC moves in a superlubric manner without kinetic energy dissipation. If u v tc i< , then the velocity of CM 
decreases, and the kinetic energy is dissipated. Two cases emerge. One is that the displacement satisfies the linear 
relation u v tc i=  (superlubric movement). The other case is the decrements that disobey the linear relation u v tc i= . 
These decrements mean that the CM of the 1DAC moves with a relatively small displacement although the 1DAC has 
a high initial velocity. In other words, a high initial velocity may not result in a large sliding distance even between 
atomically smooth interfaces. Such a finding is different from that for the classical sliding process. Therefore, to 
achieve superlubric sliding, a suitable rather than an arbitrary initial velocity should be selected.

To understand the physical mechanism of the decrements in Fig. 3, we examined the dynamic characteristics 
of the atomic chain in relation to the substrate lattice vibrations. Figure 4 presents the displacement of the atoms 
relative to CM as a function of time for / 0 4s0χ ω = . , = .v v/ 2 0i 0 , and N = 15. The sliding process can be divided 
into three stages. Figure 4 provides an overview in the interval of t t0 / 18930< < , and Fig. 5 presents an enlarged 
view of the relative displacements of the different atoms for the three different intervals of < <t t0 / 200  (a), 

t t300 / 5000< <  (b), and < <t t1300 / 15000  (c) corresponding to the three typical stages. In the initial stage 
shown in Fig. 5(a), the atoms vibrate with very small amplitudes. In the middle stage shown in Fig. 5(b), the sec-
ond, fifth, eighth, eleventh, and fourteenth atoms vibrate with very small amplitudes, whereas the other atoms 
vibrate with large amplitudes. Comparison of Figs 5(b) and 2(j) shows that these amplitudes are consistent with 
the phonon mode of ω ω = ./ 1 0s0 , which means the corresponding phonon is excited. In the third stage, the vibra-
tion with a large amplitude is highly complicated, and the system shifts to an unstable state.
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To confirm phonon excitation, Fourier transform was conducted for the different time stages, as shown in 
Fig. 6. The peak frequency appears at ω ω = ./ 1 0s0  for the time range of < <t t300 / 5000  in Fig. 6(a). This peak 
frequency and the relative amplitude correspond to the phonon excitation of the / 1 0s0ω ω = .  mode and indicate 
that in this stage, the agreement between the eigenfrequency and the peak in the Fourier transform spectrum is 
good. In this stage, only the single phonon is excited. However, after Fourier transform for the time range of 

< <t t1300 / 15000 , we observed several peaks, as shown in Fig. 6(b). The values of these resonance frequencies 

Figure 2.  Displacement of atoms in 1DAC with N = 15 for all eigenfrequencies.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ui/as 0.25 1.25 2.25 3.25 4.25 5.25 6.25 7.25 8.25 9.25 10.25 11.25 12.25 13.25 14.25

Table 1.  Initial positions of all the atoms in 1DAC.

Figure 3.  Largest displacement of center of mass as a function of initial velocity for N = 15, ka 0 15s π= . , and 
χ ω = ./ 0 3s0  in the time range of 0–4000.
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are in good agreement with the eigenfrequencies shown in Fig. 2. Compared with that in Fig. 6(a), the phonon 
excitation at ω ω = ./ 1 0s0  fades, and its energy transfers to the low-frequency phonon. This condition shows that 
excitation of multiple phonon modes occurs during the sliding process when time t t/ 0 ranges from 1300–1500.

Energy evolution was also investigated. Figure 7 shows the time evolution of kinetic energy Tc and internal 
energy U for initial velocity = .v v/ 2 0i 0 , where E0 is the initial total energy of the system. In the initial stage, kinetic 
energy of CM is stable, and the internal energy is almost constant because the relative displacement is small. This 

Figure 4.  Displacement of atoms relative to CM as a function of time in consideration of substrate vibration 
caused by phonon excitation for N = 15, π= .ka 0 15s , and / 0 4s0χ ω = . .

Figure 5.  Normalized amplitude for the time span of (a) 0–20, (b) 300–500, and (c) 1300–1500.

Figure 6.  Resonant excitation peaks of (a) single phonon mode and (b) multi-phonon mode numerically 
obtained in the time range of 300–500 and 1300–1500, respectively.
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stage corresponds to a superlubric sliding process. In the next stage, the single-mode phonon begins to be excited, 
and kinetic and internal energies change each other and exhibit oscillation behaviors. In this stage, the kinetic 
energy is not significantly dissipated. After t t/ 11600 ≈ , in the third stage, multi-phonon excitation leads to the 
decay of kinetic energy. The kinetic energy of CM is transformed into internal energy, and the amplitude of the 
atoms increases significantly. Potential energy is in fact a part of internal energy (the kinetic energy of atoms rel-
ative to CM plus the potential energy). The transformation of the kinetic energy of CM into internal energy is 
irreversible. Internal energy increases continuously, so the velocity of CM decreases continuously until the kinetic 
energy of CM disappears. This scenario explains the strong energy dissipation process by phonon excitation.

Notably, the vibration of atoms in the substrate enhances the phonon excitation. Owing to the vibrations 
of atoms near their equilibrium positions both in 1DAC and substrate, the possibility that two atoms in 1DAC 
fall into the interval between two atoms in the substrate or that two atoms in the substrate fall into the interval 
between two atoms in 1DAC increases. Such a configuration has high elastic potential, which can easily lead 
to phonon excitation. Hence, we considered the vibration of the substrate atoms. Compared with the substrate 
described by a fixed cosine-type periodic potential, the modified substrate potential that considers vibration is 
more suitable for describing the real process.

Next, we investigated the dependence of the sliding distance of CM on initial velocity for different coupling 
strengths χ ω/ s0. The result is shown in Fig. 8. When the coupling strength is low (black curves, χ ω = ./ 0 2s0 ), only 
a few drops appear in the displacement–velocity curve. The displacement of CM is proportional to initial velocity 
at nearly all velocities, indicating that superlubricity can be easily obtained for an arbitrary velocity with weak 
coupling. However, when the coupling strength is high, although most regions on the curves are still linear, a large 
number of drops appear. In particular, when coupling strength χ ω/ s0 is 0.4 (see blue curve), the 1DAC almost 
cannot move with low initial velocity. Furthermore, the 1DAC cannot move a long distance even with a large 
initial velocity of v v/ 4i 0 =  at / 0 4s0χ ω = . . Such a phenomenon does not occur in our daily lives. The sudden 
decrease in displacement indicates that significant dissipation of kinetic energy occurs in the sliding process when 
the initial velocities are exactly at these values. For an atomically smooth interface, energy transfer can only occur 
between kinetic and potential energy. Given that the kinetic energy of 1DAC is transformed into internal energy 

Figure 7.  Evolution of kinetic energy Tc of CM and internal energy U of the system for =N 15, ka 0 15s π= . , 
and / 0 4s0χ ω = . .

Figure 8.  Largest displacement of CM as a function of initial velocity for N = 15, π= .ka 0 15s , and different 
/ s0χ ω  in the time range of 0–4000.



www.nature.com/scientificreports/

7ScIeNtIfIc Reports | 7: 16290  | DOI:10.1038/s41598-017-16506-y

that leads to phonon excitation, the 1DAC cannot move far. We conclude that the higher the coupling strength is, 
the more phonons are excited.

Because of the vibration of the substrate, 1DAC feels a nonperiodic rather than a strict periodic driving force. 
The break down of linear relationship between initial velocity and displacement is determined by the eigenfre-
quencies obtained from Eq. (10) and can be obtained only when the phonon mode is quantized. When the number 
of atom is infinite, the discrete phonon mode will be replaced by a continuous one. In the process of movement of 
1DAC, when the phonon is excited, the linearity between the sliding distance and initial velocity will break down. 
As long as these phonon eigenfrequencies exist, the break down of the linearity can’t be avoided. However, we can’t 
determine the moment at which the phonon is excited, and it is difficult to obtain the analytic formula between 
1DAC phonon eigenfrequencies and the initial sliding velocities when the linearity breaks down.

Lastly, we investigated the influence of the size of 1DAC on sliding movement. Figure 9 shows the dependence 
of the sliding distance of 1DAC with 33 atoms (blue curve) in contrast with that with 15 atoms (red curve). The 
coupling strengths, χ ω/ s0, are both 0.3. The 1DAC with 33 atoms and that with 15 atoms exhibited a similar 
behavior. However, compared with the red curve, the blue curve contains more drops, indicating that the 1DAC 
with 33 atoms has more eigenfrequencies that correspond to phonon excitation. As the number of atoms 
decreases, the number of excited modes decreases, and the possibility of energy dissipation decreases. Therefore, 
we conclude that a critical size exists on the atomic level, below which no dissipation occurs when the 1DAC is 
sliding on the substrate. Such a result is similar to that of Sokoloff9.

The use of a modified substrate potential is advantageous. In fact, the motion of atoms on the substrate cannot 
be avoided, thus leading to a variation in the potential over time. Consequently, a pair of neighbor atoms in the 
1DAC may be trapped between two neighbor atoms on the substrate, thus increasing the potential energy. Such a 
process easily causes phonon excitation and leads to the dissipation of kinetic energy of 1DAC.

In addition, for a finite two-dimensional graphene, we can also obtain a discrete dispersion relation of phonon 
similar with that of 1DAC. In the sliding process of the graphene, the phonon has the possibility to be excited, so 
it might be expected that there are still drops in the curve of the sliding distance and initial velocity.

Conclusion
The dynamic behaviors of a 1DAC sliding on a substrate were studied with a modified Frenkel–Kontorova model. 
The dependence of the sliding distance of the 1DAC on initial velocity and energy dissipation was also investigated 
in detail. The sliding distance of 1DAC is closely related to its initial velocity. Although superlubricity is likely to 
be achieved in an atomically smooth interface at an arbitrary initial velocity, several special velocities still exist; at 
these velocities, the kinetic energy of 1DAC dissipates rapidly because of phonon excitation. The physical mecha-
nism of the energy dissipation of the sliding 1DAC was also analyzed. The sliding process can be divided into three 
stages. In the first stage, the 1DAC experiences a superlubric process because of the transformation of the contact 
interface from commensurate to incommensurate. With the motion of the 1DAC, the atoms exhibit harmonic 
oscillation because of single-phonon excitation in the second stage. In the third stage, multi-phonon excitation 
leads to the transfer of the kinetic energy of the 1DAC to the internal energy of the total system. Furthermore, the 
relationship between sliding distance and initial velocity depends on the coupling strength and size of the 1DAC. 
High coupling strength and large atoms in the 1DAC lead to high possibility of energy dissipation. Our findings 
not only reveal the energy transformation in the sliding process but are also helpful in achieving superlubricity.
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