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Abstract: At present, three-color electrophoretic displays (EPDs) have problems of dim brightness and
insufficient color saturation. In this paper, a driving waveform based on a damping oscillation was
proposed to optimize the red saturation in three-color EPDs. The optimized driving waveform was
composed of an erasing stage, a particles activation stage, a red electrophoretic particles purification
stage, and a red display stage. The driving duration was set to 360 ms, 880 ms, 400 ms, and 2400 ms,
respectively. The erasing stage was used to erase the current pixel state and refresh to a black state.
The particles’ activation stage was set as two cycles, and then refreshed to the black state. The red
electrophoretic particles’ purification stage was a damping oscillation driving waveform. The red and
black electrophoretic particles were separated by changing the magnitude and polarity of applied
electric filed, so that the red electrophoretic particles were purified. The red display stage was a low
positive voltage, and red electrophoretic particles were driven to the common electrode to display
a red state. The experimental results showed that the maximum red saturation could reach 0.583,
which was increased by 27.57% compared with the traditional driving waveform.

Keywords: electrophoretic displays; driving waveform; damping oscillation; particles separation;
red saturation

1. Introduction

As the carrier of human–computer information interaction, a flat panel display is very
important in modern life. In recent years, electronic paper displays, which are a new type
of display, have occupied a certain share in the display market due to its advantages such
as large viewing angle, light in mass, low power consumption, repetitive erasing, and
readability under sunlight [1–5]. As a kind of electronic paper display, electrophoretic
displays (EPDs) have an excellent performance in the field of device manufacturing, which
is expected to become one of the mainstream technologies for next-generation displays [6–8].
The charged particles in traditional EPDs are black electrophoretic particles with a positive
charge and white electrophoretic particles with a negative charge [9]. They can be driven to
the top or bottom of a pixel to display different states by applying an electric field [10–12].
However, the black and white particles cannot perfectly express the content of pictures
because of the signal color. Hence, a multi-color EPD is urgently needed.

The three-color EPD technology could cover people’s requirements for multi-color
electronic papers. In recent years, a three-color EPD has been reported [13]. Electrophoretic
particles of three colors were successfully driven in this work, and the EPD can be driven for
displaying corresponding colors by different voltage sequences. However, the red and black
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electrophoretic particles in electrophoretic fluid have the same polarity of charge, and they
are driven in the same direction when a driving electric field is applied. The disadvantage
of this design is an insufficient color saturation, especially red. Worse still, low display
quality can be caused such as ghost image and flicker, which are also problems in traditional
EPD displays [14–17]. In order to improve the display quality of EPDs, a lot of work has
been done. The display quality of EPDs has obviously improved by synthetizing new
material, manufacturing new devices, and optimizing the driving waveform, etc. [18–20].
As optimizing the driving waveform has an obvious improvement in the display quality,
researchers have done many works in this aspect. For example, a driving waveform based
on a delay response was proposed, and the hysteresis characteristic curve of an EPD
was measured [21]. Moreover, Johnson et al. [22] proposed a driving waveform in which
a reference state was designed, where the EPD could display the next gray scale more
regularly and accurately, and this method could greatly improve the display quality of
EPDs. At present, the red saturation of three-color EPDs is insufficient and it could be
optimized by improving driving waveforms.

In this paper, an insufficient red saturation of the three-color EPD was improved by
designing a new driving waveform. This driving waveform included an addition stage of
a damping oscillation; this stage could separate the red and black electrophoretic particles
more completely. The saturation is greatly improved when the EPD displayed a red state.
At the same time, ghost image and fringe phenomena can be weakened effectively by
optimizing other stages of the driving waveform.

2. Principle of Electrophoretic Displays (EPDs)

The structure of a three-color EPD is shown in Figure 1. White electrophoretic parti-
cles, black electrophoretic particles, and red electrophoretic particles are wrapped into a
microcapsule, and three-color particles have different polarities. The white electrophoretic
particles are negatively charged, and the red and black electrophoretic particles are pos-
itively charged [13]. Among these particles, the red and black electrophoretic particles
are different in charged, mass, and volume. Therefore, they can be successfully separated
to display different colors by controlling the magnitude and duration of the driving volt-
age [23]. As shown in Figure 1a, black electrophoretic particles are driven to the top in a
pixel with a high positive polarity voltage. As shown in Figure 1b, white electrophoretic
particles are driven to the top in a pixel with a negative polarity voltage. As shown in
Figure 1c, red electrophoretic particles are driven to the top in a pixel with a low positive
polarity voltage.
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Figure 1. A schematic diagram of a three-color electrophoretic display (EPD). The top is a common
electrode, the middle is the microcapsule that contains three-color particles, and the bottom is a pixel
electrode. (a) When the applied external voltage is a high positive voltage, the pixel is black. (b)
When the applied external voltage is a negative voltage, the pixel is white. (c) When the applied
voltage is a low positive voltage, the pixel is red. The particles are in a static state if there is no driving
voltage, which is called the bistable state of EPDs.
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The driving waveform refers to a voltage sequence applied to pixels, which seriously
affects the display quality of EPDs. A traditional driving waveform is composed of an
erasing stage, a particle activation stage, and a target state display stage [24,25]. Changes
in each stage can affect the display quality of EPDs. There are many details that need to
be improved in the driving waveform for a good display quality such as ghost image,
fringe phenomena, flicker, insufficient color saturation, etc. [15,26–28]. In the original stage,
particles are distributed irregularly in microcapsules. Therefore, it is necessary to rearrange
particles to prepare for the next gray scale of EPDs [29]. In this stage, the original state
can be driven to a state where electrophoretic particles are regularly arranged to the same
state. The migration rate of electrophoretic particles can be decreased when electrophoretic
particles remain in the same state for a long time. Therefore, the driving waveform of the
particle activation stage is designed. In this stage, pixels are refreshed to black state first,
and refreshed to white state immediately. This process can make sure that particles must
be activated during the driving process and reach steady state. Next, the target gray scale
can be driven by an applied electric field.

Charged particles are subjected to an electric field force in an electric field. As shown
in Equation (1):

Fq = q× E (1)

where Fq is the electric field force; q is the electric charge of electrophoretic particles; and E
is the applied electric field.

Since electrophoretic particles are dispersed in colloidal solution, the movement of
electrophoretic particles is also hindered by Stokes force [30]. Its expression is shown in
Equation (2):

Fd = 6πµvr (2)

where Fd is the Stokes force; µ is the liquid viscosity coefficient; v is the motion relative
rate between particles and fluids; and r is the sphere radius. The combined force of the
electric field force and the Stokes force is used as the driving force for the movement of
electrophoretic particles. As shown in Equation (3):

F = Fq − Fd = m
dv
dt

(3)

where F is the driving force that can drive electrophoretic particles; m is the mass of an
electrophoretic particle; and dv

dt is the acceleration of electrophoretic particles.
The moving distance of electrophoretic particles in a microcapsule can be calculated

according to the integral of speed and time. As shown in Equation (4):

S =
∫

cdt =
∫

σEdt (4)

where S is the moving distance of electrophoretic particles in a microcapsule; c is the
moving speed of electrophoretic particles; σ is the electrophoretic mobility of electrophoretic
particles; and E is the applied electric field.

Particles are subjected to random pulse signals in the electric field, as shown in
Equation (5):

f (t) =
N

∑
n=1

an[u(t− nT)− u(t− nT − τ)] (5)

where f(t) is a random amplitude rectangular pulse signal; an is the rectangular pulse
amplitude; t is the time; T is the pulse signal period; and τ is the pulse width.

The key step for increasing the red saturation is that red and black electrophoretic
particles in microcapsules can be separated completely, which can be completed by de-
signing a damping oscillation driving waveform according to the nature of particles. A
damping oscillation refers to the process in which the amplitude of vibration can be gradu-
ally decreased over time. As shown in Equations (6) and (7), the characteristic of a damped
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oscillation is that the amplitude gradually is decreased. Therefore, the intensity of the
electric field applied to the pixel gets lower and lower in the driving waveform. Driving
black electrophoretic particles requires a high electric field, and driving red electrophoretic
particles requires a low electric field. Therefore, the red and black electrophoretic particles
can be successfully separated.

Fr = −Bc (6)

X(t) = Ae−δt cos(ωt + ϕ) (7)

where Fr is the damped force; B is the drag coefficient; Ae−δt is the amplitude; and ω is the
angular frequency. In this process, the mean value of time is defined as Equation (8):

X(t) = lim
T→∞

1
2T

∫ T

−T
X(t)dt (8)

3. Design of Driving Waveforms

To improve the red saturation in three-color EPDs, an optimized driving waveform
was designed and divided into four stages: (1) An erasing stage; (2) a particle activation
stage; (3) a red electrophoretic particles purification stage, and (4) a red display stage. As
shown in Figure 2, the first stage was the erasing stage, which could erase the original pixel
state and refresh the white or black state. A positive 15 V could be applied for 200 ms to
reset the original state, and the EPD could display a black state. Similarly, a negative 15 V
was applied to reset the original state, and the EPD could display a white state. Then, 0 V
was applied after 15 V voltage for 80 ms. This duration was set to buffer the electrophoretic
particles, and red, black, and white particles were separated at this stage. The second stage
was a particle activation stage. The EPDs were driven multiple times to reach the optical
limit, which could increase the activity of particles and further eliminate ghost images. At
this stage, electrophoretic particles could be driven to move in the colloidal solution with
several cycles by an applied voltage. A cycle included a positive 15 V and a negative 15 V,
and the duration was 340 ms. Then, the red and black electrophoretic particles were driven
to the top of a pixel by a positive 15 V voltage for 200 ms at the end of this stage. The third
stage was a red electrophoretic particle purification stage. The purpose of this stage was to
separate red and black electrophoretic particles for displaying a red state. Two kinds of
particles can be driven at different speeds in microcapsules with the same applied voltage.
Hence, the damping oscillation driving waveform had a good effect on separating red and
black particles, and the red particles were purified greatly. The fourth stage was a red state
display stage, and a low positive voltage was applied during the whole stage.
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4. Results and Discussion
4.1. Construction of Test Platform

In this work, the experimental system is shown in Figure 3 and includes a function
generator, a signal amplifier, a colorimeter, a microcapsule EPD, and a computer. The
microcapsule EPD device was designed by us, and made by foundry (Dalian Longning
Technology Co. Ltd., Dalian, China). The driving waveform used in the experiment was
first designed by MATLAB (2017, MathWorks, Natick, MA, USA). Subsequently, it was
converted to generate a txt format file. Then, the tfw format file was output by Arbexpress
(Version 3.4, Tektronix. Inc, Beaverton, OR, USA). Next, the file was burnt into the function
generator by a Universal Serial BUS (USB). Finally, the driving waveform was output from
the signal amplifier to drive an EPD to display gray scales.
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The workflow of the entire system is shown in Figure 4. All equipment and instru-
ments were first connected. Then, the saturation data acquisition system was activated,
and the relevant parameters were set, which included averaging and trial. Averaging was
used to set the time interval for obtaining red saturation data, and the trial was used to set
the number of measurements that could appear on the color saturation diagram. Then, the
system was effectively calibrated. Finally, the EPD was driven to display relevant colors.
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4.2. Erasing Stage Optimization

Generally, the first stage of the driving waveform is an erasing stage, which is used to
erase previous states. In this work, the first stage of the driving waveform was designed
to erase the original gray scale and then refresh the EPD to a black state. As shown in
Figure 5a, the duration of this stage was set to 360 ms. Compared with the traditional
driving waveform, the erasing stage could erase to a white state and the polarity of
the applied voltage was the opposite, as shown in Figure 5b. The experimental results
showed that when the erasing stage was a black state, the red saturation was 0.583, and the
chromaticity diagram is shown in Figure 5c. However, when the erasing stage was a white
state, the red saturation was 0.448, and the chromaticity diagram is shown in Figure 5d.
This is because when the driving waveform is designed to erase to a white state, white
particles were near the common electrode, the red and black electrophoretic particles were
at the bottom of a microcapsule. Therefore, it took a lot of time to drive red particles from
the bottom to the common electrode in the particle activation and display red color stages.
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4.3. Particle Activation Stage Optimization

According to the traditional driving waveform, the particle activation stage has an
important contribution to reducing ghost images. At this stage, different cycles were tested.
The duration of a cycle was designed to be 340 ms, and the duration for resetting to the
black state was 200 ms. The maximum red saturation with different cycles are shown
in Figure 6. The experimental results showed that the maximum red saturation could
reach 0.583 when the stage was two cycles. As the cycle was increased, the maximum red
saturation was gradually decreased. This is because electrophoretic particles could not
return to their original position due to the resistance of the colloidal solution when the
EPD was driven to the black state or the white state. After multiple cycles, the distance
was increased so that white electrophoretic particles could not be driven to the bottom in
a microcapsule.
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4.4. Waveform Design of the Damping Oscillation

Since the red and black electrophoretic particles have the same polarity charge, it was
unrealistic to separate them by simply changing the driving voltage polarity. However,
the nature of red and black electrophoretic particles is different. A damping oscillation
driving waveform can not only change the polarity, but also change the magnitude of
the electric field. Hence, the red and black electrophoretic particles can be separated by
the damping oscillation driving waveform. As shown in Figure 7, we tested the effect
of different damping oscillation durations on the red saturation. It could be seen that
the maximum red saturation could be obtained when a short duration was designed for
the damping oscillation, and the maximum red saturation could be gradually improved
when the duration of the damping oscillation was increased to 400 ms. When the duration
exceeded 400 ms, the maximum red saturation gradually became worse. This was because
the damping oscillation duration was too short, so the red and black electrophoretic
particles were not completely separated. Then, the black particles were under red particles
when the target state was red so that the red saturation was low. In addition, when the
damping oscillation duration was too long, the red and black electrophoretic particles were
mixed again. Hence, the red saturation was also low.
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4.5. Red Display Stage Optimization

In order to obtain a high red saturation, the driving waveform was optimized in two
aspects: driving voltage and duration. As shown in Figure 8, the influence of different
driving voltages on the red saturation was verified by designing different durations. The
experimental results showed that the maximum red saturation values were different with
different durations. The maximum red saturation was gradually improved when the
duration was increased from 2000 ms to 2400 ms and the maximum red saturation showed
a downward trend when it exceeded 2400 ms. This is because a long duration would drive
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black electrophoretic particles toward the common electrode. In addition, the red saturation
showed an upward trend when the driving voltage was increased from 2.5 V to 2.9 V, and
the red saturation was gradually decreased when it exceeded 2.9 V. Comprehensively, the
optimal parameters were the driving voltage of 2.9 V and the duration of 2400 ms.
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We tested the maximum red saturation based on the traditional driving waveform
and the optimized driving waveform, respectively. As shown in Figure 9, the experimen-
tal results showed that the maximum red saturation was increased from 0.457 to 0.583,
therefore the red saturation increased by 27.57%.
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Figure 9. (a) The traditional waveform which was composed of three stages: (1) The erasing stage, (2) particle activation
stage, (3) target state display stage. The driving waveform duration of three stages was set to 576 ms, 760 ms, and 2400 ms,
respectively [13]. (b) The optimized driving waveform was composed of four stages: (1) The erasing stage, (2) particle
activation stage, (3) red electrophoretic particles purification stage, and (4) red display stage. The driving waveform duration
of the four stages were set to 360 ms, 880 ms, 400 ms, and 2400 ms, respectively. (c) The relationship between the red
saturation and red display stage based on the traditional driving waveform. (d) The relationship between the red saturation
and red display stage based on the optimized driving waveform.
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5. Conclusions

In this paper, a driving waveform that could optimize red saturation was proposed
for three-color EPDs. The damping oscillation driving waveform could separate red and
black electrophoretic particles very well. Compared with traditional driving waveforms,
the red saturation of the optimized driving waveform could be effectively improved by
0.126. At the same time, the ghost image could be reduced and the steady state of particles
could be improved. The concept of the damping oscillation can provide effective design
ideas for the design of driving waveforms for color EPDs, which can provide a better and
more comfortable visual experience for users.
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