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Simple Summary: Despite the unprecedented clinical benefit of immunotherapy in melanoma, some
patients still do not respond to treatment, arguing the need for novel therapeutic targets. The aim
of this study was to investigate the therapeutic potential of two understudied proteins, Ropporin-1
(ROPN1) and 1B (ROPN1B). We confirmed that these proteins are widely expressed in melanoma
patients using gene data derived from public datasets, and protein data derived from 61 patient
tumours. Moreover, these proteins were able to evoke strong immune responses in 104 melanoma
patients. These findings therefore suggest that ROPN1 and ROPN1B may be valuable targets for
immunotherapy, alone or in combination with existing treatments.

Abstract: Antibodies that block immune regulatory checkpoints (programmed cell death 1, PD-
1 and cytotoxic T-lymphocyte-associated antigen 4, CTLA-4) to mobilise immunity have shown
unprecedented clinical efficacy against cancer, demonstrating the importance of antigen-specific
tumour recognition. Despite this, many patients still fail to benefit from these treatments and
additional approaches are being sought. These include mechanisms that boost antigen-specific
immunity either by vaccination or adoptive transfer of effector cells. Other than neoantigens,
epigenetically regulated and shared antigens such as NY-ESO-1 are attractive targets; however,
tissue expression is often heterogeneous and weak. Therefore, peptide-specific therapies combining
multiple antigens rationally selected to give additive anti-cancer benefits are necessary to achieve
optimal outcomes. Here, we show that Ropporin-1 (ROPN1) and 1B (ROPN1B), cancer restricted
antigens, are highly expressed and immunogenic, inducing humoral immunity in patients with
advanced metastatic melanoma. By multispectral immunohistochemistry, 88.5% of melanoma
patients tested (n = 54/61) showed ROPN1B expression in at least 1 of 2/3 tumour cores in tissue
microarrays. Antibody responses against ROPN1A and ROPN1B were detected in 71.2% of melanoma
patients tested (n = 74/104), with increased reactivity seen with more advanced disease stages.
Thus, ROPN1A and ROPN1B may indeed be viable targets for cancer immunotherapy, alone or in
combination with other cancer antigens, and could be combined with additional therapies such as
immune checkpoint blockade.
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1. Introduction

Immune checkpoint blockade (ICB) targeting programmed cell death 1 (PD-1) and
cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) has revolutionised the treatment of
melanoma, with clinical benefit seen in up to 70% of patients when compared to either PD-1
(54%) or CTLA-4 blockade (41%) alone [1]. This is mediated by the induction or reactivation
of antigen-specific effector T lymphocytes. There is considerable evidence that the peptide
products of mutated genes [2] or aberrant post-translational changes are important immune
targets in cancer [3]. These neoantigens have been correlated with patient responses to
ICB. Additionally, a study in melanoma demonstrated immunogenicity of personalised
neoantigen vaccines, designed to selectively target the mutated antigens of each patient [4].
However, next-generation sequencing and algorithms for human leukocyte antigen (HLA)
binding indicate that as many as two thirds of human cancers do not generate mutational
neoantigens at sufficiently high frequencies to ensure immune recognition [5,6]. Clearly,
approaches that extend options for immunotherapy need to also account for tumours with
low numbers or absent mutated antigens. Indeed, there is abundant evidence in pre-clinical
models and in human clinical trials, indicating that ICB can be highly effective if combined
with vaccines or adoptive cell transfer (ACT) of effector T lymphocytes, even in tumour
models with few mutations [7–9]. Thus, combinations with antigen-specific therapeutic
approaches are amendable for increasing the scope of ICB as long as appropriate antigens
with optimal characteristics can be identified.

For practical purposes, vaccines that utilise shared antigens are attractive since this
avoids the complexity and expense of generating customised products for individual
patients. For such vaccines, the epigenetically-regulated cancer-testis antigens (CTAgs)
can be considered as immune-neoantigens, since their expression is newly acquired as
part of the malignant phenotype. A variety of CTAgs have been widely studied for their
use as vaccine antigens or for ACT [10–13]. Arguably, the prototype CTAg is NY-ESO-1
(CTAG1A or identical gene copy CTAG1B), which induces spontaneous cellular and hu-
moral immune responses in melanoma and other cancers [14–16]. However, while CTAgs
have the distinct advantage of being tumour-specific, expression is often heterogeneous,
patchy or weak [17]. To overcome this, cancer vaccines have been designed using several
immunogenic epitopes from different CTAgs in combination [18–20]. To date, success with
these treatment types has been limited. However, peptide vaccines are currently being
reconsidered as combination treatments with ICB and ACT to boost immunity and broaden
the cohort of responders [21–23]. Thus, identification of novel tumour-specific antigens con-
tinues to be of importance in the development of effective anti-cancer therapies. The ideal
antigen would be one that is immunogenic and expressed in a large percentage of cancer
patients, while limited in any normal tissue expression. Here, we describe and characterise
ropporin-1 (ROPN1) and 1B (ROPN1B, 96% sequence homology with ROPN1) as antigens
with the aforementioned properties. Based on studies of tissue distribution, CTAgs have
been broadly classified as testis-restricted, testis/brain-restricted, and testis-selective, with
ROPN1 being classified as the latter [24]. Despite this, the testis is an immune-privileged
site that is protected from systemic immune attack, and hence ROPN1 or ROPN1B-specific
therapeutic approaches should not result in testicular toxicity [25]. Hence, although poorly
studied, we propose they represent promising targets for further clinical development.

Ropporin was firstly described in 1999 as a testis-restricted, rhophilin-binding protein
by Fujita et al., using a yeast two hybrid screen on a mouse testis cDNA library [26].
Human ropporin has been shown to directly interact with and bind to A-kinase anchoring
proteins (AKAPs) [27], predominantly AKAP110. While the exact function of ropporin
remains elusive, its localization in sperm cells and expression data from patients with
asthenozoospermia suggested a potential role in sperm motility [28]. The expression
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pattern of human ropporin is tissue-restricted, with the majority of expression detected
in testis and foetal liver, as well as a variety of hematologic malignancies [29] and breast
cancers [30].

A recent study using triple negative breast cancer cells suggests that ROPN1 acti-
vates RhoA signalling via rhophilin-1 (RHPN1), promoting cell migration, invasion and
metastatic potential [30]. It was shown to be overexpressed in triple negative breast can-
cer cell lines and tissue, with high levels predictive of a poor prognosis [30]. Ropporin
was identified as a potential target for immunotherapy in multiple myeloma, where its
expression was detected in 44% of cases and its immunogenic potential was confirmed
by the presence of antibodies and cytotoxic lymphocytes [31]. We therefore hypothesised
that this may also be the case in melanoma and aimed to investigate the expression and
immunogenicity of ROPN1 and ROPN1B. Here, we found that both ROPN1A and ROPN1B
have favourable features as tumour antigens based on distribution and immunogenicity.

2. Results
2.1. Ropporin-1 (ROPN1) and Ropporin-1B (ROPN1B) Genes Are Expressed in Melanoma
Samples and Correlated with Melanoma Differentiation Antigens

We tested the gene expression levels of ROPN1 and ROPN1B (96% sequence homology
with ROPN1) in a panel of melanoma cell lines generated in-house [32] (Table 1). In 45
out of 55 (81.8%) cell lines, we detected ROPN1 gene expression compared to 46 out of
55 (83.6%) with ROPN1B expression (Figure 1A). For the purposes of comparison with a
well-validated CTAg, we also determined the gene expression of CTAG1A (identical gene
copy to CTAG1B) in the same cohort of cell lines. CTAG1A expression was detected in
20 out of 55 (36.4%) cell lines (Figure 1A), with 14 cell lines showing expression of both
CTAgs. Expression of either ROPN1/ROPN1B or CTAG1A was observed in 52 out of 55 cell
lines (94.5%).

Table 1. Summary of patient characteristics across all cohorts. This includes sample numbers, age, gender and disease stage.
Cohort 1 was used to generate gene expression data (GEO dataset ID GSE89438) from 55 in-house generated melanoma cell lines
derived from 52 patients [32]. Cohort 2 was used to generate gene expression data from 472 melanoma patient tumours derived
from the TCGA Skin Cutaneous Melanoma Firehose Legacy dataset with 469 patients. Cohort 3 was used to generate protein
expression data from 61 melanoma patient tumours across 2 TMAs (ME1002b, US Biomax, Derwood, MD, USA and 07 TMA
Mel 1.8, in-house) derived from 61 patients. Cohort 4 was used to generate circulating antibody data from 104 melanoma patient
serum or plasma. Gene Expression Omnibus, GEO; TCGA, The Cancer Genome Atlas; TMAs, tissue microarrays; yr, years.

Cohort 1 (n = 52) Cohort 2 (n = 469) Cohort 3 (n = 61) Cohort 4 (n = 104)

Sample Type Cell lines Tumours Tumours Serum or Plasma

Used to Determine Gene Expression Gene Expression Protein Expression Circulating Antibodies

Age–yr

Median 56 58 53 54

Range 25–83 15–90 21–88 21–87

Gender–no. (%)

Unknown 0 (0) 0 (0) 0 (0) 1 (0.9)

Male 33 (63.5) 289 (61.6) 35 (57.4) 63 (60.6)

Female 19 (36.5) 180 (38.4) 26 (42.6) 40 (38.5)

Stage–no. (%)

Unknown 9 (17.3) 59 (12.6) 6 (9.8) 7 (6.7)

I 0 (0) 77 (16.4) 5 (8.2) 2 (1.9)

II 1 (1.9) 140 (29.9) 21 (34.4) 9 (8.7)

III 22 (42.3) 170 (36.2) 4 (6.6) 35 (33.7)

IV 20 (38.5) 23 (4.9) 25 (41.0) 51 (49.0)
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Figure 1. Gene expression of ROPN1, ROPN1B, CTAG1A/B, TYR and MLANA in melanoma cell lines and tumours. (a) Heat
map representing the hierarchical clustering by Pearson correlation of ROPN1, ROPN1B, CTAG1A, TYR and MLANA gene
expression in 55 in-house generated melanoma cell lines derived from 52 patients [32]. Each row shows absolute level
of expression results for one specific probe for the respective gene. The full gene expression dataset can be found under
GEO dataset ID GSE89438. (b) mRNA co-expression plots for ROPN1 and CTAG1B (r = −0.06, p-value = 0.174), or (c) TYR
(r = 0.56, p-value < 0.0001) or (d) MLANA (r = 0.54, p-value < 0.0001); and (e) mRNA co-expression plots for ROPN1B and
CTAG1B (r = 0.03, p-value = 0.482), or (f) TYR (r = 0.57, p-value < 0.0001) or (g) MLANA (r = 0.56, p-value < 0.0001) in 472
TCGA melanoma patient samples (469 patients). mRNA expression is shown as z-scores relative to all samples (log RNA
Seq V2 RSEM), and correlation is analysed using the Pearson correlation. Gene Expression Omnibus, GEO; TCGA, The
Cancer Genome Atlas.

The expression of differentiation antigens that are commonly present and have been
previously used as immunological targets in melanoma, namely, TYR (tyrosinase) and
MLANA (Melan-A/MART1) [20,33], were compared with CTAG1A and ROPN1 or ROPN1B
in our panel of melanoma cell lines. We found a strong correlation in the expression of both
TYR and MLANA with ROPN1 and ROPN1B among our cell line panel (Figure 1A, TYR
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vs. ROPN1: r = 0.73, p-value < 0.0001; TYR vs. ROPN1B: r = 0.73, p-value < 0.0001; MLANA
vs. ROPN1: r = 0.61, p-value < 0.0001; MLANA vs. ROPN1B: r = 0.61, p-value < 0.0001). In
contrast, CTAG1A expression was found in more differentiated cell lines with high TYR
and/or MLANA expression, and in less differentiated ones without TYR and/or MLANA
expression (Figure 1A).

We further evaluated the gene expression levels of ROPN1, ROPN1B, CTAG1B (identi-
cal gene copy to CTAG1A for which no gene expression data is available), TYR and MLANA
in 472 additional melanoma samples using data accessible via The Cancer Genome Atlas
(TCGA) (Table 1). As expected, expression of ROPN1 and its paralog ROPN1B was highly
correlated (r = 0.86, p-value = 8.71 × 10−141). ROPN1 and ROPN1B were expressed at
transcript level in nearly all melanomas (ROPN1: n = 467/472, 98.9%, ROPN1B: n = 466/472,
98.7%), more frequently than CTAG1B (n = 322/472, 68.2%), and sometimes exclusively
(Figure 1B, ROPN1: r = 0.06, p-value=0.174; Figure 1E, ROPN1B: r = 0.03, p-value = 0.482).
As expected, TYR (n = 469/472, 99.4%) and MLANA (n = 471/472, 99.8%) were commonly
expressed. We further demonstrated co-expression of ROPN1/ROPN1B and TYR (ROPN1:
r = 0.56, p-value < 0.0001; ROPN1B: r = 0.57, p-value < 0.0001) or MLANA (ROPN1: r = 0.54,
p-value < 0.0001; ROPN1B: r = 0.56, p-value < 0.0001) in the majority of patient samples
(Figure 1C, 1F and 1D, 1G, respectively), and found no correlation between differentiation
antigens and CTAG1B expression (Figure S1, TYR: r = −0.06, p-value=0.165, MLANA:
r = −0.05, p-value = 0.268), reflecting the results of our cell line analysis.

We further investigated ROPN1, ROPN1B and CTAG1B gene expression across dif-
ferent stages of disease and genders in melanoma. ROPN1, ROPN1B and CTAG1B were
expressed across all AJCC disease stages, without apparent differences (Figure S2, ROPN1:
p-value = 0.179; ROPN1B: p-value = 0.140; CTAG1B: p-value = 0.338). Similarly, no dif-
ference was observed between males and females (Figure S3, ROPN1: p-value = 0.944;
ROPN1B: p-value = 0.362; CTAG1B: p-value = 0.829).

2.2. Ropporin-1B (ROPN1B) Protein Is Expressed in Melanoma Tumours

We assessed expression of ROPN1B, NY-ESO-1 (single protein from CTAG1A or
CTAG1B genes), MLANA and SOX10 (used here as a melanoma tumour marker) at the
protein level by multispectral immunohistochemistry on melanoma tissue microarrays
(TMAs) comprising two or three cores from 61 patient tumours (Table 1). Protein expression
levels were at times heterogeneous amongst patient cores, and lack of expression was only
reported in cases where all cores per patient were assessable. ROPN1B cytoplasmic expres-
sion was observed in 88.5% (n = 54/61) of patient samples, while cytoplasmic NY-ESO-1
was observed in 16.4% (n = 10/61) of samples (Figure S4). Expression of both ROPN1B
and NY-ESO-1 was seen in 9 cases (n = 9/61, 14.8%), where tumour cells within cores
showed instances of co-expression or exclusive expression of ROPN1B and/or NY-ESO-1
(Figures 2 and 3). Moreover, ROPN1B expression was often detected ubiquitously, whereas
NY-ESO-1 appeared more scattered and diffuse throughout tumour cores (Figure S5). In
patient samples with expression of both ROPN1B and NY-ESO-1, cells with exclusive
ROPN1B positivity increased tumour cell coverage by 29.3% on average (range from 9.0%
to 73.0%, Figure 3). Nuclear SOX10 (n = 60/61) or cytoplasmic MLANA (n = 60/61)
expression was detected in nearly all tumour cores, as expected (Figure 2 and Figure S5).
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Figure 2. Patterns of ROPN1B and NY-ESO-1 expression in melanoma tumours. Multispectral immunohistochemistry of
melanoma tumour cores showing staining for ROPN1B, NY-ESO-1, MLANA and SOX10. Representative cores showing
ROPN1B and NY-ESO-1 co-expression in discreet (a) or shared (b) tumour regions, as well as exclusive (c) ROPN1B expression.
Tissue microarrays were stained with anti-ROPN1B (green), anti-NY-ESO-1 (red), anti-MLANA (orange) and anti-SOX10
(yellow) antibodies with DAPI (blue) counterstain, and are displayed as merge (a,b,c) and single colour (a1–a4,b1–b4, c1–c4)
cores. Whole tumour cores with more than 2% of the tissue cells staining for the target proteins were considered positive. All
images were taken using a 20× objective, and scale bars indicate 100 µm (core) or 50 µm (region of interest).
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Figure 3. Tumour cell coverage of ROPN1B and NY-ESO-1 expression in investigated melanoma tumours. Upper panel
indicates number of tumours with any expression of NY-ESO-1 alone (red), NY-ESO-1 and ROPN1B (chequered red and
green), ROPN1B alone (green) or neither (grey) across the cohort. Magnified panel depicts quantitative distribution of
NY-ESO-1 and ROPN1B staining relative to SOX10+ melanoma cells across patients displaying both NY-ESO-1 and ROPN1B
expression. Percentages on bars show ROPN1B expression alone.

ROPN1B expression was seen in both early (I and II, n = 19/26, 73.1%) and late
stages (III and IV, n = 29/29, 100.0%) of disease, more so than NY-ESO-1 (n = 1/26, 3.8% vs.
n = 9/29, 31.0%, respectively). Nonetheless, expression was more predominant in advanced
disease (ROPN1B: chi-square p-value = 0.003; NY-ESO-1: chi-square p-value = 0.009), with
evidence of more abundant melanoma cell expression in tumour cores, in contrast to sparse,
dispersed cells commonly identified in early-stage disease. ROPN1B (females: 88.5%,
n = 23/26 vs. males: 88.6%, n = 31/35, chi-square p-value = 0.989) and NY-ESO-1 (females:
11.5%, n = 3/26 vs. males: 20.0%, n = 7/35, chi-square p-value = 0.377) protein expression
did not differ between genders.

2.3. Ropporin-1A (ROPN1A) and Ropporin-1B (ROPN1B) Are Immunogenic Antigens
in Melanoma

To explore the immunogenic potential of ROPN1A and ROPN1B, we screened sera or
plasma from 104 melanoma patients (Table 1). These were tested for the presence and titre
of antibodies against ROPN1A/B, NY-ESO-1, MLANA and TYR (Table S2). Antibodies
were detected above noise threshold against ROPN1A/B in 71.2% (n = 74/104) of patients,
and against NY-ESO-1 in 63.5% (n = 66/104) of patients. Although there were instances
where reactivity was exclusive to either ROPN1A/B (19.2%, n = 20/104) or NY-ESO-1
(11.6%, n = 12/104), co-reactivity was seen in many cases (51.9%, n = 54/104) (Figure 4).
Alternatively, a small subset of patients had reactivity to neither (17.3%, n = 18/104). In
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addition, co-reactivity against both ROPN1A/B and TYR (39.4%, n = 41/104) or ROPN1A/B
and MLANA (31.7%, n = 33/104) was also seen, although to a lesser degree. Only 10.6%
(n = 11/104) of the patient cohort had no antibody reactivity to any of these antigens.

Figure 4. Venn diagram displaying predominance of ROPN1A/B, NY-ESO-1, TYR and MLANA-specific antibodies in
melanoma patients. Antibody titres were measured in 104 melanoma patients using a custom protein microarray platform,
and all resulting intensities above 500 RFU (defined noise threshold) were considered positive signals and plotted using a
4-way Venn diagram. RFU, relative fluorescent units.

This cohort consisted predominately of stage III and IV melanoma patients, with 74.4%
(n = 64/86) of these seropositive for ROPN1A/B, and 62.8% (n = 54/86) seropositive for NY-
ESO-1. Furthermore, it included 60.6% males and 38.8% females, with no gender-related
differences seen for ROPN1A/B (females: 75.0%, n = 30/40 vs. males: 69.8%, n = 44/63,
chi-square p-value = 0.571) or NY-ESO-1 antibody reactivity (females: 62.5%, n = 25/40 vs.
males: 63.5%, n = 40/63 chi-square p-value = 0.919) (Figure S6).

3. Discussion

Neoantigens that arise from somatic mutations can play an important role in immune
tumour rejection [34] but generally differ from tumour to tumour. In order to create
personalised vaccines against these targets, individual therapies need to be tailored on a
patient-by-patient basis, requiring gene sequencing and manufacturing of antigens. This
approach has limitations for routine clinical use across hospitals both in terms of the
associated costs and extensive timeframes. Nevertheless, a small study in melanoma
designed personalised neoantigen-based peptide vaccines for six patients, which led to the
generation of tumour-specific CD4+ and CD8+ T lymphocyte responses and clinical benefit
(four out of six patients remaining cancer free at a 25-month follow up) [4]. One reason cited
for the failure of prior therapies in melanoma, including cancer vaccine- based treatments,
has been the considerable heterogeneity of melanoma cells [35,36]. Phenotypic plasticity
and differentiation/de-differentiation is a likely contributor to this heterogeneity as it has
been known to result in antigen down-regulation. Indeed, epithelial to mesenchymal
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transition-like phenotype switching has been implicated as an escape mechanism following
vaccination or ACT [37,38]. CTAgs comprise a large group of antigens, many of which
are expressed following de-repression of epigenetic silencing in cancer [39]. In contrast
to the unique products of mutations, their expression is shared between tumours and
restricted normal tissues, mostly at immune-privileged sites. Therefore, they are able to
stimulate potent immune responses [40] and many have been widely trialled as vaccine
antigens [39]. Namely, an NY-ESO-1 vaccine was able to induce antigen-specific cellular
and humoral responses but did not affect overall survival, possibly due to its limited
tumour expression [41].

In this study, gene-expression profiling of a large panel of early-passage melanoma cell
lines [32] identified ROPN1 and ROPN1B as being highly expressed in melanoma tumour
samples (ROPN1: 81.8%, ROPN1B: 83.6%), more so than CTAG1 (36.4%). Similarly, gene
expression of ROPN1 and ROPN1B was also commonly detected in a melanoma patient
cohort accessed via the TCGA (ROPN1: 98.9%, ROPN1B: 98.7% vs. CTAG1B: 68.2%). When
investigating melanoma TMAs, 88.5% of patient tumours expressed ROPN1B, a much
larger proportion compared to NY-ESO-1 (16.4%). Even in instances of tumours expressing
both NY-ESO-1 and ROPN1B (14.8%), the addition of ROPN1B increased the tumour cell
coverage substantially.

The role of antibodies against tumour antigens in melanoma is unclear [42–44], and
while an antibody response is not necessarily accompanied by cellular immunity, these
often go hand-in-hand [45,46]. Antibody profiling using a custom protein array [47] de-
tected high-titre antibodies against ROPN1A/B in the serum or plasma of a large cohort
of melanoma patients (71.2%), more so when compared to NY-ESO-1 (63.5%). NY-ESO-1
antibodies were more commonly detected than expected, based on the above gene and
protein expression studies. In previous studies that assessed the frequency of NY-ESO-1
antibody responses, reports have described NY-ESO-1-specific antibodies in ~10% [15]
to 45% [48] of patients. However, the protein array used here is more sensitive than
ELISA [47], which would contribute to a higher percentage of patients with detectable anti-
NY-ESO-1 and/or anti-ROPN1A/B antibody responses when compared to historical data.
Alternatively, NY-ESO-1 is known to be highly immunogenic, and hence it is possible that
the detected circulating antibodies may be a result of earlier NY-ESO-1+ cell eradication.
Similarly, the prevalence of detectable antibodies against MLANA and TYR were below
expected levels, particularly when considering the above gene expression data, arguing
for inferior humoral immunogenicity when compared to ROPN1A/B and NY-ESO-1. Fur-
thermore, a trend towards increasing ROPN1A/B and NY-ESO-1 antibody reactivity was
seen with progression of disease stage. For example, 54.5% of Stage I/II had antibody
responses to ROPN1A/B, compared with 74.4% of stage III/IV patients. The number of
stage I and II patients screened here (n = 11) was too small to allow us to draw definitive
conclusions, however, prior studies have also demonstrated a correlative increase in the
proportion of NY-ESO-1 seropositivity with disease stage [17,49]. In addition, we observed
that ROPN1A/B reactivity was slightly increased in females, albeit not significantly. This
observation was also noted in a recent study where antibody responses to ROPN1 were
significantly higher in female multiple myeloma patients [50]. An increased humoral re-
sponse in females may explain the reduced melanoma incidence and the increased survival
benefit independent of disease stage reported in women [51,52]. Together, these data show
that (i) NY-ESO-1, ROPN1 and ROPN1B are highly immunogenic; and (ii) patients who
have no evidence of NY-ESO-1 immunity can have antibody titres against other CTAgs,
including ROPN1A and ROPN1B, thereby validating that the addition of ROPN1A and
ROPN1B as target antigens can potentially enlarge the population of eligible patients who
might benefit from a combined vaccine approach.

Ongoing immune editing occurring over the course of disease allows cancer escape
from immune targeting of individual antigens [53]. For these reasons, the potential to
achieve increased tumour coverage by targeting NY-ESO-1, ROPN1A and ROPN1B com-
bined makes these immunogenic CTAgs highly compatible for combination in a cancer
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vaccine with the potential to generate synergistic immune responses to the tumour. It
is tempting to speculate that further immunogenic tumour antigens could also be in-
corporated, leading to the design of a cancer vaccine that “covers all bases” in terms of
heterogeneity and plasticity. As strategies are being pursued to widen the applicability of
cancer immunotherapy, vaccination is now being proposed and trialled (NCT03092453)
in combination with other immunotherapies, such as ICB [22,54,55]. Our study indicates
that ROPN1A and ROPN1B may serve as promising candidates for such antigen-specific
approaches, and therefore further studies are warranted and should be pursued to ex-
plore this.

4. Materials and Methods
4.1. Human Ethics Approval

Blood samples used in this study were derived from patients who provided written in-
formed consent to participate in a clinical research protocol approved by the Austin Health
Human Research Ethics Committee (HREC/14/Austin/425, approved on 6 November
2014) (Table 1).

4.2. Melanoma Cell Lines and Cell Culture

Establishment and characterisation of the melanoma cell lines used has been pre-
viously described [32]. Cells were cultured in RPMI 1640, 2 mM Glutamax, 100 U/mL
Penicillin, 100 µg/mL Streptomycin and 10% foetal calf serum (RF10) (all Invitrogen,
Carlsbad, CA, USA).

4.3. Cell Pellet DNA Extraction

DNA was extracted from pelleted cells using a DNeasy® Blood and Tissue kit (Qiagen,
Hilden, Germany) as per the manufacturer’s instructions. Briefly, pellets were suspended
in 200 µL of PBS with 36 µL of Proteinase K (600 mAU/mL, Scimar, Templestowe, VIC,
Australia) and 200µL AL buffer (Qiagen, Hilden, Germany), then incubated at 56 ◦C
overnight. Clean-up was as per the manufacturer’s instructions and samples were eluted
in 50 µL of AE buffer (Qiagen, Hilden, Germany).

4.4. Gene Expression—Cell Lines

The gene expression array method and analysis have been previously described
(Gene Expression Omnibus, GEO dataset ID GSE89438) [32,56]. Briefly, genomic DNA
was purified from 55 melanoma cell lines originating from 52 patients (Qiagen AllPrep
kit, Hilden, Germany) and assayed using Illumina standard protocols. Samples were
subjected to whole-genome expression arrays (Illumina HT12, San Diego, CA, USA), and
hierarchical clustering by Pearson correlation of ROPN1 (probe ID: 5420739), ROPN1B
(probe IDs: 730521 and 460291; 96% sequence homology with ROPN1), CTAG1A (probe
IDs: 6770332, 1430215 and 1070577; identical gene copy to CTAG1B), TYR (probe ID:
5260253) and MLANA (probe ID: 7330367) was performed using the Morpheus software
(https://software.broadinstitute.org/morpheus/index.html, Broad Institute, Cambridge,
MA, USA). Absolute values were used to determine level of expression across cell lines,
with any level above 0.3 considered “positive” for expression.

4.5. Gene Expression—The Cancer Genome Atlas (TCGA)

The gene expression data of ROPN1, ROPN1B, CTAG1B (identical gene copy to
CTAG1A for which no gene expression data is available), TYR and MLANA in melanoma tu-
mour samples was accessible via TCGA research network (http://cancergenome.nih.gov/)
and analysed using the cBioPortal [57,58]. The TCGA dataset used was the Skin Cutaneous
Melanoma, TCGA, Firehose Legacy, consisting of 472 samples (469 patients). Absolute
mRNA transcript values were used to determine level of expression across TCGA patient
samples, with any transcript level above zero considered “positive” for expression. mRNA

https://software.broadinstitute.org/morpheus/index.html
http://cancergenome.nih.gov/
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expression of the respective genes is shown as z-scores (RNA Seq V2 RSEM) and repre-
sented in a log2 scale. Co-expression of mRNA is analysed using the Pearson correlation.

4.6. Multispectral Immunohistochemistry

Two (ME1002b, US Biomax, Derwood, MD, USA and 07 TMA Mel 1.8, in-house)
melanoma TMAs containing two or three cores for 61 melanoma patient tumours (59 pa-
tients) were baked at 65 ◦C for 2 h, dewaxed in xylene three times for 10 min, rehydrated
in ethanol twice for 10 min and manually stained. The staining included initial block-
ing of endogenous peroxidases using 3% hydrogen peroxide for 30 min, followed by
sequential 15 min rounds of heat-induced epitope retrieval (microwave at 20% power);
10 min blocking of non-specific binding sites; 30 min primary (anti-NY-ESO-1 (single pro-
tein from CTAG1A or CTAG1B genes); ROPN1B, MLANA or SOX10); 10 min secondary
(anti-mouse and anti-rabbit Opal™ horseradish peroxidase) antibody incubation; and
10 min fluorophore-tyramide signal amplification using OpalTM 520, 570, 620 and 690 fluo-
rophores labelling target proteins, respectively (Akoya Biosciences®, Marlborough, MA,
USA) (Table S1). Slides were counterstained with spectral DAPI, and tissue cores were
scanned using the Vectra 3 Automated Quantitative Pathology Imaging System (Akoya
Biosciences®, Marlborough, MA, USA) where target proteins were detected and imaged
using the FITC, Cy3, Texas red and Cy5 filter cubes. Images were spectrally unmixed and
analysed using inForm® Cell Analysis software version 3.0.5 or HALO™ Image Analysis
Software version 3.2 (Akoya Biosciences®, Marlborough, MA, USA) with the assistance of
a pathologist. Whole tumour cores with more than 2% of the tissue cells staining for the
target proteins in at least one out of two or three cores per patient tumour were considered
positive. Staining pattern of localization was defined as nuclear (if co-localised with DAPI)
or cytoplasmic. Cytoplasmic staining was distinguished from membranous staining by
performing immunohistochemistry using anti-MHC class I antibody (membranous expres-
sion on melanoma cells that have not experienced MHC class I loss, as well as stromal cells)
with either anti-ROPN1B, anti-NY-ESO-1 or anti-MLANA antibodies, along with DAPI
counterstain in melanoma tumours.

4.7. Antibody Profiling

Serum or plasma from melanoma patients was used to measure antibody titres to-
wards ROPN1A/B, NY-ESO-1, MLANA and TYR using a custom tumour antigen protein
microarray platform [47]. Blood samples originated from melanoma patients without
available matched tumour tissue. Following the printing of previously expressed biotiny-
lated antigens to a streptavidin-coated microarray slide using a QArray2 robotic arrayer
(Genetix, Berkshire, UK), slides were immersed in blocking buffer (50 µM biotin in PBST)
and incubated on ice in a plastic chamber protected from light for 1 h. Slides were then
washed three times for 5 min in PBST and dried. Individual arrays were incubated with a
unique serum or plasma sample (100 µL at 1:800 or 1:400 dilution, respectively) for 1 h at
RT, washed in PBST and dH2O, and incubated with 100 µL of 20 µg/mL Alexa Fluor 647
Goat anti-Human IgG (H + L) (Invitrogen, Carlsbad, CA, USA, 1:100 dilution in PBST) for
30 min at RT. The individual arrays were then washed, dried and scanned using a Tecan LS
Reloaded fluorescence microarray scanner (Tecan Group Ltd., Männedorf, Switzerland)
in automatic gain control (AGC) mode. All liquid handling steps were performed using
QuadChambers on a Tecan HS4800 Pro automated hybridization station (Tecan Group Ltd.,
Männedorf, Switzerland). The resulting arrays were viewed using the ArrayPro Analyzer
software Version 6.3 (Media Cybernetics, Rockville, MD, USA), and raw data was extracted.
Finally, these data were processed using a custom bioinformatic tool for protein microarray
data processing and normalisation, and the resulting data were analysed accordingly [59].

5. Conclusions

In this study, we have identified ROPN1 and ROPN1B as compelling novel therapeutic
antigen targets for further clinical evaluation. Features include frequent humoral immuno-
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genicity and abundance, with virtually universal tumour-specific expression across all
melanomas tested.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers13081805/s1, Figure S1: Gene expression of CTAG1B and differentiation antigens TYR
and MLANA in melanoma tumours, Figure S2: Gene expression of ROPN1, ROPN1B and CTAG1B by
AJCC disease stage codes in melanoma tumours, Figure S3: Gene expression of ROPN1, ROPN1B and
CTAG1B by gender in melanoma tumours, Figure S4: Cytoplasmic expression of ROPN1B, NY-ESO-1
and MLANA in melanoma tumours, Figure S5: Variability seen between concentrated ROPN1B
and diffuse NY-ESO-1 staining patterns in melanoma tumours, Figure S6: Venn diagram displaying
predominance of ROPN1A/B and NY-ESO-1-specific antibodies in melanoma patients by gender,
Table S1: Specifications of antibodies and conditions used for multispectral immunohistochemistry,
Table S2: ROPN1A, ROPN1B, NY-ESO-1, MLANA and TYR-specific antibodies in melanoma patients.
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