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ABSTRACT: Among the biomedical efforts in response to the
current coronavirus (COVID-19) pandemic, pharmacological
strategies to reduce viral load in patients with severe forms of
the disease are being studied intensively. One of the main drug
target proteins proposed so far is the SARS-CoV-2 viral protease
3CLpro (also called Mpro), an essential component for viral
replication. Ongoing ligand- and receptor-based computational
screening efforts would be facilitated by an improved under-
standing of the electrostatic, hydrophobic, and steric features that
characterize small-molecule inhibitors binding stably to 3CLpro
and by an extended collection of known binders. Here, we present
combined virtual screening, molecular dynamics (MD) simulation,
machine learning, and in vitro experimental validation analyses,
which have led to the identification of small-molecule inhibitors of 3CLpro with micromolar activity and to a pharmacophore model
that describes functional chemical groups associated with the molecular recognition of ligands by the 3CLpro binding pocket.
Experimentally validated inhibitors using a ligand activity assay include natural compounds with the available prior knowledge on
safety and bioavailability properties, such as the natural compound rottlerin (IC50 = 37 μM) and synthetic compounds previously not
characterized (e.g., compound CID 46897844, IC50 = 31 μM). In combination with the developed pharmacophore model, these and
other confirmed 3CLpro inhibitors may provide a basis for further similarity-based screening in independent compound databases
and structural design optimization efforts to identify 3CLpro ligands with improved potency and selectivity. Overall, this study
suggests that the integration of virtual screening, MD simulations, and machine learning can facilitate 3CLpro-targeted small-
molecule screening investigations. Different receptor-, ligand-, and machine learning-based screening strategies provided
complementary information, helping to increase the number and diversity of the identified active compounds. Finally, the resulting
pharmacophore model and experimentally validated small-molecule inhibitors for 3CLpro provide resources to support follow-up
computational screening efforts for this drug target.

■ INTRODUCTION

The coronavirus disease 2019 (COVID-19), caused by the
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2), represents a major challenge for health care systems around
the world. Patients experience highly heterogeneous symp-
toms, ranging from asymptomatic forms and mild symptoms of
a respiratory infection to severe illness, which can lead to
hospitalization and death.
While the first vaccines against COVID-19 have received

Emergency Use Authorization (EUA) by the Food and Drug
Administration (FDA) and mass vaccination campaigns are
currently ongoing, the available drug-based treatments for the
disease are still limited. In the RECOVERY trial, a randomized
trial designed to provide a fast and robust assessment of
potential treatments for COVID-19, the corticosteroid dexa-
methasone was associated with a reduced mortality for patients
with severe forms of the disease, when using a moderate dose

(6 mg daily for 10 days).1 The FDA has included
dexamethasone in their list of drugs used for hospitalized
patients with COVID-19, and the European Medicines Agency
(EMA) has endorsed the use of dexamethasone in patients
from 12 years of age and weighing at least 40 kg, who require
supplemental oxygen therapy. Moreover, the drug remdesivir,
which inhibits the viral RNA-dependent RNA polymerase
(RdRp), was approved by the FDA for the treatment of
COVID-19 requiring hospitalization. Remdesivir provided a
statistically significant shorter median time to recovery in the
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clinical trial ACTT-12 and significant symptom improvements
versus the standard of care in the GS-US-540-5774 trial,3 but
no statistically significant improvements were observed for
overall 29-day mortality in the ACTT-1 trial. In the
independent SOLIDARITY trial, no significant benefits were
found in terms of reduced mortality and reduced initiation of
ventilation or hospitalization duration.4 Other potential
treatment options against COVID-19 studied in clinical trials,
such as tocilizumab,5 colchicine,6 synthetic neutralizing
antibodies,7 or convalescent plasma,8 among others, were at
the time of writing still under investigation. Overall, while the
first significant successes in COVID-19 treatment have been
achieved using pharmacological methods, there is a broad
consensus that additional primary or adjuvant treatment
approaches are required to further reduce mortality and
hospitalization rates.
For the development of new drug therapies against COVID-

19, both human and viral protein drug targets have been
proposed. The suggested human drug targets include, in
particular, proteins involved in mediating the entry of SARS-
CoV-2 into the cell, such as the proteases TMPRSS2 and
FURIN, which have been implicated in the proteolytic
processing of the viral spike protein before cell entry.9,10 The
viral targets mainly include proteins involving viral replication
(3CLpro/Nsp5,11 PLpro/Nsp3,12 RdRp/Nsp12,13 and Hel/
Nsp1314) and proteins associated with viral cell entry (S1,
S215) and release (ORF3a16,17).
One of the viral targets of particular interest is the 3C-like

protease (3CLPro, Mpro), which is needed by SARS-CoV-2
for the cleavage of viral polyproteins into 11 nonstructural
proteins (NSPs) that are essential for viral replication.11 Apart
from its critical role in replication, 3CLPro may also represent
a well-suited target for drug development because multiple
crystal structures are available with high resolution (<1.3 Å)
and favorable quality characteristics, and first small-molecule
inhibitors for both the SARS-CoV-2 and SARS-CoV forms of
the protein have already been identified.18−21 While these
inhibitors still have limitations in terms of either their binding
affinity for the target protein, their bioavailability, and adverse
drug effects or high manufacturing costs, the existing structural
data for 3CLPro provide ample opportunities to apply both
receptor- and ligand-based computational screening ap-
proaches in order to identify more potent and selective
inhibitors.
To contribute to the ongoing research efforts on identifying

improved 3CLPro inhibitors, here we present the results of a
combined computational and experimental screening and
pharmacophore generation approach. By integrating multiple
computational approaches for molecular docking, ligand-based
screening, machine learning, and molecular dynamics (MD)
simulations, we have ranked small-molecule compounds from
the public libraries provided by the repositories ZINC,22

SWEETLEAD,23 and the company MolPort (www.molport.
com) as candidate inhibitors for 3CLPro. Top-ranked
compounds and a few reference molecules previously proposed
as 3CLpro inhibitors in the literature were experimentally
assessed using a ligand activity assay to identify a subset of
inhibitors and their IC50 values. We also compared the utility
of different strategies for inhibitor discovery on the MolPort
library. This extended analysis focused only on the MolPort
compounds because this library was our main resource for
commercially available compounds and therefore of particular
relevance for the experimental studies, and due to its smaller

size (∼7.7 million compounds), an extension to more
computationally demanding screening approaches was still
feasible in terms of runtime requirements. Finally, the validated
inhibitors, which include both natural compounds with existing
information on ADMETox characteristics and previously
uncharacterized synthetic compounds, were used to generate
a pharmacophore model (i.e., a computational model that
describes the steric and chemical features of compounds
associated with the binding to the target protein).
The information derived from this model and the confirmed

inhibitors provide a resource to facilitate follow-up efforts on
the structural design of more potent and selective 3CLpro
inhibitors or the similarity-based inhibitor screening in
additional compound databases.
The reader should note that the workflows used for

computational screening in the present study are limited by
their design for typical high-performance computing systems in
an academic setting. Recent supercomputer-based virtual
screening approaches, which have also been applied to
3CLpro inhibitor screening, can explore a significantly wider
search space of compounds and conformations and therefore
also have the potential to achieve higher hit rates. Specifically,
supercomputing-based screening methods have recently been
shown to enable an improved modeling of 3CLpro receptor
flexibility using ensemble docking,24 extensive MD simulations
to generate high-resolution conformational ensembles,25 and
the application of more advanced polarizable force fields.26

Similarly, for the experimental assessment of 3CLpro
inhibitory activity, recently developed assays published during
the writing time of this article provide a higher scalability and
throughput than the Förster resonance energy transfer (FRET)
assay used in the present work and have already identified new
3CLpro inhibitors as drug candidates for further develop-
ment.20

Because supercomputing facilities and more recent inhib-
ition assays were not available to us, the goal of our study was
to contribute to research on inhibiting SARS-CoV-2 3CLpro
by providing complementary results and data with the methods
and hit rates achievable in an academic setting, in particular,
through the computational discovery and experimental
confirmation of new micromolar 3CLpro inhibitors and
through the creation of pharmacophore models specific to
the conformational and physicochemical properties of these
inhibitors. The identified inhibitors and the information from
the pharmacophore model provide both an input to support
further screening studies, for example, using independent
private compound libraries, and a basis for the rational design
of compounds with improved activity and ADMETox
properties. The potential for further structural optimization
of initial screening hits has recently been illustrated in a study
using computational lead optimization of the weak hit
compound perampanel for 3CLpro inhibition, which led to
the design and confirmation of multiple noncovalent, non-
peptidic 3CLpro inhibitors with significantly improved affinity
in a kinetic assay, that were successfully confirmed to inhibit
infectious SARS-CoV-2 replication in vitro.21,27

In the following sections, we first present the computational
and experimental methods used for screening and compound
validation, the results of the screening procedure in terms of
the characteristics of the validated inhibitors, and finally a
discussion of the pharmacophore model generated from the
analysis of these confirmed inhibitors.
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■ METHODS

In order to identify and characterize small-molecule inhibitors
for SARS-CoV-2 3CLpro and build a pharmacophore model, a
multistep computational screening procedure was combined
with subsequent ligand activity assay experiments. The main
component of the computational screening consisted of a
filtering procedure involving multiple receptor- and ligand-
screening approaches in combination with a final MD
simulation to confirm the stability of the binding for the top-
ranked compounds and docking poses. An overview of this
part of the screening approach is shown in Figure 1, and the
detailed methodology, including the prior preprocessing of
protein and compound structures, is discussed in the following
sections given below. Additionally, as part of the in silico
selection of candidate compounds for experimental validation,
the structural bioinformatics-based screening was comple-
mented by a machine learning approach for compound
selection using a training set of molecular descriptor data
derived from known binders and nonbinders for 3CLPro. This
complementary screening approach is presented in detail in the
section “Machine Learning Based Compound Screening” given
below.
The compounds prioritized using these in silico screening

methods were then evaluated experimentally to determine the
subset of stable binders and their 3CLpro inhibitory activity
using an in vitro Förster-type resonance energy transfer
(FRET) assay. These experimental analyses are described in

more detail in the section “In Vitro Assay for Assessing the
3CLpro Inhibitory Activity of the Compounds”.

■ COMPUTATIONAL METHODS

Protein Structure Preprocessing. Three publicly avail-
able protein crystal structures for 3CLPro from the Protein
Data Bank28 were chosen for the molecular docking analyses
and binding affinity estimation (PDB: 5R8T, 6YB7, and
6LU7). The structures 5R8T and 6YB7 were selected mainly
due to their resolution (5R8T: 1.27 Å and 6YB7: 1.25 Å) and
quality (R-free value: 0.208 for 5R8T and 0.192 for 6YB7), see
additional quality assessments described below), whereas the
structure 6LU7 was used additionally as a representation of the
holo form of the protein in complex with an inhibitor
(resolution: 2.16 Å and R-free value: 0.235), allowing us to
compare docking results across different types of structures.
Because many previously reported 3CLpro inhibitors are
allosteric inhibitors29−31 and some of them have been
proposed to disrupt the 3CLpro dimer or slow the rate of
processing significantly,29 we did not focus specifically on
targeting the 3CLpro dimerization interface, but aimed to
cover all binding pockets associated with already identified
small-molecule inhibitors. As an alternative approach, for the
SARS-CoV version of 3CLpro, previous studies have also
investigated peptide inhibitors designed specifically to target
the dimerization.32,33

Figure 1. Overview of overall workflow for the screening procedure, starting with a compound library of >1 billion compounds from the databases
ZINC, SWEETLEAD, and the MolPort. Due to the large size of the ZINC database, this compound repository was prefiltered to focus on
compounds that are commercially available and have druglike chemical and ADMETox properties, and receptor-based screening was only applied
after prior ligand-based screening (see section “Ligand Preprocessing and Filtering”). More computationally expensive approaches relying only on
receptor-based screening were only applied to the smaller SWEETLEAD and MolPort libraries, and machine learning-based compound screening
was only applied to the MolPort library (see sections “Receptor-Based Screening Using Molecular Docking” and “Machine Learning-Based
Compound Screening”). A final selection of 95 top-ranked compounds derived from the in silico screening approaches was tested experimentally
using a FRET assay to assess the 3CLpro inhibitory activity. Confirmed active compounds were characterized in terms of their known or
computationally estimated ADMETox and bioavailability properties. Finally, pharmacophore models were generated for the active compounds.
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The receptor structures were preprocessed using the
Schrödinger Maestro software (version 11.8.0.1.2, www.
schrodinger.com) by adding hydrogens, generating protona-
tion states, and optimizing hydrogen positions using the
“Protein Preparation Wizard” with default settings. The quality
of the original and processed structures was assessed using the
software tools Verify3D,34 WHATCHECK,35 and PRO-
CHECK36 as implemented in the software SAVES 5.0
(http://servicesn.mbi.ucla.edu/SAVES), confirming the suit-
ability of the structures for docking simulations in terms of
common quality control checks.37 For structure files
containing multiple chains, the chain with the highest Verify3D
score was chosen for further analysis.
Ligand Preprocessing and Filtering. Small-molecule

compounds were obtained from the databases ZINC (version:
ZINC15, May 2020,22), SWEETLEAD (version: 1.0,23), and
the public library provided by the company MolPort (May
2020, www.molport.com). All ligands from the SWEETLEAD
database were first preprocessed using the AutoDock ligand
preparation script and docked into the 3CLpro binding pocket
using AutoDock-GPU.38 For the ZINC database, in order to
focus on compounds that are commercially available and have
druglike chemical and ADMETox properties, filtering was first
applied by downloading only compounds with the properties
“druglike”, “purchasable” (minimum purchasability = “Wait
OK”), and reactivity = “clean”. This first-step filtering reduced
the initial 1,276,766,435 substances to 898,838,573 retained
substances. These filtered compounds were downloaded in
SMILES format, using the “ZINC-downloader-2D-smi.wget”
script derived from the “Tranches” web-page on ZINC
(https://zinc.docking.org/tranches/home).
The preselection of compounds from ZINC was then further

filtered using a ligand-based similarity screening. For this
purpose, a similarity assessment approach involving a graph-
based molecular representation known as “feature trees” was
applied, as implemented in the BioSolveIT Ftrees software
(version 6.2). With this method, the topological and
physicochemical similarity of the library compounds to
known small-molecule inhibitors for 3CLpro reported in the
literature was scored (considering inhibitors for both the
SARS-CoV and SARS-CoV-2 versions of the 3CLpro protein).
Specifically, the literature-derived query compounds include
the reported SARS-CoV-2 3CLpro inhibitors GC-376,18

ebselen,39,40 and baicalein41 and the reported SARS-CoV
3CLpro inhibitors amentoflavone,42 hesperetine,43 pectolinar-
in,44 and dieckol.45 Moreover, to further extend the search
space of potential candidate inhibitor compounds, four
additional query compounds for the feature tree search were
included by adding the top-ranked compounds from the initial
AutoDock-GPU screening (see above). All compounds from
the ZINC library exceeding a minimum similarity threshold of
0.8 in the FTrees screen to these query compounds were
retained for the subsequent molecular docking analyses.
For the screening of the MolPort compound library, due to

its association with our main provider for the commercial
ordering of compounds and its smaller size (∼7.7 million
compounds) compared to the ZINC library, we tested multiple
alternative more extensive screening approaches without prior
library filtering: (1) a screening approach relying purely on fast
molecular docking approaches (see details in the next section),
(2) a screening approach relying purely on machine learning
(see the section on “Machine Learning-Based Compound
Screening” below), and (3) a combination of molecular

docking and ligand similarity-based screening using the
software FTrees (following the same approach as for the
ZINC database, but without prior database filtering, and
focusing on the most potent available 3CLPro inhibitor, GC-
376, as a query compound; see the following section for the
description of the docking analyses).
Conformers for the collected compounds were generated

using the OpenEye OMEGA software (version: 3.1.2.2, http://
www.openeye.com) using the classic mode with default
parameters.

Receptor-Based Screening Using Molecular Docking.
In order to obtain a robust ranking of compounds using
molecular docking, the compound libraries prepared in the
previous step (i.e., the filtered version of the ZINC database
and the unfiltered SWEETLEAD and MolPort databases) were
docked into the 3CLpro binding pocket using three different
approaches, AutoDock-GPU (an OpenCL and Cuda accel-
erated version of AutoDock4.2.6,38), OpenEye HYBRID
(version 3.4.0.2,46−48), and LeadIT/FlexX (version
2019.Nov.2-Ubuntu-18.04-x64,49). To use the available
computing time efficiently and only consider compounds
with high relative ranking scores for all docking approaches for
further analysis, the two most time-efficient docking methods
AutoDock-GPU (with the parameter “nrun” for the thorough-
ness of the search space exploration set to 100 and default
parameters otherwise) and OpenEye HYBRID (with default
docking parameters) were first run on the preselected
compound libraries, and only compounds with higher than
average scores from the AutoDock-GPU and OpenEye
HYBRID screens were docked using FlexX additionally (with
default docking parameters), including a subsequent estima-
tion of the binding affinity for the top 30 docking poses using
the LeadIT/HYDE approach.50 The docking methods are
semiflexible, taking ligand flexibility into account; however, as a
limitation in contrast to recent supercomputer-based screening
approaches, which address receptor flexibility using high-
resolution ensembles of many 3CLpro receptor conforma-
tions,25 ensemble docking and enhanced sampling MD,24 the
assessment of receptor flexibility in the present study was
restricted to the MD simulations applied to the top-ranked
compounds derived from the docking analyses (see the section
“MD Simulations”).
For the MolPort library, we compared both a screening

approach relying purely on molecular docking of the unfiltered
library and a joint docking and ligand similarity-based scoring
approach, which filtered the compounds by including only
those reaching a minimum similarity threshold of 0.8 in the
ligand-based screening using FTrees (see the previous section).
Finally, the list of compounds docked with each method was
ranked and sorted according to the sum of ranks across the
scores for all methods. Only top-ranked compounds achieving
consistently high docking scores for the three preprocessed
3CLpro protein structures (PDB: 5R8T, 6YB7, and 6LU7)
were used for experimental validation. Visualizations of the
top-scoring docked compounds were generated in the software
Chimera (version 1.1251), and binding interactions were
analyzed using PoseView (version 1.1.252). A list of all used
software tools and their versions, as well as scripts including
the commands and parameters for the virtual screening
analyses is provided on GitHub (https://github.com/eglaab/
3clpro).

MD Simulations. To assess the ligand binding stability for
the top-ranked compounds derived from the docking
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simulations in the 3CLpro binding pocket, MD simulations
were carried out using a GPU-accelerated version of the
software NAMD (Git-2020-07-30 for Linux-x86_64-multicore-
CUDA,53). Topology and force-field parameters for the MD
simulations were assigned from the CHARMM36 protein lipid
parameter set54,55 for the receptor and from the CHARMM
General Force-Field (CGenFF) parameter set56 for the ligands.
The step size was 2 fs, and the simulation was performed for a
duration of 20 ns. Video animations of the simulations were
created by applying the “MD Movie” function in the software
Chimera (version 1.12, build 4162351) to the trajectory data
for the protein−ligand complexes derived from NAMD. The
detailed configuration settings used for NAMD and exemplary
video animations of MD simulations for confirmed inhibitors
are provided on GitHub (https://github.com/eglaab/3clpro).
Machine Learning-Based Compound Screening. As an

alternative to conventional receptor- and ligand-based screen-
ing strategies, we also tested a compound ranking approach
using machine learning. For this purpose, quantitative
properties for the investigated compounds were determined
by calculating molecular descriptors as implemented in the R
software package “rcdk” (version 3.5.0)57 using SMILES
compound representations58 as an input. First, molecular
descriptors were computed for a previously published training
set collection of small molecules containing both previously
reported SARS-CoV or SARS-CoV-2 3CLPro inhibitors (486
compounds, used as a positive set) and compounds reported
not to bind to 3CLPro (700 compounds, used as a negative
set).59 The covered classes of descriptors in the package “rcdk”
include topological (e.g., TPSA, Wiener index, and Kier-Hall
Smarts), geometrical (e.g., gravitational index, Petitjean shape
index, and moment of inertia), electronic (e.g., CPSA, H-bond
donor count, and H-bond acceptor count), constitutional (e.g.,
rotatable bond count, acidic group count, and weight), and
hybrid descriptors (WHIM and BCUT descriptors; see the
documentation of the rcdk software package to retrieve the
complete list of more than 200 descriptors).
A classification model using the Random Forest algorithm as

implemented in the R software package “randomForest”
(version 4.6-1460) was then built on this training data of
molecular descriptors for the positive and negative compound
sets using 250 decision trees and default settings otherwise.
This model was applied to all compounds from the MolPort
library by computing the descriptors for each compound as an
input to the model and generating probabilistic predictions.
Finally, the predicted probability for each compound to belong
to the positive set of 3CLPro inhibitors was used to rank the
compounds, and the top 20 compounds with the highest
probabilities were selected for in vitro testing. A script for the
machine learning analyses has been made available on GitHub
(https://github.com/eglaab/3clpro).

■ EXPERIMENTAL METHODS
In Vitro Assay for Assessing the 3CLpro Inhibitory

Activity of the Compounds. Assay Principle. FRET assays
can be applied in various configurations in cells61 and in
reporter systems62 to detect molecular proximity and, with the
proper biosensor, also activity. Here, we employed an in vitro
FRET assay for the evaluation of the candidate small-molecule
inhibitors for 3CLpro obtained from the in silico screening
approaches. We used a substrate peptide of 3CLpro labeled
with a fluorescent dye (Dabcyl) and an acceptor−quencher
(Edans) at the N- and C-terminus, respectively. The substrate

peptide does not fluoresce in the uncleaved state, where the
quencher blocks the fluorescence of the dye. When 3CLpro
cleaves the substrate, the fluorescence of the dye is
dequenched and an emission signal is observed. The inhibitor
blocking the activity of 3CLpro prevents the FRET-peptide
cleavage. Thus, in the presence of an inhibitor, a lower
fluorescence signal is observed.63 A similar FRET-based assay
has recently been applied to test candidate 3CLpro inhibitor
compounds derived from the lead optimization of a prior weak
screening hit, and some of these compounds were also
successfully confirmed to inhibit infectious SARS-CoV-2
replication in Vero E6 cells.21,27 Moreover, after the
completion of our experimental studies, an optimized assay
for high-throughput screening of 3CLpro using a new
fluorogenic substrate became available.20 This assay has been
used to identify two irreversible 3CLpro inhibitors, an
azanitrile (Ki = 24.0 nM) and a pyridyl ester (Ki = 10.0
nM),20 as candidates for further development and provides a
more scalable methodology than the one applied in the present
study. Thus, for follow-up in vitro screening studies of 3CLpro
inhibitors, more recently developed assays may be preferred
over the assay with a lower throughput employed here.

Method. The assays were performed following the guide-
lines of the 3CL Protease assay Kit (#79955, BPS Biosciences,
San Diego CA, USA). The inhibitory effect on 3CLpro was
a s s e s sed us ing the subs t r a t e pep t ide Dabcy l -
KTSAVLQSGFRKM-E(Edans)-NH2, obtained from Biosyn-
tan. The assays were run on a 384-well plate (black, low
volume, round bottom; Corning #4514), and the reaction
volume per well was 20 μl. Briefly, all candidate inhibitors were
dissolved in DMSO and threefold or fivefold diluted in the
assay buffer. The known 3CLpro inhibitor and reference
compound GC-376 was dissolved in water and diluted from
100 μM. To the dilution series of inhibitors, 3CLpro (100 ng/
reaction) was added and incubated for 30 min at room
temperature (RT). Then, 50 μM of the substrate peptide was
added. The reaction mix was incubated at RT overnight with
the plates sealed. On the next day, fluorescence intensity was
measured at an excitation wavelength of 360 ± 10 nm and
emission wavelength of 460 ± 20 nm using a Clariostar (BMG
Labtech, Germany) plate reader. 3CLpro used in the assay was
N-terminally MBP-tagged (MW77.5 kDa) and obtained
from BPS Biosciences (#100707). The data were fit into a log
c(inhibitor) versus response three-parameter dose−response
model using the software Prism (GraphPad). IC50 value
estimates were determined individually for each replicate, and
the mean and standard error of the mean (SEM) were
calculated. Importantly, many of the assessed compounds were
polyaromatic natural products, which exhibited interfering
fluorescence or absorbance in our FRET-based assay. There-
fore, out of 96 compounds tested in the 3CLpro activity assay,
12 compounds were filtered out from further analysis
(highlighted in blue color in the lists of tested compounds in
the Supporting Information). Assays involving principles of
time-resolved FRET may be suitable for future follow-up
screening of compounds with background fluorescence.64,65

■ RESULTS AND DISCUSSION
In Silico Screening Results and Final Compound

Selection for in Vitro Testing. For the experimental testing
of candidate 3CLPro small-molecule inhibitors, 86 commer-
cially available compounds selected from the top-scoring
candidates derived from the different receptor-, ligand-, and
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machine learning-based screening approaches (see Methods),
which had passed all prior in silico filtering stages, were ordered
from the company MolPort. A complete list of tested screening
compounds, including common compound identifiers and
characteristics (SMILES, molecular weight, and log P) is
provided in the Supporting Information. The 86 top-ranked
compounds are subdivided into 18 compounds derived from
the virtual screening of the ZINC and SWEETLEAD libraries
(Table S2 in the Supporting Information; see Methods for the
prefiltering and screening approaches), 30 compounds derived
from the screening of the MolPort library using combined
ligand similarity screening and molecular docking (Table S3),
18 compounds from the screening of the MolPort library using
combinations of docking algorithms only (Table S4), and 20
compounds from the purely machine learning-derived
compound ranking for the MolPort library (Table S5). In
addition to these screening-derived compounds, the known
inhibitor GC-37618 was included as a reference compound,
and the following commercially available compounds,

previously reported as SARS-CoV-2 or SARS-CoV 3CLPro
inhibitors in the literature, were also acquired for experimental
inhibitory activity assessments: Ebselen,39,40 baicalein,41

amentoflavone,42 hesperetine,43 pectolinarin,44 luteolin,42

quercetin,42 pristimerin,66 and 1-hydroxypyridine-2-thione
zinc.67 For the compounds confirmed as binders (see Table
1), PAINS and Brenk’s substructure alerts68,69 were checked to
determine frequent hitters (promiscuous compounds, see
Table 2). GC-376 is a prodrug that converts into the peptide
aldehyde GC-373;70 hence, the active compound is GC-373,
and the inhibitor is therefore referred to as “GC-376/GC-373”
in the following. Example video animations of the MD
simulations, which were applied to the top-ranked docking-
derived compounds to confirm the stability of the binding, are
provided online together with the configuration settings used
for the MD simulation software NAMD (https://github.com/
eglaab/3clpro).

In Vitro Testing Results for Candidate 3CLpro
Inhibitors. In total, 95 selected compounds were assessed to

Table 1. Hits from 3CLpro Screening Assay with IC50 Values

aFor compounds 1 and 3, only a limited amount of the reagent could be acquired, and therefore no replicate runs could be performed for these
specific compounds.
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determine their in vitro 3CLpro inhibitory activity, including
the 86 candidate compounds identified from the in silico
analyses and 9 candidate compounds derived from the
literature, as described above. GC-376 was used as a positive
control for 3CLpro inhibitory activity. The IC50 value of GC-
376 was in the low micromolar range (0.18 to 0.98 μM),
matching approx. with previously reported IC50 values for GC-
376 (0.19 μM) and its structurally similar metabolized form,
GC-373 (0.4 μM)70 (see Supporting Information for the
dose−response curves). The Z′ value,71 used as a measure of
assay robustness, ranged from 0.5 to 0.8, indicating the
suitability of the assay for compound screening in a high-
throughput format. Importantly, the main purpose of the
activity assay is to obtain a robust relative ranking of ligands in
terms of their inhibitory activity rather than high-precision
absolute activity estimates.
Overall, 7 out of the 95 tested compounds were confirmed

as active, with a lowest IC50 of 31 μM for the screening
compound M-8524 (CID 46897844, see Table 1). Consider-
ing the different conducted screening analyses separately, each
type of strategy uniquely identified at least one of the
confirmed inhibitors: (1) the combination of molecular
docking and ligand similarity screening on the ZINC database
identified the inhibitor rottlerin among 18 compounds tested,
(2) the screening of the MolPort database using fast docking
approaches detected another inhibitor (compound M-1805)
out of 18 tested candidates, and (3) the screening of the
MolPort library using machine learning identified a further
inhibitor out of 20 assessed compounds. A complete list of
active compounds, including their names, vendor ID, IC50

values, and 2D structure representations, are shown in Table 1.

Detailed assay validation results and dose−response curves for
these inhibitors are provided in the Supporting Information.

ADMETox and Bioavailability Properties of the
3CLpro Screening Assay Hits. While the identified
inhibitors did not display a higher activity than the currently
available most potent inhibitor GC-376/GC-373, used as a
reference compound, multiple of the confirmed actives are
natural compounds with favorable bioavailability and ADME-
Tox (absorption, distribution, metabolism, excretion, and
toxicity) properties, that may provide a basis for follow-up
structure design optimization efforts or further ligand-based
similarity screening in independent compound databases.
To compare all actives in terms of ADME and

physicochemical characteristics, corresponding parameters of
the confirmed inhibitors were estimated computationally using
the software SwissADME (see Table 2 for a summary of key
features and Figures S4 to S11 in the Supporting Information
for a more comprehensive overview of parameters). This
analysis suggested that a subset of compounds, including M-
8524, baicalein, and luteolin, fulfil multiple typical properties of
druglike, orally bioavailable compounds in terms of the drug-
likeness scores proposed by Lipinksi,72 Ghose et al.,73 Veber et
al.,74 Egan et al.,75 and Muegge et al.76 and have Abbott
Bioavailability Scores above 0.5.77 Moreover, some of these
compounds also pass all or most PAINS and Brenk’s filters68,69

or display leadlike properties (250 g/mol ≤ molecular weight
≤400 g/mol, xlog P ≤3.5, num. rotatable bonds ≤7),78
potentially providing a basis for further structural and chemical
optimization. By contrast, the reference compound GC-376 is
not druglike or leadlike according to these scores and has a low
bioavailability score (0.17, see Table 2 and Supporting
Information).

Table 2. Estimated Drug- and Lead-Likeness and Bioavailabilty Scores (Bioavailability is Low = below 0.25, Medium =
between 0.25 and 0.75, and High = above 0.75) of the Confirmed 3CLpro Inhibitors as Estimated Using the SwissADME
Software (More Detailed Information on the Specific Score Violations and Alerts As Well As Other Physicochemical and
ADME Estimations Can be Found in the Supporting Information)a

aPassed filters are highlighted in green color and failed tests are marked in red color.
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Apart from the computationally estimated ADME proper-
ties, prior information on bioavailability and ADMETox
characteristics was available for some of the natural products
among the confirmed inhibitors. The natural compound with

the lowest IC50 value, rottlerin, is derived from the powder that
covers the capsules of the tree Mallotus phillippinensis (also
known as Indian Kamala, Rottlera tree, or monkey-faced
tree),79 which mainly occurs in Asia, Afghanistan, and

Figure 2. Two-Dimensional representations of the hydrogen bond interactions (dotted lines) and hydrophobic contacts (green lines) between
confirmed small-molecule inhibitors and residues in the 3CLPro binding pocket: (a) GC-373, (b) M-8524, (c) rottlerin, (d) M-1805, (e)
amentoflavone, (f) baicalein, (g) luteolin, and (h) pectolinarin. Plots were generated using the software PoseView. The inhibitor GC-376/GC-373
is shown in the pose derived from a crystal structure of 3CLPro in complex with this compound (PDB ID: 7D1M). All other subfigures represent
the best scoring docking poses for the corresponding compounds according to the HYDE binding affinity estimation score.
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Australia. The powder has traditionally been used as an
antiparasitic agent against the tapeworm in India for multiple
centuries, providing a first indication of favorable safety
properties. In mouse model studies, rottlerin was investigated
as a preventive or adjuvant supplement for pancreatic cancer,80

as a protective agent against cisplatin-induced nephrotoxicity,81

and as a potential medication in a psoriasis model, where it was
well tolerated with no significant changes in bodyweight.82

Tissue bioavailability and pharmacokinetic analyses in vitro and
in vivo suggest that rottlerin is efficiently absorbed in cells and
tissues.80

The natural product with the second lowest IC50 is
amentoflavone, which had previously been reported to inhibit
the 3CLpro protein from SARS-CoV (the virus from the 2002-
2004 SARS outbreak).42 However, a later study suggested that
the binding reaction results from a nonspecific aggregate
formation or complexation because no effective inhibition was
observed in the presence of 0.01% Triton X-100.44

Amentoflavone is a biflavonoid contained in several plant
species including Ginkgo biloba, Hypericum perforatum (St.
John’s wort), Xerophyta plicata, and Chamaecyparis obtusa. No
detailed prior toxicological studies of amentoflavone could be
identified, but several bioactivities have been reported in the
biomedical literature, including antiviral effects.83,84

Among the other natural compounds confirmed to bind to
SARS-CoV-2 3CLpro, baicalein displays some of the most
favorable drug-likeness scores (see Table 2). This flavonoid is
found in the dried roots of the plant Scutellaria baicalensis
Georgi85 and was previously reported to display an antiviral
activity against SARS-CoV in vitro86 and to inhibit the SARS-
CoV-2 3CL protease in vitro.41 The use of baicalein containing
roots was widespread in traditional Chinese herbal medicine
over centuries, and a wide range of pharmacological activities
have been identified. These include antiviral activities, which
were reported for further virus species apart from SARS corona
viruses, including dengue virus,87,88 H5N1 influenza A virus,89

and Japanese encephalitis virus.90

Luteolin, a structurally similar compound to baicalein, also
displayed similar estimated ADME properties in terms of
favorable drug-likeness and bioavailability scores (see Table 2),
and an inhibitory effect of luteolin on SARS-CoV 3CLpro was
observed in a previous study using a FRET assay (IC50 = 20.2
μM).42 Regarding the bioavailability of luteolin, oral

administration of pure luteolin in rats (14.3 mg/kg) has
been shown to result in a limited peak plasma concentration of
1.97 ± 0.15 μg/mL, which was increased to 8.34 ± 0.98 μg/
mL when delivering the compound in peanut hull extracts.91

Luteolin is contained in small quantities in both medicinal
plants and commonly consumed vegetables and spices (e.g.,
broccoli, thyme, pepper, and celery) and displays no mutagenic
effects in the Ames test in contrast to other flavonoids,92 such
as quercetin. Interestingly, quercetin, which only differs
structurally from luteolin by the position and number of
hydroxyl groups, was also reported to bind to SARS-CoV
3CLpro,42 but with a slightly higher IC50 value than luteolin
(IC50 = 23.8 μM). When testing quercetin as a candidate
inhibitor of SARS-CoV-2 3CLpro in the FRET analyses
reported here, it did, however, not show any activity. This
suggests that the hydroxyl group positions in flavonoids are an
important determinant of their activity for SARS-CoV-2
3CLpro.
Finally, the last natural product confirmed to bind to SARS-

CoV-2 3CLpro is pectolinarin. It was previously found to block
the enzymatic activity of SARS-CoV 3CL protease according
to a FRET protease assay using a similar approach as in the
study presented here.44 The compound is isolated from plants
of the genus Cirsium. Specifically, the plant Cirsium setidens,
which contains pectolinarin as a major active compound, has
been used in traditional Korean medicine against hypertension,
hemostasis, hematoma, and hematuria.93 Regarding prior
pharmacokinetics studies for pectolinarin, after oral admin-
istration of 6 mL/kg Cirsium japonicum DC extract in rats, the
maximum plasma concentration of the component pectolinarin
was 877 ± 97 ng/mL, reached after 5 min94 However,
pectolinarin displays low drug- and lead-likeness and
bioavailability scores in the computational estimations (see
Table 2).

Pharmacophore Model for 3CLpro Small-Molecule
Inhibitors. In order to generate a pharmacophore model that
describes characteristic features of 3CLpro small-molecule
inhibitors, we investigated the interactions of the identified
inhibitors with residues in the receptor binding pocket using
the best scoring docking pose for each compound according to
the binding affinity estimation by the software HYDE. For the
reference inhibitor GC-376/GC-373 used for comparison, the
relevant pose was derived from a crystal structure, which

Table 3. Overview of Hydrogen Bond Interactions (2nd Column) and Hydrophobic Contacts (3rd Column) between the
Inhibitors and Residues in the 3CLPro Binding Pocket (Inferred by Applying the PoseView Software with Default Settings)a

aThe residue three-letter codes and numbers correspond to the 3CLPro amino acids involved in the interaction type indicated in the column
header (residues are sorted by increasing position in the 3CLpro amino acid sequence). All residues shown in color are involved in binding
interactions for at least two different inhibitors, where identical colors represent identical residues. These shared interactions across multiple ligands
may represent critical features that favor the binding of small molecules in the 3CLPro binding pocket.
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Figure 3. (a) Molecular surface representation of the 3CLpro protein with an overlay of all confirmed actives in the binding pocket (top right) in
their best scoring docking conformations (only for GC-376/GC-373 and baicalein, crystal structures of the protein−ligand complex were available
and used instead of molecular docking-derived conformations). The 3CLpro secondary structure is displayed as a blue ribbon, surrounded by the
solvent-excluded molecular surface representation in transparent blue, and with the colored ligands shown in a stick representation. (b) Larger-scale
representation of the overlaid pair of ligands with the lowest IC50 values: GC-376 (light green) and M-8524 (pink) in the 3CLpro binding pocket
(top right part of (a); (c) overlaid pair of ligands rottlerin (purple) and M-1805 (dark green); (d) overlaid pair of ligands amentoflavone (orange)
and baicalein (light gray); and (e) overlaid pair of ligands luteolin (dark gray) and pectolinarin (red).

Figure 4. (a) Pharmacophore model for 3CLpro derived from the reference inhibitor GC-376/GC-373 using the software LigandScout
(conformation obtained from the PDB crystal structure 7D1M after preprocessing with the software Schrödinger Maestro, see Methods). The
yellow spheres represent hydrophobic interactions, the red spheres and arrows correspond to hydrogen bond acceptors, and the green spheres and
arrows to hydrogen bond donors. (b) Pharmacophore model for 3CLpro derived from the inhibitor rottlerin using the software LigandScout
(conformation obtained from the best scoring pose in molecular docking according to the HYDE scoring approach, see Methods). While the
comparison of rottlerin and GC-376/GC-373 suggests that they occupy a similar space in the 3CLpro binding pocket and share a hydrogen bond
interaction with the residue Glu166, most interactions are distinct. This may open up possibilities for the screening of new compounds that exploit
interactions from the pharmacophore models of both the GC-376/GC-373 and rottlerin ligand.
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contains this compound in complex with 3CLPro (PDB ID:
7D1M). Similarly, for compound baicalein, a crystal structure
of the complex with 3CLpro was already available (PDB ID:
6M2N) and used to extract the binding pose. Figure 2 shows
the 2D representations of the estimated hydrogen bond
interactions (dotted lines) and hydrophobic contacts (green
lines) for each inhibitor in the 3CLPro binding pocket as
determined using the software PoseView.52

An overview of the binding pocket residues involved in these
protein−ligand interactions is provided in Table 3, highlighting
all interactions shared by at least two compounds in color and
representing identical residues by identical colors. Most
hydrogen bond interactions and hydrophobic contacts with
binding pocket residues are shared by multiple ligands,
suggesting that they reflect a common binding mode and a
characteristic signature of interactions that favor stable ligand
binding. The residues most frequently participating in these
protein−ligand interactions are Glu166 (involved in hydrogen
bonds for eight inhibitors and in hydrophobic contacts for
three inhibitors), Thr190 (H-bonds: 5, Contacts: 1), Gln189
(H-bonds: 2, Contacts: 3), and Gln192 (H-bonds: 5).
Interestingly, the two residues His41 and Cys145, which
have previously been confirmed to be critical for catalysis,95 are
also involved in hydrogen bond interactions with some of the
inhibitors (His41 for amentoflavone and Cys145 for GC-376/
GC-373) and hydrophobic contacts (His41 for GC-376/GC-
373, amentoflavone, and baicalein; Cys145 for baicalein), and
these compounds may directly interfere with the catalytic
mechanism. Overall, both the shared interactions (see Table 3)
and the graphic overlay of the docked or crystal structure-
derived ligand conformations (see Figure 3) suggest that the
confirmed inhibitors use a similar binding mode to engage the
3CLpro binding pocket.
Next, we created dedicated pharmacophore models for each

of the inhibitors using the structure-based pharmacophore
design approach in the software LigandScout.96 Two example
pharmacophore models are shown in Figure 4 for the reference
compound GC-376/GC-373 (Figure 4a) and the newly
identified inhibitor rottlerin (Figure 4b), respectively. These
two compounds occupy a space in the binding pocket similar
to most identified inhibitors in their docked binding
conformation (see Figure 3), but engage at least partly in
different hydrogen bond and hydrophobic interactions with the
residues in the pocket. Thus, by merging the pharmacophore
models for these and all other confirmed inhibitors into a
single model, further virtual screening and structural design
optimization efforts may exploit the unified model to identify
new inhibitors with suitable steric properties that engage in
more energetically favorable combinations of interactions than
those covered by the already identified actives. Therefore, the
pharmacophore models for the individual ligands were
integrated by aligning the structures and their associated
pharmacophores by receptor-derived reference points and
interpolating the overlapping features using the default settings
in the LigandScout software. In contrast to the models for the
individual inhibitors, the resulting merged pharmacophore
model does not lend itself to direct interpretation due to its
larger coverage of potential binding interactions that can be
exploited by a ligand. However, its more comprehensive
coverage of potential interactions provides a computational
resource for further screening studies on independent
compound databases that is more informative than individual
structures of protein−ligand complexes. The merged pharma-

cophore model has therefore been made available in the
“Compressed Pharmaceutical Markup Language” (PMZ)
format on GitHub (https://github.com/eglaab/3clpro). The
reader should note that this ligand-based pharmacophore
model is specific to the inhibitors identified in the present
project and should therefore ideally be considered in
combination with other published pharmacophore models
exploiting additional information sources, for example, a
recently proposed receptor-based pharmacophore definition
for 3CLpro that combines information from molecular
simulations and crystallographic studies.25

■ CONCLUSIONS
The SARS-CoV-2 3CLpro protein is one of the main drug
targets of interest for COVID-19, due to its critical role in viral
replication, the availability of multiple high-quality protein
crystal structures, and the prior identification of first small-
molecule inhibitors as a basis to computationally screen for
inhibitors with improved inhibitory activity, bioavailability, and
ADMETox characteristics.
The combined computational and experimental analyses

presented here reveal new natural and synthetic compounds
inhibiting 3CLpro with micromolar activity, for example,
rottlerin and M-8524, and provide a pharmacophore model
that describes key structural and chemical properties of active
compounds. Both this pharmacophore and the confirmed hits
provide a resource to support follow-up efforts on the
structural design of more potent and selective 3CLpro
inhibitors and similarity-based inhibitor screening in additional
compound databases. The pharmacophore analyses suggest
that many of the 3CLpro inhibitors share hydrogen bond and
hydrophobic interactions with binding pocket residues,
including interactions with the two residues His41 and
Cys145, that have previously been confirmed to be critical
for catalysis.
Apart from the new inhibitors identified through the

screening of the ZINC, SWEETLEAD, and MolPort databases,
we also assessed compounds previously proposed as SARS-
CoV 3CLPro inhibitors in the literature in terms of their
SARS-CoV-2 3CLPro inhibitory activity, confirming amento-
flavone, baicalein, luteolin, and pectolinarin as actives (albeit
with lower affinities than GC-376/GC-373, rottlerin, and M-
8524, among others) and rejecting several other candidate
compounds as actives (in the lists of tested compounds in the
Supporting Information, the confirmed compounds are all
marked with a star symbol; the compounds, which could not
be assessed in the assay due to high background fluorescence,
are marked in blue, and all other compounds were invalidated).
Analyses of ADMETox and physicochemical parameters of the
confirmed hit compounds show that these compounds differ
significantly with regard to relevant known or computationally
estimated properties and that a subset of the hits displays
favorable bioavailability and safety characteristics in terms of
the prior knowledge available.
Regarding the computational methodological aspects of the

project, as part of the virtual screening, we have tested different
screening approaches, including the integration of molecular
docking and ligand similarity screening, the combined
application of fast docking approaches without prior
compound library filtering, and the use of machine learning
for screening. The observation that each of these approaches
uniquely identified at least one of the experimentally confirmed
inhibitors suggests that the different screening strategies
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provide independent and complementary information, which
can help to increase the overall number and diversity of the
identified active compounds. Identifying structurally and
chemically diverse active compounds with a similar binding
mode is important for the creation of more comprehensive
integrated pharmacophore models.
Limitations of the computational and experimental screening

approach employed include a restricted scalability of the in
vitro assay for assessing 3CLpro inhibitory activity, which has
recently been addressed by the development of an optimized
assay for high-throughput screening of 3CLpro,20 and
limitations in terms of the size of the compound library and
the conformational search space that could be explored using
high-performance computing facilities available in a typical
academic setting, which may be addressed using recent
dedicated supercomputer-based screening approaches.24−26

Extending 3CLpro virtual screening to supercomputer-based
methodologies has also recently been shown to enable an
improved modeling of receptor flexibility using ensemble
docking,24 extensive MD simulations to generate high-
resolution conformational ensembles25 and the application of
more advanced polarizable force fields.26

As a next step, extended/further screening and structural
optimization analyses for 3CLpro inhibitors will be required.
This will help to pave the way for additional activity
assessments in preclinical models and the subsequent develop-
ment of lead compounds.

■ DATA AND SOFTWARE AVAILABILITY
The Supporting Information contains the lists of all
experimentally assessed candidate 3CLPro inhibitors, the
dose−response curves and structures in SMILES format for
all experimentally confirmed active compounds, the results for
the validation analyses of the FRET-based 3CLPro in vitro
assay and the reference inhibitor GC-376, and the detailed
results for the physicochemical and ADME analyses. Scripts
including the commands and parameters for the molecular
docking analyses, the ligand similarity search, the machine
learning based screening, the configuration settings used for
the software NAMD, and exemplary video animations of MD
simulations for confirmed inhibitors are available on GitHub
(https://github.com/eglaab/3clpro).
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molecule inhibitors, validation of the FRET assay and
the reference compound, dose−response curves for the
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Abankwa, D. Cellular FRET-Biosensors To Detect Membrane
Targeting Inhibitors Of N-Myristoylated Proteins. PLoS One 2013,
8, No. e66425.
(62) Gulin-Sarfraz, T.; Sarfraz, J.; Didem Şen Karaman, D. Ş. K.;
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