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Abstract
As a more efficient and effective way to address disease diagnosis and intervention, cutting-edge technologies, devices, thera-
peutic approaches, and practices have emerged within the personalized medicine concept depending on the particular patient's 
biology and the molecular basis of the disease. Personalized medicine is expected to play a pivotal role in assessing disease 
risk or predicting response to treatment, understanding a person's health status, and, therefore, health care decision-making. 
This work discusses electrochemical biosensors for monitoring multiparametric biomarkers at different molecular levels and 
their potential to elucidate the health status of an individual in a personalized manner. In particular, and as an illustration, 
we discuss several aspects of the infection produced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
as a current health care concern worldwide. This includes SARS-CoV-2 structure, mechanism of infection, biomarkers, 
and electrochemical biosensors most commonly explored for diagnostics, prognostics, and potentially assessing the risk of 
complications in patients in the context of personalized medicine. Finally, some concluding remarks and perspectives hint 
at the use of electrochemical biosensors in the frame of other cutting-edge converging/emerging technologies toward the 
inauguration of a new paradigm of personalized medicine.
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Introduction

Personalized medicine is a group of cutting-edge tech-
nologies, devices, interventions, and practices designed on 
demand based on the characteristics of the individual, to 
be used for decision-making to determine risk of disease 
or predict response to treatment [1]. Personalized medicine 
is also called precision, stratified, or P4 medicine, often 
used interchangeably [2, 3]. Notably, it refers to new trans-
formative diagnostic and informatics approaches coupled 

with an understanding of the disease's molecular basis for 
patient stratification. Appropriately specific diagnostic and 
therapeutic parameters are selected based on the patient's 
fundamental systems biology and dynamics, i.e., DNA, 
RNA expression, translation, and levels of proteins [4–6]. 
Therefore, it may include molecular or cellular analysis by 
genomics and proteomics [7], medical imaging, nanopar-
ticle-based theranostics (therapeutics and diagnostics) [8], 
or toxgnostics (personalized drug toxicity), among others, 
resulting in a broader understanding of a person's health sta-
tus. Furthermore, combining clinical data and risk factors 
with genomics, proteomics, and imaging provides a diag-
nosis of pathology and information about the prognosis, 
prediction, and recurrence of a disease, and susceptibility 
and survivability of the patient [9]. Therefore, detecting and 
monitoring biomarkers of different molecular levels is very 
effective, especially when screening populations to identify 
disease risks and implement timely preventive efforts [10].

Personalized medicine promises to play a pivotal role in 
clinical practice as a prospective approach to making optimal 
individual health care decisions. It uses predictive tools to 

Published in the topical collection Electrochemical Biosensors 
– Driving Personalized Medicine with guest editors Susana 
Campuzano Ruiz and Maria Jesus Lobo-Castañón.

 * Jahir Orozco 
 grupotandem.nanobioe@udea.edu.co

1 Max Planck Tandem Group in Nanobioengineering, Institute 
of Chemistry, Faculty of Natural and Exact Sciences, 
University of Antioquia, Complejo Ruta N, Calle 67 N° 
52-20, Medellín 050010, Colombia

http://crossmark.crossref.org/dialog/?doi=10.1007/s00216-022-04237-7&domain=pdf


 Vásquez V. , J. Orozco 

1 3

evaluate health risks and design personalized health plans 
to help patients mitigate risks, prevent disease, and treat 
it with precision when it occurs. Personalized health care 
can be tailored based on the patient's genetic makeup, as 
mentioned, or on the disease-causing agent, such as drug-
resistant bacteria or viruses [11]. In this context, personal-
ized medicine may permit the customization of a unique 
treatment approach specific to the individual biology and 
genome, providing better diagnoses and earlier treatment, 
more efficient drug development, and targeted therapeutics. 
Looking at a patient as an individual enables a comparison 
with other healthy or ill individuals to detect differences that 
account for potential diseases, thereby facilitating a more 
accurate diagnosis and implementation of a specific treat-
ment plan and prevention of adverse events.

One of the most critical aspects guiding therapy is early 
and proper diagnostics. Nowadays, it involves genomics, 
in vivo imaging with contrast and fluorescent agents or 
nanoparticle-based markers, nuclear imaging agents [12], 
and in vitro laboratory tests [8] that often combine molecular 
assays [13] with deep learning algorithms and artificial intel-
ligence in search of disease-specific biomarkers [14]. Along 
with diagnostics, such approaches hold great promise for 
preventive care. In this context, companion diagnostics [15] 
are used with a therapeutic drug to determine its potential 
applicability to the individual.

Once a disease is diagnosed, a more proper alternative for 
finding a treatment can be pursued which, unlike trial and 
error, can realize "therapy with the right drug at the right 
dose in the right patient" [16], promoted by personalized 
medicine. The potential treatment can be tailored based on 
how the patient would respond considering its genome and, 
therefore, can be more efficacious, accurate, and cost-effec-
tive. Besides, the customized production of a drug, vary-
ing ingredients, dose level, or administration route, among 
other features, supported by computational and mathemati-
cal models to study drug interactions, pharmacodynamics, 
and pharmacokinetics, is accepted within the concept of per-
sonalized medicine, on the path to replace mass-produced 
doses or fixed-dose combinations. In the same context, the 
development of functional nanocarriers [17, 18] for site-spe-
cific and controlled drug delivery is a branch of personalized 
medicine that promises to revolutionize health care. Finally, 
theranostics refers to a personalized approach to treating 
a pathology, especially cancer, with similar molecules or 
approaches for diagnosis and therapy.

The following sections discuss the potential of electro-
chemical biosensors for the multiparametric monitoring of 
biomarkers at different molecular levels and how they can 
contribute to advancing more efficient health care strate-
gies. As a novel and illustrative example, we selected the 
infection produced by the severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2), a global concern and 

impact pathology, to exemplify the role of electrochemi-
cal biosensors in assessing patients' diagnostics and risk 
of complications in the frame of personalized medicine 
approaches. First, we introduce general aspects of SARS-
CoV-2, including the structure, infection mechanism [19, 
20], and signature of biomarkers for diagnosis, progno-
sis, and prediction of the course of the disease. Then, 
we review electrochemical biosensors for SARS-CoV-2 
detection [21–23], prognosis, and prediction, to end with 
some concluding remarks and perspectives toward a new 
paradigm of personalized medicine.

SARS‑CoV‑2 general aspects

Although zoonotic pathogens (animal origin) have affected 
humanity since the beginning of the twenty-first century 
[24–27], the recent emergence of viral infectious diseases 
caused by coronaviruses has affected the entire global 
population. Coronaviruses are a group of single-stranded 
RNA viruses named for the corona-like structure on their 
outer surface, classified into alpha (α), beta (β), gamma 
(γ), and delta (δ) genera. Although these viruses infect 
a wide variety of mammalian (alpha and beta) and avian 
(gamma and delta) species, only seven are known to have 
infected humans [25, 28–30]. Four of these coronaviruses 
have low pathogenicity, being endemic in humans, namely, 
human coronavirus OC43 (HCoV-OC43), HKU1 (HCoV-
HKU1), NL63 (HCoV-NL63), and 229E (HCoV-229E), 
but the other three, i.e., severe acute respiratory syndrome 
coronavirus (SARS-CoV), Middle East respiratory syn-
drome coronavirus (MERS-CoV), and SARS-CoV-2, 
are highly pathogenic [25, 29, 31]. This last-mentioned 
is indeed a beta coronavirus responsible for severe and 
potentially fatal respiratory disease [25, 29].

SARS-CoV, transmitted from civet cats to humans, 
emerged in China in 2002 and caused a pandemic, with 
more than 8000 infected and 800 deaths. MERS-CoV, 
transmitted from dromedaries to humans, emerged in 
2012 in the Middle East, causing about 2500 cases and 
860 deaths worldwide [25, 32]. In December 2019, in 
Wuhan, Hubei province of China, a new coronavirus, 
SARS-CoV-2, was found to be responsible for an outbreak 
of atypical pneumonia defined as coronavirus disease 
2019 (COVID-19) [31, 32]. In January 2020, the virus 
was sequenced and isolated in China [31], and since then 
it has spread rapidly worldwide. The World Health Organi-
zation (WHO) declared it a pandemic on March 11, 2020 
[29], and about 2 years later we had more than 400 million 
cases and 5.76 million deaths globally [33], even though 
by February 2022, 54% of people were already fully vac-
cinated [34].
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Structure of SARS‑CoV‑2

SARS-CoV-2 shares approximately 80% of its genome 
with SARS-CoV and 96% with the bat coronavirus BatCoV 
RaTG13 [29, 30], indicating that SARS-CoV-2 most likely 
originated in bats and jumped to humans via an intermedi-
ary that research seems to indicate was the pangolin [25]. 
Its RNA sequence is approximately 30,000 bases long and 
its structure consists of four proteins, i.e., spicule (S), mem-
brane (M), envelope (E), and nucleocapsid (N) proteins (see 
Fig. 1) [36].

The SARS-CoV-2 genome contains two 5′ and 3′ ter-
minal end regions (UTRs), one open reading frame (ORF) 
encoding the 16 nonstructural proteins (nsp1–16), and five 
other ORFs encoding the four structural proteins and eight 
accessory proteins [29]. The highly immunogenic phos-
phoprotein N protein is the most abundant in the corona-
virus [37]. The N protein consists of an N-terminal domain 
and a C-terminal domain, both of which can bind to the 
viral RNA and thus help with the packaging of the viral 
genome [36] responsible for viral RNA transcription and 
replication [38]. The E protein is an integral membrane 
protein of 8–12 KDa and regulates virus life cycles, such 
as virus assembly and release. In addition, it functions 
as an ion channel, which is necessary for pathogenesis 
[29, 36]. The M protein is a dimeric protein with a size of 
25–30 KDa, which is responsible for shaping the virion, 
as it maintains the curvature of the membrane and binds 
to the nucleocapsid [36]. The binding of M and N pro-
teins stabilizes the nucleocapsid and helps complete viral 
assembly, while the E and M proteins form the viral enve-
lope [39]. The S protein is a 150-KDa trimeric class I 
fusion glycoprotein located on the viral particle surface 
responsible for binding to the host receptor. It is highly 
N-glycosylated and forms peaks between 18 and 23 nm 
long on the virus surface. It consists of S1 and S2 subu-
nits [36, 40]. The S1 subunit is responsible for receptor 

recognition. It comprises four distinct A–D domains, con-
sisting of the N-terminal region (NTD) formed by the A 
domain, also called the receptor-binding domain (RBD), 
and the C-terminal region (CTD) formed by B, C, and D 
domains. The S2 subunit facilitates virus–cell fusion and 
forms the stem of the spike [25, 29, 39, 40].

Understanding the SARS‑CoV‑2 mechanism 
of infection

SARS-CoV-2 is transmitted from person to person by 
direct inhalation of contaminated droplets released into the 
environment when an infected person sneezes or coughs. 
It is also transmitted by direct contact through oral, nasal, 
and ocular mucosa. Other important means of transmis-
sion are objects that have been in contact with an infected 
person [35, 41]. Upon entering the body, SARS-CoV-2 
binds to epithelial cells in the mouth or nose and can even 
migrate through the airways and infect type II alveolar 
pneumocytes [35]. These cells are characterized by having 
within their receptors the human angiotensin-converting 
enzyme 2 (ACE2), being the main entry point of the virus, 
even though other SARS-CoV-2 entry receptors have also 
been reported, for example, DC-SIGN (CD209), CD147, 
L-SIGN (CD209L) [41], and AXL [42]. ACE2 is found 
in various tissues and organs, including the lungs, heart, 
kidneys, liver, gastrointestinal tract, and blood vessels. 
This enzyme regulates blood pressure and inflammation 
by regulating the renin–angiotensin–aldosterone system 
[25, 41].

The RBD in the S protein from the virus consists of 394 
glutamine residues, recognized explicitly by 31 lysine resi-
dues of the host ACE2 enzyme [35, 43]. The RBD region of 
the SARS-CoV-2 binds to the ACE2 receptor with 10–20-
fold higher affinity than SARS-CoV, which facilitates viral 
entry and explains the ease of virus spread from person 
to person [43, 44]. Following the binding between the S 
protein and the ACE2 receptor, the acid-dependent trans-
membrane protease serine 2 (TMPRSS2), cathepsins, and 
furin enzymes carry out the S protein cleavage precisely 
in two portions of the S2 region. In the first one, the RBD 
region and the fusion domains of the S protein are sepa-
rated, and in the second one, the fusion peptide is exposed 
and inserted into the membrane to allow the fusion of the 
viral and host membranes [36, 39, 45–47]. When the virus 
enters the cell, RNA is released into the cell cytoplasm and 
initiates its translation and replication process by appropriat-
ing its reproductive machinery (endoplasmic reticulum and 
Golgi complex and the endoplasmic reticulum) to produce 
more viral copies. Finally, the virus is transported to the 
membrane, exits the cell by exocytosis, and travels to infect 
other cells [25, 35, 39].

Fig. 1  Structure of SARS-CoV-2, formed mainly by the genetic mate-
rial (RNA) and the four structural proteins, i.e., N, E, M, and S pro-
teins. Modified from reference [35]
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COVID‑19 biomarkers: from diagnosis 
to prognosis and prediction of the course 
of the disease

Biomarkers are biomolecules that act as biological indica-
tors of the presence, severity, or type of a disease. They play 
a fundamental role in diagnosis and prediction of disease 
severity and even future complications [25]. In particular in 
COVID-19 management, apart from diagnosis, some bio-
markers have been associated with evaluating disease pro-
gression, as summarized in Fig. 2 and Table 1.

Biomarkers for diagnosis

Although personalized medicine has been commonly 
exploited in cancer research, it has found step-by-step appli-
cations in various pathologies, such as respiratory diseases. 
Respiratory diseases affect the population worldwide, with 
particular mortality in low-income countries. However, 
respiratory diseases are heterogeneous and often share 
symptoms, complicating and delaying diagnosis. In this 
context, personalized medicine offers invaluable diagnostic 
alternatives based on proteomics in which, unlike a single 
biomarker, a series of protein expression and a diversity 
of body fluids can be analyzed [101]. Pathogen detection 
aims to identify specific biomolecules of the microorganism 
or molecular changes in the host [25]. Currently, there are 
three strategies to detect SARS-CoV-2, namely, detection of 
the viral genetic material (RNA), viral antigens (structural 

proteins), or antibodies generated by the host (see Fig. 2a) 
[102].

The main diagnostic tool for SARS-CoV-2 has been 
reverse transcription polymerase chain reaction (RT-PCR) 
(see Table 1), a technique that detects the genetic material 
of the virus by combining reverse transcription of RNA into 
complementary DNA and amplification of specific targets 
[25, 103, 104]. The sample is initially collected from the 
patient mainly by nasopharyngeal swab, followed by RNA 
extraction and purification for reverse transcription. Finally, 
the sample reacts with a cocktail of probes that recognize 
specific SARS-CoV-2 biomarkers such as the E gene, the 
RdRp gene, and the ORF 1ab gene in a thermal cycler 
[105–107]. Because of its high sensitivity and specificity, 
this technique is the most widely used for accurate and reli-
able identification of the virus [29]. However, it requires 
highly specialized personnel and instrumentation and 
between 2 and 5 hours to obtain the results; moreover, due to 
the need to transport the samples to specialized laboratories, 
it can take 24 hours or more, increasing the related costs and 
the possibility of viral spread [38, 107].

Another strategy currently used to detect SARS-CoV-2 is 
rapid antigen detection tests (RADTs) (see Table 1) [108], 
which detect viral particles from their structural proteins 
such as S protein or N protein. Although less sensitive than 
RT-PCR, it is faster and easier to implement, obtaining 
results in approximately 30 minutes [108, 109]. In addition, 
the detection of genetic material and structural proteins 
is directly related to the viral load, considered a predictor 
of the severity and progression of the disease, presenting 

Fig. 2  Overview of the present and future of COVID-19-associated 
biomarker detection. Briefly, precision medicine of COVID-19 can 
be achieved by (a) diagnosing infection from the detection of genetic 
material, structural proteins, and IgG and IgM antibodies, and (b) 
detecting inflammatory [C-reactive protein (CrP), interleukin 6 (IL-
6), procalcitonin (PCT), ferritin (FT)], hematological [lymphocyte 
count (L), neutrophil count (N), N/L ratio (NLR)], and biochemical 

[D-dimer, cardiac troponin (cTn), creatine kinase (CK), vitamin D] 
biomarkers that predict disease prognosis, progression, and severity. 
In addition, moving from conventional detection to using (c) different 
robust commercial detection kits requiring specialized equipment and 
personnel to (d) a single multiparametric device based on sensitive, 
specific and portable nanobiosensors [48, 49]
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the most critical states and higher probability of death in 
patients with higher viral load [110].

Serological tests have also been used to detect SARS-
CoV-2 infection, an indirect method that detects antibodies 
generated by the body of infected people. When foreign agents 
such as microorganisms enter the body, the immune system 
responds rapidly to eliminate the foreign agents and creates 
antibodies that detect them to afford some future immunity 
[111]. In the case of COVID-19, the body generates immu-
noglobulin M (IgM) present at the beginning of the infection 
or when it is acute, and immunoglobulin G (IgG) appears as 
a response to the acute phase. For their detection, a blood 
sample is taken from the patient and transferred directly to 
the test (immunochromatographic assay, enzyme-linked 
immunosorbent assay [ELISA], or lateral flow immunoas-
say) (see Table 1), which gives the results in 5–15 minutes 
up to hours [112–114]. However, these tests are not recom-
mended as diagnostic tools due to their low sensitivity. For 
example, in asymptomatic cases, the concentration of these 
antibodies is low, so false-negative results can be obtained in 
people who have the infection [114]. In addition, a positive 
result only indicates that the person has been in contact with 
the virus, and it is not known precisely whether the person is 
still infected when the sample is taken [115].

Biomarkers for prognosis and prediction 
of the course of the disease

COVID-19 patients may be asymptomatic or, in many cases, 
present with pneumonia, acute respiratory distress syndrome 
(ARDS), multi-organ failure, and, in some cases, even death. 
Different pathways of clinical manifestation of COVID-19 
have been reported, including a high inflammatory response, 
low white blood cell and lymphocyte counts, and abnormal 
coagulation parameters. These complications are associated 
with proteins and genetic factors expressed differently in 
each person and are related to the progression and severity 
of the disease (see Fig. 2b) [116]. The following are some 
of the most relevant biomarkers in a person's susceptibility 
to severe symptoms and even death, summarized in Table 1, 
showing the conventional and point-of-care (POC) detection 
strategies available on the market.

Inflammatory biomarkers

Experience from studies in SARS-CoV and MERS-CoV 
has demonstrated a relationship between the inflammatory 
response called cytokine storm produced in response to 
these viruses and the progression of these viral infections 
[117–121]. Excessive release of inflammatory biomarkers 
has also been observed in COVID-19 [122] in response to 
the infection [123], thus triggering viral sepsis and lung 
injury and leading to various complications and eventually 

a fatal outcome [124]. Furthermore, different studies have 
shown changes in the levels of inflammatory cytokines 
such as interleukin 1 (IL-1), interleukin 6 (IL-6), inter-
leukin 8 (IL-8), interleukin 10 (IL-10), and tumor necro-
sis factor alpha (TNF-α) and chemokines such as C-X-C 
motif chemokine ligand 10 (CXCL10), chemokine ligand 3 
(CCL3), and monocyte chemoattractant protein 1 (MCP1) 
in patients with COVID-19 [125, 126]. High levels of IL-6, 
IL-10, TNF-α have even been reported in patients with post-
acute sequelae of infection three months after diagnosis 
[127].

IL-6 is a glycoprotein involved in various immunomodu-
latory and inflammatory processes and is one of the main 
biomarkers of COVID-19 severity, produced due to tissue 
injury and infection [128], and assists in the maturation of B 
cells [129]. In addition, IL-6 is involved in the acute phase 
and chronic inflammation [130] and is a biomarker of sep-
sis. While the normal range of IL-6 is from 0 to 16.4 pg/
ml [131], levels in patients with complicated COVID-19 
are three times as high as those with uncomplicated disease 
[132]. Furthermore, this biomarker is critical in the cytokine 
storm, as it activates several cells and other acute-phase bio-
markers such as C-reactive protein [133].

Other widely studied inflammatory biomarkers include 
C-reactive protein (CrP), procalcitonin (PCT) and ferritin 
(FT). CrP is a biomarker that may be present in the blood-
stream at the time of infection, produced by liver cells in 
response to inflammation [126, 134] . While CrP levels 
below 0.3 mg/dL are considered normal in healthy adults 
[135], concentrations in patients with COVID are higher. 
High CrP levels of 20–50 mg/L may be early indicators of 
how COVID-19 will progress [135]. Therefore, this bio-
marker becomes a "fallback" in the case of inflammation, 
commonly observed in SARS-CoV-2 infections. PCT is a 
precursor of the hormone calcitonin, expressed in cells due 
to infection or injury. It is a possible diagnostic biomarker 
of sepsis, and a level of PCT below 0.15 ng/ml is considered 
normal [136]. Above this level, the risk of severe infection 
is more than five times that in patients with low PCT values 
[133, 137]. It has been reported as a sepsis biomarker more 
specific than IL-6 and other biomarkers for early detection 
[138, 139]. Ferritin (FT) is an iron storage protein essential 
in regulating the body's iron content and oxidative stress 
and anemia, and more recently it has been associated with 
SARS-CoV-2 viral infections. According to WHO, normal 
ferritin levels should range from 15 to 200 ng/mL and 15 
to 150 ng/mL for men and women, respectively. However, 
patients with severe COVID-19 have shown ferritin levels 
above 1000 ng/mL [126, 140].

A new and lesser-known biomarker is LIGHT, a cytokine 
encoded by the tumor necrosis factor superfamily member 
14 (TNFSF14) gene that plays a crucial role in regulating the 
immune response. LIGHT is homologous to lymphotoxin, 
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exhibits inducible expression, and competes with herpes 
simplex virus (HSV) glycoprotein D for binding to herpes-
virus entry mediator (HVEM), a receptor expressed on T 
lymphocytes [141]. Elevated cytokine levels stimulate T-cell 
and B-cell responses, inducing the release of other cytokines 
such as IL-1, IL-6, IL-8, IL-10, TNF, and granulocyte-mac-
rophage colony-stimulating factor (GM-CSF), and driving 
the cytokine storm [142]. For example, levels above 250 pg/
mL were reported in persons with acute lung injury pneumo-
nia associated with SARS-CoV-2 infection [143].

Hematological biomarkers

COVID-19 manifests with hematological alterations such 
as leukocytosis, leukopenia, lymphocytopenia, eosinope-
nia, neutrophilia, and thrombocytopenia [144]. Low white 
blood cell and lymphocyte counts are related to disease stage 
(between days 7 and 14 after infection) and severity. While 
lymphocyte counts below 1100 cells/μL have been reported 
in patients with severe disease and non-survivors [133, 145], 
it has been reported that the leukocyte and lymphocyte count 
is within average levels in asymptomatic patients. It has also 
been demonstrated that the virus causes lymphocyte lysis, 
since these cells express ACE2 receptors. During the virus 
incubation time, the individual presents an average lympho-
cyte count, but after one or two weeks, the atrophy of the 
lymphoid organs decreases their production. In addition, 
high lactate dehydrogenase (LDH) concentrations inhibit 
the proliferation of lymphocytes [133, 144]. A significant 
decrease mainly in T lymphocytes, especially TCD4 and 
TCD8 cells, leads to the development of lymphopenia in 
patients with severe disease [125]. This decrease occurs 
during the first week after infection and gradually increases 
after the second week [125], which generates lymphocytope-
nia, directly related to the severity of COVID-19 [133, 145]. 
It has also been found that T-cell counts correlate inversely 
with blood cytokine levels in patients with severe disease.

Neutrophils have also been shown to increase [133, 145], 
which, together with the low levels of lymphocytes, modifies 
the neutrophil–lymphocyte ratio (NLR). The NLR and the 
platelet–lymphocyte ratio (PLR) were shown to be potential 
biomarkers for predicting mortality and prognosis of the dis-
ease. Average NLR values below three have been reported, 
and values above this level have been reported to indicate 
infection, with a high probability of sepsis when values 
increase to above nine [144].

Endothelial biomarkers

Endothelial cells are responsible for maintaining the integ-
rity of the vascular endothelium and inhibiting excessive 
clotting [126]. An increase in endothelial proteins and plate-
let activation molecules has been evidenced in patients with 

severe COVID-19. Endothelin 1 (ET-1) is a vasoconstrictor 
that increases its secretion in the presence of angiotensin II, 
cytokines, and free radicals, characteristic in severe cases 
of the disease. Another possible endothelial biomarker is 
syndecan 1, a transmembrane protein that indicates vascular 
endothelial activation and inhibits epithelial wound healing 
in the alveoli, promoting pulmonary fibrosis [146]. Elevated 
levels of this biomarker have been reported in patients with 
severe COVID-19 (336.5 ng/mL) relative to healthy patients 
(41.5 ng/mL) [126].

Biochemical biomarkers

Biochemical biomarkers including D-dimer, cardiac tro-
ponin (cTn), and LDH have become of great interest in the 
progression and prognosis of COVID-19, because they are 
widely associated with increased susceptibility to severe 
disease and a high risk of mortality. D-dimer originates 
from the lysis of cross-linked fibrin and is an indicator of 
coagulation and fibrinolysis [126, 147]. Therefore, D-dimer 
is related to disease severity and might be an early disease 
biomarker. While values lower than 0.5 μg/mL were associ-
ated with hospitalized patients without intensive care unit 
(ICU) admission [148], levels above 2.0 μg/mL were predic-
tive of mortality [126, 133], as these elevated levels indi-
cated a state of hypercoagulability in patients [149], which 
is systemic and can lead to limb ischemia and even coagula-
tion factor deterioration [147]. cTn is a protein related to 
myocardial lesions [150], and this, in turn, with a tripling of 
the risk of mortality [151]. Increased biomarker concentra-
tion has been associated with disease severity [152], with a 
higher probability of death at concentrations above 28 ng/L 
[150]. High concentrations of cTn (> 0.03 ng/mL) were 
associated with elevated concentrations of D-dimer, CrP, 
LDH, and PCT [151, 152]. LDH is an indicator of acute tis-
sue damage to the heart, liver, lungs, muscles, and kidneys 
[153]. Abnormal LDH values are related to decreased oxy-
genation, leading to multiple organ damage. In addition, it 
has been reported that elevated values are associated with a 
sixfold and 16-fold increased probability of severe disease 
and mortality, respectively, with a cutoff value of 263.5 U/L 
[110]. Therefore, this biomarker could be used to predict the 
severity of COVID-19 [154].

Other biomarkers

Other biomarkers have been associated with severe cases of 
COVID-19 but are less often reported than those described 
above. However, they could provide a more personalized 
approach to predicting and treating the disease. These 
include creatine kinase (CK), bradykinin (BK), microRNAs, 
testosterone, and even the pulmonary microbiota. CK is an 
enzyme in different body tissues that acts as a biomarker of 
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muscle damage [154, 155]. An increase in this biomarker 
above 200 U/L has been reported in severe cases of COVID-
19, related mainly to muscle pain, respiratory failure, and 
a high risk of death [155–157], but it is less common than 
other biomarkers, reporting a sensitivity of only 28% [156]. 
BK is a peptide responsible for regulating blood pressure, 
and its levels are increased with increased ACE2, generating 
a bradykinin storm, which can generate characteristic mani-
festations of COVID-19 such as ARDS, inflammation, and 
edema [126]. In addition, it has been reported to cause pain, 
vessel expansion, and even endothelial dysfunction [126].

MicroRNAs are non-coding RNAs that regulate post-
transcriptional expression in various processes such as 
cell proliferation, apoptosis, and differentiation. It has 
been reported that they can alter the expression of ACE2 
and TMPRSS2 during COVID-19 [126] and modulate the 
immune response to disease. Some of those studied include 
miR-376a-3p, miR-99b-5p, miR-10a-5p, miR-376a-3p, 
miR-548av-5p, and miR-99b-5p [126], in addition to miR-
21-5p, miR-146a, miR-126-3p, miR-144, and miR-155; the 
circulating miR-21-5p, miR-144, and miR-155 are mainly 
related to disease diagnosis and progression [158]. Genes 
can be up- and downregulated in patients with diseases such 
as COVID-19, where about 2289 upregulated genes and 912 
downregulated genes have been reported in the presence of 
the disease, most of which are part of the immune response 
[159]. Overexpression of genes such as CD177, S100A12, 
ELANE, OLFM4, MPO, RETN, ARG1, CD15, S100A8/9, 
PADI4, NLRC4, MMP8 and MMP9, PRDM1, XBP1, and 
IRF4, and downregulation of genes such as CX3CR1 and 
MSR1 TRAC, TRBC1, CD247, CD4, CD2, TBET, and 
IL7R are associated with disease severity [110].

The concentrations of total testosterone (TT) and calcu-
lated free testosterone (cFT) have also been used as biomark-
ers of severity, showing a progressive decrease with disease 
progression and a higher risk of ICU hospitalization and 
death in men with TT < 5 nmol/L or cFT < 100 pmol/L. 
These data corroborate the disease trends, where a mortal-
ity rate in men three times that in women has been found. 
Furthermore, a decrease in testosterone has also been associ-
ated with aging and comorbidities such as obesity, diabetes 
mellitus, and cardiovascular diseases. In addition, testoster-
one has shown an inverse relationship with proinflammatory 
cytokines and neutrophil count and a direct relationship with 
lymphocyte count, demonstrating its immunomodulatory 
and protective effect [160].

ARDS is the main complication in patients with COVID-
19 and is related to several of the biomarkers of disease 
severity, but it has also been reported that the pulmonary 
microbiota is significantly different between patients with 
and without ARDS. This microbiota modulates the immune 
system. It has been shown that the enrichment of the pul-
monary microbiota with intestinal bacteria was related to 

elevated inflammatory biomarkers in plasma. In general, 
patients with severe disease showed the presence of high 
concentrations of Bacteroides, Enterobacteriaceae, and 
Lachnospiraceae associated with the intestine [161].

Monitoring signatures of biomarkers 
with biosensors in the context of precision 
medicine

Precision medicine, also known as personalized medicine, 
seeks to tailor disease prevention and treatment by consid-
ering genetic differences in individuals. Age-, sex-, and 
race-associated factors have been vital in predicting suscep-
tibility to disease [162]. Each individual has variations in 
biomarkers at different molecular levels that may indicate a 
predisposition to disease or increased disease severity. These 
biomarkers range from DNA and RNA to functional proteins 
and metabolic molecules characteristic of multiple molecu-
lar events specific to each disease, and more than a single 
biomarker is required to support a more accurate prediction 
and prognosis. In this context, multiparametric detection 
at different molecular levels offers the best alternative for 
developing personalized medicine [163].

COVID-19 is an illustrative example of the application 
of precision medicine for prevention and treatment. Differ-
ent biomarkers like those mentioned in the previous section 
are expressed differently in each individual. For example, 
the ACE2 receptor, found in the respiratory system and other 
places in the human body such as the eye and epithelial and 
gastrointestinal cells, is expressed in greater density in bron-
chial cells in men and is highest in adulthood but begins to 
decline with aging [164]. In addition, elevated levels of this 
receptor have been observed in lung cells of smokers and peo-
ple with chronic obstructive pulmonary disease, and low levels 
in people with diabetes mellitus and heart disease [25, 164].

The ACE2 protein can vary in each population, and each 
variant has a different degree of binding affinity for protein 
S and the level of ACE2 expression in cells [116]. It has 
been shown that high levels of circulating ACE2 decrease 
the risk of infection because this soluble protein acts as a 
decoy for SARS-CoV-2 [116]. In addition, although high 
levels of ACE2 correlate with susceptibility to infection, low 
levels of this protein may increase the virus pathogenicity, 
as it increases the concentrations of angiotensin II in the 
body, which may also increase the inflammatory reaction 
and hypercoagulation processes [116, 164]. This makes the 
ACE2 protein an excellent biomarker for assessing disease 
prevention, severity, and treatment.

On the other hand, the gene cluster on chromosome 
3p21.31 was identified as the main genetic susceptibil-
ity locus in patients with respiratory failure, as it encodes 
several chemokine receptors that directly affect the body's 
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immune response [126]. Its rs11385942 variant in particular 
was found in a higher proportion of patients who required 
mechanical ventilation. Furthermore, the effect of SNP 
rs657152 A or C at locus 9q34.2, related to the ABO blood 
group, showed an increased risk of infection in people with 
blood group A and a protective effect in those with blood 
group O [165]. Also, the relationship between severe dis-
ease and pre-existing comorbidities such as obesity, diabe-
tes, and cardiovascular disease has been documented. For 
example, type 2 diabetes and obesity are metabolic disorders 
that present immune dysfunction, accumulating a more sig-
nificant number of immune cells and increasing the state of 
inflammation, which directly affects disease susceptibility 
and severity. In addition, high cholesterol levels indirectly 
facilitate viral entry, and low HDL levels increase disease 
severity [166].

Vitamin D deficiency was also a determining factor in 
susceptibility to infection. Vitamin D can enter the body 
from sunlight, food, or supplements. While vitamin D3 
is obtained when ultraviolet B rays convert the precursor 
7-dehydrocholesterol present in the skin, vitamin D2 can be 
obtained from milk, cereals, fish, or supplements. They are 
transformed in the liver into 25-hydroxyvitamin D—25(OH)
D—present in serum and used as an indicator of vitamin 
D deficiency [167]. A strong association has been reported 
between low levels of this vitamin and SARS-CoV-2 infec-
tion [168, 169]. Infection-susceptible populations with older 

people from Italy, Switzerland, and Spain, or ethnic groups 
with darker skin, such as African Americans, showed lower 
serum 25(OH)D concentrations [167]. An effect of vitamin 
D on the severity of the disease has also been demonstrated, 
since this vitamin increases innate immunity, decreasing the 
generation of proinflammatory cytokines and consequently 
avoiding the cytokine storm [167]. Vitamin D deficiency 
was also associated with a higher prevalence of vascular 
disease and hypertension and elevated levels of FT and cTn. 
Normal levels were above 20 ng/mL, with an increased risk 
of hospitalization with concentrations below this level [168].

Finally, many polymorphisms have been reported in 
genes related to disease severity. These may modulate the 
susceptibility of individuals and the severity of the disease 
[170]. Table 2 shows several reported variants.

Conventionally ELISA-based immunoassays have been 
used to detect different biomarkers, and there are many 
commercially available ELISA kits (see Fig. 2c). However, 
developing biosensors for these biomarkers offers advan-
tages over conventional methods in covering clinically 
prescribed ranges and offering portability and multiplex-
ing possibilities of great utility for clinical use. Although 
ELISA is a gold standard technique, commercially available 
ELISA kits typically have sensitivity down to picograms 
per milliliter. In contrast, biosensors may have a wider lin-
ear working range, higher sensitivity, and lower limits of 
detection (LOD) [174]. These autonomous devices integrate 

Table 2  Polymorphisms or variants that increase susceptibility or COVID-19 severity

Gene or locus Polymorphism or variant Effect Ref.

ACE2 Met383Thr, Pro389His, Asp427Tyr It slightly inhibits the interaction of ACE2 with the 
S protein

[171]

K26R, S16P, T27A, K31R, H34R, E35K, E37K, 
D38V, N51S, N64K, K68E, F72V, T921, Q102P, 
G326E, G352V, D355N, H378R, Q388L and 
D509Y

Susceptibility to SARS-CoV-2 is increasing [172]

K31R, E35K, E37K, D38V, N33I, H34R, Q388L, 
Y83H, Y50F,

Decreases binding of ACE2 to protein S [172]

TMPRSS2 V197M (rs657152) Severity of the disease [116]
V160M (rs12329760) Increased risk and susceptibility to COVID-19 [172, 173]
rs112657409, rs11910678, rs77675406, and 

rs713400
Increases genetic susceptibility and disease course [172]

Genotype CC of rs383510 Increased risk of infection [116]
3p21.31 rs11385942 Lower expression of CXCR6 and higher expression 

of SLC6A20 and LZFTL1, which increases disease 
severity

[165]

9q34.2 rs657152 Blood group A has a higher risk of infection [172, 173, 165]
CD26 rs13015258  Overexpression of CD26 increases mortality risk [172]
IFITM3 rs12252 Increased disease severity [172, 173]
IL-6 rs180079 Associated with lung disease and pneumonia related 

to the severity of the disease
[172]

Vitamin D rs7041 Susceptibility to infection and increased mortality [172]
TLR7 g.12905756_12905759del and g.12906010G>T Increased severity of the disease [173]
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materials and biomolecules coupled with transducers that 
transform the physical, chemical, or biological interaction 
of the bioreceptors and the analyte into a quantifiable signal 
for the selective and specific detection of molecular targets 
(analytes) [175–179]. These devices are characterized by 
high sensitivity, low LOD, and high specificity derived from 
the combination of the properties of nanomaterials and bio-
logical recognition systems [180]. In addition, they can be 
miniaturized and integrated into portable, multiparametric 
analysis systems using very small reagent and sample vol-
umes, making assays fast, simple, and easy to implement 
even for nonexpert personnel [177].

Biosensors consist of a transducer, a biological compo-
nent called a recognition element, and a portable reading 
device [176, 181, 182], as shown in Fig. 3. The biological 
components are immobilized on the surface of the transduc-
ers and interact with high affinity with the target molecule. 
The sensor generates a physicochemical signal that is con-
verted into a measurable and quantifiable signal [176], which 
is sent to a processing system for amplification and analysis 
[177, 183]. Biological receptors are recognition elements 
that can be enzymes, proteins, antibodies, nucleic acids, 
cells, tissues, or receptor molecules [184]. These molecules 
are responsible for giving specificity to the biosensor and 
must be in direct contact with the transducer [179, 185]. 
Depending on the recognition element, biosensors can be 
catalytic, including enzymes, microorganisms, organelles, 
cells, or tissues and based on affinity, including antibodies, 
nucleic acids, proteins, peptides, and aptamers [176, 177]. 

Transducers offer different sensing and signal conversion 
strategies, classified as electrochemical, optical, mass, ther-
moelectric, piezoelectric, and calorimetric [177].

Electrochemical biosensors are widely explored due to 
their amenability to miniaturization, offering portability and 
thus new opportunities for POC detection. These biosen-
sors measure physicochemical or biological bioreceptor–tar-
get interactions by changes in electrical properties at the 
electrode–solution interface [177, 178]. Advances in their 
development include modifying carbon, gold, and platinum-
based electrodes with a wide variety of nanomaterials to 
improve their electroanalytical properties [186], increasing 
the surface area-to-volume ratio, creating stable and favora-
ble microenvironments for the maintenance of the analytical 
biomolecule's structure, reducing LOD and response times 
and increasing the biosensor stability. In addition, these 
biosensors can be multiplexed to detect several biomarkers 
simultaneously, which brings us closer to their application 
in personalized medicine (see Fig. 2d).

Detection of SARS‑CoV‑2 based on electrochemical 
biosensors

Over the past 2 years, various strategies have been investi-
gated for the detection of SARS-CoV-2, preferably at the 
POC in a rapid and ultrasensitive manner. Among the elec-
trochemical biosensors, Seo et. al. [187] reported a field-
effect transistor (FET)-based biosensor device to detect the 
S protein of the SARS-CoV-2, which was developed within 

Fig. 3  Components of a biosensor. The first component is the detec-
tion system that includes the transducer that can be modified with 
different nanomaterials and biological receptors to obtain high sen-
sitivity and specificity. In some cases, it can also have amplification 
systems. The second component is the amplification and processing 

system for data visualization and analysis. This equipment can be 
portable and can have the capacity to analyze multiple samples at the 
same time. The sample can come from cell cultures, patients, food, or 
an environmental matrix and contains the analyte of interest. Modi-
fied from reference [177]
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months of the onset of the pandemic. After applying an input 
voltage, FET-based biosensors translated the biological sig-
nal into an electrical signal generated in a channel. The chan-
nel was coated with graphene sheets due to its high electrical 
conductivity, high carrier mobility, large surface area, and 
a capture antibody interacting specifically with S protein 
immobilized on the graphene sheets. The output signal was 
measured from FET transfer (current–voltage [I–V] curves), 
showing a LOD of 1 fg/mL in phosphate-buffered saline 
and 2.42 x  102 copies/mL in culture medium and patient 
samples, with the great advantage of being adaptable for the 
diagnosis of other emerging diseases.

Vadlamani et. al. [188] developed an electrochemical bio-
sensor based on  TiO2 nanotubes functionalized with cobalt 
(Co-TNTs), making it inexpensive, simple, cost-effective, 
and highly sensitive. The detection was based on forming 
a Co-S protein complex at a specific bias voltage due to Co 
ion reduction and S protein oxidation. This biosensor was 
designed to detect the RBD from protein S by amperometry 
with LOD of 12 nM, within a broad linear detection region 
and in only 30 s.

Fabiani et. al. [189] developed an electrochemical immu-
noassay to detect S and N proteins of the virus in saliva, 
using magnetic beads modified with an anti-mouse IgG as 
a carrier to immobilize a monoclonal capture antibody. A 
polyclonal antibody coupled to a secondary antibody con-
jugated with alkaline phosphatase was used to produce the 
signal. Detection was on screen-printed electrodes modified 
with carbon black nanomaterial by differential-pulse voltam-
metry (DPV) using a portable potentiostat. The biosensor 
detected S and N proteins of the virus in a buffer solution 
and saliva with LOD of 19 ng/mL and 8 ng/mL, respectively, 
in only 30 min, so the authors considered it to hold poten-
tial for commercialization. However, studies are required to 
improve the signal-to-noise ratio of the device.

Zhao et. al. [190] designed an electrochemical biosen-
sor based on calixarene-functionalized graphene oxide and 
a Au@Fe3O4 nanocomposite to detect SARS-CoV-2 genetic 
material using a supersandwich strategy (capture probe cou-
pled to Au@  Fe3O4 and the signal probe coupled to the func-
tionalized graphene oxide) by DPV. This biosensor demon-
strated high specificity and selectivity in in silico tests and 
real samples, with 200 copies/mL LOD. This biosensor was 
also integrated with a smartphone for POC analysis of the 
results.

Idili et. al [191] developed an aptamer-based electro-
chemical sensor for the rapid, sensitive, and reagent-free 
detection of the SARS-CoV-2 S protein. The sensor response 
was produced by a conformational change induced by the 
binding of the modified aptamer to a methylene blue deriva-
tive immobilized on a gold electrode surface. This response 
was so fast that it was able to recognize the target in a single 

step within 15 s, over a range of S protein concentrations 
from 760 pg/mL to 76 ng/mL.

An electrochemical immunosensor for detecting SARS-
CoV-2 was recently developed by our group [22]. The sand-
wich-type immunosensor was based on magnetic particles 
that take advantage of the high-affinity interaction of the 
spike protein with the ACE2 protein and use a poly-horse-
radish peroxidase (HRP) enzyme complex as an amplifica-
tion system. The reaction was followed by chronoamper-
ometry after confining the particles at screen-printed gold 
electrodes, achieving a LOD of 22.5 ng/mL with only 5 μL 
of samples in a pocket potentiostat (see Fig. 4a). Our group 
[21] also developed the first electrochemical biosensor based 
on peptides immobilized on screen-printed gold electrodes 
for the straightforward and specific detection of untagged 
SARS-CoV-2 protein S by electrochemical impedance spec-
troscopy (EIS). The device demonstrated a LOD of 18.2 ng/
mL protein S and 0.01 copies/mL of lysed particles (see 
Fig. 4b), concentrations of clinical relevance, and in only 15 
min. Remarkably, both devices detected the SARS-CoV-2 in 
samples positive for the virus by RT-PCR and did not show 
a measurable signal in samples from healthy individuals. 
This highlights the potential of the as-developed biosensors 
to detect protein S from SARS-CoV-2 and viral particles 
from clinical samples. And finally, our group developed an 
electrochemical genosensor based on magnetic particles 
modified with thiolated capture probes (see Fig. 4c), which 
detects viral RNA sandwiched with biotinylated signal 
probes modified with enzyme complexes, achieving a LOD 
of 807 fM, and high specificity to discriminate SARS-CoV, 
MERS, and HKU1 homologous viruses [23]. These exam-
ples demonstrate the great advantages of applying electro-
chemical biosensors to biomarkers of different molecular 
levels in SARS-CoV-2 infection as a diagnostic component 
in personalized COVID-19 medicine.

Although significant advances have been made in biosen-
sors, relatively few examples have been reported for SARS-
CoV-2; some are summarized in Table 3.

Biosensors for prognosis and prediction 
of the course of COVID‑19

As described above, the biomarkers most frequently 
related to susceptibility to infection were vitamin D and 
ACE2 protein, while for disease severity they were lym-
phocyte count (lymphopenia), PCT, IL6, and CrP, and for 
increased risk of death, the D-dimer, cTn, and LDH bio-
markers [154]. However, electrochemical biosensors that 
detect various biomarkers at different molecular levels for 
diagnosis and prediction of the course of COVID-19 are 
scarce, due to the novelty of the SARS-CoV-2. Neverthe-
less, it is important to highlight the work of Prof. Gao's 
laboratory [48], which developed a low-cost, portable, and 
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wireless multiplexed biosensor platform that enabled the 
rapid and ultrasensitive detection of three COVID-19-spe-
cific biomolecules. Furthermore, the device determined 
not only viral antigen nucleocapsid proteins (indicative 
of viral infection) and IgG and IgM antibodies (immune 
response) that provide information on the disease stage, 
but also CrP as an indicator of disease severity (see Fig. 5). 
Bioreceptors were immobilized on laser-etched gra-
phene electrodes and measured by DPV and open-circuit 

potential–electrochemical impedance spectroscopy (OCP-
EIS). Blood and saliva samples were analyzed, showing 
a highly selective and rapid response, between 1 and 10 
min in relevant physiological ranges. This is an excellent 
example of the benefits of implementing electrochemical 
biosensors at different molecular levels in personalized 
medicine since, in addition to detecting SARS-CoV-2 
infection, the platform indicates the progression and sever-
ity of the disease.

Fig. 4  Multilevel detection of 
SARS-CoV-2 with (a) electro-
chemical immunosensor based 
on magnetic beads and the 
spike-ACE2 complex [22], (b) 
first peptide-based impedimet-
ric biosensor [21] for protein 
S detection, and (c) electro-
chemical genosensor based 
on magnetic beads for RNA 
detection [23]. Reproduced with 
permission. Copyright © 2022, 
Elsevier B.V.
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Table 3  Biosensors designed for the detection of SARS-CoV-2

MBs magnetic beads, SPAuE screen-printed gold electrode, SPCE screen-printed carbon electrode, pABA p-aminobenzoic acid, FET field-
effect transistor, PFDT perfluorodecanethiol, GCE glassy carbon electrode, SPE screen-printed electrode, TFME thin-film metal electrode, MIP 
molecularly imprinted polymer, AuNPs gold nanoparticles, FTO fluorinated tin oxide, MB methylene blue, GO graphene oxide, CNF carbon 
nanofibers, SWCNT single-walled carbon nanotube, UiO-66 Universitetet i Oslo-66, MP-Au-SPE macroporous gold screen-printed electrode, 
CNT carbon nanotube, GC glassy carbon, BDD boron-doped diamond, bbZnO buffer-based zinc oxide, rGO reduced graphene oxide, PPy-NTs 
polypyrrole in nanotubular morphology, PI polyimide, WO3 tungsten oxide, ssDNA single-stranded DNA, CPE carbon paste electrode, CHA cat-
alytic hairpin assembly, TdT terminal deoxynucleotidyl transferase, Ru(NH3)6

3+ hexaammineruthenium(III) chloride, AuNTs gold nanotriangles, 
AuNPEA Au nanoporous electrode array, GONC graphene oxide nanocolloids

Analyte Platform LOD Ref

S protein MBs—SPAuE 22.5 ng/mL [22]
SPAuE—peptide 18.2 ng/mL [21]
SPCE—pABA 1.065 fg/mL [192]
Graphene—FET 1 fg/mL [187]
TiO2 nanotubes 0.7 nM [188]
Electrode—PFDT 38.6 copies/mL [193]
Graphene electrode 260 nM [194]
Electrode—DNA-antibody complex 1 pg/mL [195]
GCE-Pd-Au nanosheet—MBs 0.0072 ng/mL [196]
SPE -  Cu2O 0.04 fg/mL [197]
In2O3/ZnO transistors 865 ×  10−18 M [198]
Au-TFME—MIP 4.8 pg/mL [199]
Capacitive interdigitated electrode—L cysteine 750 pg/μL/mm2 [200]
SPCE—MBs—AuNPs 0.35 ag/mL [201]
Interdigitated Au electrode—carboxymethyl chitosan 0.179 fg/mL [202]
FTO—AuNPs 0.63 fM [203]
Gold-clusters—cysteamine 9.3 ag/mL [204]
SPCE-MBs 0.53 ng/mL [205]
MB-GO 0.58 pg/mL [206]
CNF-AuNP 7 pM [207]
SPCE-AuNP 2.63 ng/mL [208]
SiO2@UiO-66/SPCE 100 fg/mL [209]
MP-Au-SPE—MIP 0.7 pg/mL [210]
CNT-FET 4.12 fg/mL [211]

S and N protein Glucometer 0.71 pM (N), 0.34 pM (S) [212]
FET—SWCNT 0.55 fg/mL (S), 0.016 fg/mL (N) [213]
MBs—SPE 19 ng/mL (S), 8 ng/mL (N) [189]

N protein MIP—Au electrode 15 fM [214]
Microelectrode array, microfluidic 3.16 fg/mL [215]
GC/BDD/Au 0.227 / 0.334 / 0.362 ng/mL [216]
bbZnO—rGO 21 fg/mL [217]
Ppy-NTs/AuNPs 0.386 ng/mL [218]
Micropillar array of AuNP-rGO 13 fM [219]

N protein, CrP, IgG, and IgM PI-graphene Depends on the biomolecule [48]
Virus glycoproteins SPE-GO-AuNPs 1.68 ×  10−22 μg/mL [220]
Viral particle CNT/WO3 -MIP 57 pg/mL [221]
RNA MBs—SPAuE 807 fM [23]

AuNPs—ssDNA 6.9 copies/μL [222]
CPE-chitosan 0.3 pM [223]
SPE-rGO-TB—Au@Fe3O4 200 copies/mL [190]
CHA-TdT—Ru(NH3)6

3+ 26 fM [224]
AuNTs—azure A 22.2 fM [225]
AuNPEA 1 fM [226]
GONC 186 ×  10−9 M [227]

Main protease AuNPs 0.1 pM [228]
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Khayamian et. al. [229] developed an electrochemi-
cal biosensor for cytokine storm tracking in COVID-19 
patients using graphene-modified copper electrodes and 
EIS. It must be clarified that they were not interested in 
specific biomarker detection (only 50%) but in indicating 
disease severity with biomarkers of inflammation in blood 
samples, so they did not use bioreceptors in the detection. 
And finally, Jagannath et al. [49] developed an electro-
chemical biosensor for the detection of inflammatory pro-
teins interferon-inducible protein 10 (IP-10), TNF-related 
apoptosis-inducing ligand (TRAIL), and CrP in sweat as a 
strategy for monitoring infections such as COVID-19 in a 
noninvasive and portable way, achieving LOD of 1 pg/mL 
(IP-10 and TRAIL) and 0.2 ng/mL (CrP). The biosensor 
was based on a zinc oxide semiconductor electrode system 
modified with specific monoclonal antibodies, detecting the 
biomarkers by EIS. Overall, these three electrochemical bio-
sensors are the only multiparametric biosensors reported to 
date for detecting different biomarkers in the framework of 
COVID-19. This highlights an open avenue for developing 
multiplexed biosensor-based systems to fulfill the diagnosis, 
prognosis, and course of the disease requirements toward 
a new paradigm of personalized medicine for its integral 
management. Finally, blood is the primary source of detec-
tion of these biomarkers, but other less invasive sources have 

also been investigated, such as the detection of inflammatory 
biomarkers in tear film [230–232], or other biomarkers in 
saliva [163, 233].

Electrochemical biosensors for detecting 
multiple proteins involved in other 
pathologies

Although, at the moment, there are very few electrochemical 
biosensors developed for the detection of severity and pro-
gression biomarkers specific to COVID-19, it is important 
to mention electrochemical biosensors that have been devel-
oped in recent years for the detection of these biomarkers 
involved in other pathologies. For instance, researchers have 
used a conventional glassy carbon electrode (GCE), modi-
fied with p-aminobenzoic acid, p-aminothiophenol, and gold 
nanoparticles, to anchor IL-6-specific thiolated aptamers as 
a biomarker for colorectal cancer detection [234]. EIS was 
used to evaluate the biosensor, responding linearly from 5 
pg/mL to 100 ng/mL and with a LOD of 1.6 pg/mL. Another 
study integrated a flow cell with electrodes modified with 
specific antibodies to monitor secreted IL-6 and TNF-α 
[235]. Both biomarkers were detected amperometrically 
with high sensitivity. On the other hand, microelectrodes 

Fig. 5  Graphene-based RapidPlex multiplexed electrochemical platform for detecting nucleocapsid protein, IgG and IgM immunoglobulins, and 
CrP [48]. Reproduced with permission. Copyright © 2022, Elsevier B.V.
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have been shown to be potential candidates for POC testing 
or insertion into blood vessels for continuous monitoring of 
IL-6. Microelectrodes have been modified with IL-6-specific 
antibodies for antigen detection over a linear range between 
20 and 100 pg/mL in 2.5 min. POC IL-6 testing can rapidly 
predict bacterial infections rather than wait one to three days 
for diagnosis by conventional detection methods, highlight-
ing the advantages of electrochemical biosensors.

Yang and coworkers developed an electrochemilumi-
nescence sensor for PCT [236], with N-(aminobutyl)-
N-(ethylisoluminol) (ABEI) bound to ferritin as donor 
molecule and gold nanoparticles as acceptors. This 
donor–acceptor system generated a response in a linear 
range from 100 fg/mL to 50 ng/mL, with a LOD of 41 fg/
mL. Although the system was very sensitive, the biosen-
sor fabrication was somewhat complex and used multiple 
reagents, which increased its cost. Therefore, molybdenum/
gold trioxide was used on reduced graphene oxide nano-
composites  (MoO3/Au@rGO) to simplify the system. The 
nanocomposite then had excellent electrocatalytic activity 
toward hydrogen peroxide  (H2O2), amplifying the generated 
signals [237], achieving detection of PCT with high sensi-
tivity and a LOD of 2 fg/mL, better than that achieved by 
electrochemiluminescence.

An impedimetric sensor based on an interdigitated gold 
electrode modified with zinc oxide (ZnO) thin films was 
reported for PCT detection [238], involving only one set of 
antibodies, with easy fabrication and reduced cost. How-
ever, the sensor did not provide better analytical perfor-
mance compared with the work of Yang et al. and Liu et al. 
Electrodes modified with Prussian blue analog nanocubes 
functionalized with toluidine blue were used as highly sen-
sitive PCT detection platforms with extremely low LOD, 
thanks to the large surface area of the nanocubes where the 
antibodies were anchored [239]. Abbas et al. grew cupric 
tungstate  (CuWO4) nanospheres in situ on graphene oxide 
(GO) and used it as a photoelectrochemical sensor for PCT 
detection [240] to improve the detection parameters. The 
sensor had a LOD of 0.15 pg/mL, and its excellent perfor-
mance was attributed to the synergistic effects of  CuWO4 
and GO nanospheres, which formed an effective photoactive 
heterojunction, an essential requirement in a photoelectro-
chemical sensing platform.

A new biosensor was built using a GCE modified with 
gold nanoparticles and delaminated sulfur-doped MXene for 
PCT detection [241], with an improved LOD (2 fg/mL). In 
addition, to improve the analytical performance of the sen-
sors, iron sulfide  (Fe3S4) loaded with Pd nanoparticles was 
used for PCT detection, with a methodology similar to that 
of the  MoO3/Au@rGO-based biosensor mentioned above, 
achieving a LOD of only 130 fg/mL and a wider linear range 
[242]. The most recent work on PCT detection compared the 
performance of a microfluidic device integrating a gold and 

a screen-printed carbon electrode (SPCE) for PCT immu-
nodetection [243] based on magnetic beads. The microflu-
idic system-based method had a lower LOD than the SPCE 
without system integration, but the latter provided a more 
extensive working range.

Electrochemical detection of FT using quantum dots 
(QDs) functionalized with biosurfactants was reported 
[244], with a response in a linear detection range of 10 
to 1500 ng/mL, covering the clinical range, by DPV and 
cyclic voltammetry (CV), with LOD of 3.8 and 6.0 ng/mL, 
respectively. The sensor performance was also evaluated 
with human serum samples, with satisfactory results. The 
transducer was then functionalized with white graphene QDs 
(hexagonal boron nitride) to improve its performance. The 
improved linear range and LOD were 10–2000 ng/L and 
1.3 ng/mL, respectively [245]. Recently, an electrochemical 
ferritin sensor was reported on a graphene-modified paper 
[246]. Antibodies were bound to the electrode surface by 
EDC/NHS. The biosensor response was linear from 1.0 to 
1000 ng/mL, with LOD of 0.19 ng/mL.

A FET-based sensor was fabricated in the most recent 
report on ferritin detection. The FET was modified with gra-
phene and 1-pyrenebutanoic acid and succinimidyl ester to 
bind anti-ferritin antibodies, improving the linear range and 
LODs of the state of the art, with a response time of only 1 
to 10 s [247]. Garg et al. recently reported a microfluidic sys-
tem for continuous electrochemical detection of ferritin. The 
system involved a screen-printed electrode modified with 
amine-functionalized graphene oxide. Anti-ferritin antibod-
ies were immobilized on the electrode surface, which selec-
tively detected ferritin dynamically, albeit with a linear range 
and LODs that did not exceed previous work [248]. Table 4 
reports some electrochemical biosensors developed in recent 
years to detect biomarkers involved in other pathologies.

Concluding remarks, remaining challenges, 
and perspectives

The detection of biomarkers at different molecular levels 
offers tremendous opportunities for personalized medicine 
applied to emerging diseases such as COVID-19, but is 
currently a significant challenge. Recently, the detection of 
biomarkers associated with this viral infection has been pro-
posed as an alternative to advance toward a more accurate 
diagnosis of patients with low viral load and new oppor-
tunities for prognosis and determination of the severity of 
the disease. It has been shown that the infection produced 
by SARS-CoV-2 triggers several inflammatory factors and 
biochemical and hematological biomarkers that, depending 
on the route of infection followed by the virus, produce a 
significant inflammatory response. Thus, several inflam-
matory markers, including CrP, IL-6, PCT and FT, have 
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Table 4  Electrochemical biosensors for monitoring biomarkers involved in other pathologies

Biomarker LOD Nanomaterial Pathology Ref

1.6 pg/mL GCE/pABA/p-amithiophenol/
AuNPs

Colorectal cancer [234]

IL-6 0.0030 pg/mL MIPs/MWCNT/GQD composite Pathological inflammation [249]
3.2 fg/mL MIPs/polypyrrole-epoxy-acetylene Osteoarthrosis, asthma, psoriasis, 

cardiovascular disease, diabetes, 
and cancer

[250]

0.02 pg/mL  Polypyrrole-COOH Alzheimer’s disease [251]
0.42 pg/mL AuNPs/rGO Rheumatoid arthritis [252]
0.91 fM Hybrid kaempferol NPs with 

 MoO3

Chronic inflammatory disease [253]

1 pg/mL GO/NB Inflammation processes [254]
cTn 0.1 and 0.5 pg/mL GQDs/AuNPs Cardiovascular disease [255]

0.0005 ng/mL BNQD Acute myocardial infarction [256]
16 pg/mL Fe3O4@UiO-66/Cu@A [257]
1 pg/mL N-prGO [258]

Dimer D 9 ×  10−4 μg/mL AuNpChi Venous thromboembolism [259]
8.92 ng/mL AuNPs/DHP Deep vein thrombosis, pulmonary 

embolism, sepsis, myocardial 
infarction, pre-eclampsia, and 
COVID-19

[260]

1 pg/mL Ppy Acute aortic dissection, ascites, 
and hepatocellular carcinoma

[261]

Ferritin 3.8 ng/mL WS2-B/QDs Blood-related diseases, life-threat-
ening diseases

[244]

1.306 ng/mL hBN/QDs Nonspecific [245]
0.19 ng/mL GO/SPGE Anemia [246]
10 fM GFETs Iron deficiency [247]
0.413 ng/mL SPE/GO Anemia [248]
0.26 nM Fe@C NPs—Ppy/Ppy-COOH Nonspecific [262]
0.1 ng/mL NGHS Anemia and restless legs [263]
0.3 pM Au/Fe@C Nps/C6H4R Rheumatoid arthritis, autoimmune 

disorders, cancer, anemia, hemo-
chromatosis, chronic transfusion 
therapy, neurologic disorders, 
chronic kidney and liver diseases, 
inflammatory conditions

[264]

1.58 ng/mL GNR Lung cancer [265]
CrP 0.19 ng/mL Ferrocenethiol/phenylalanine Inflammation, cancer, and cardio-

vascular disease
[266]

3.3 pg/mL AuNPs/IL-MoS2 Inflammation, coronary heart 
disease and heart damage

[267]

1.6 ng/mL AuNPs/PMPC-SH Cardiovascular diseases [268]
0.1 nM MIP/AuPt Neonatal sepsis [269]
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Table 4  (continued)

Biomarker LOD Nanomaterial Pathology Ref

PCT 41 fg/mL ABEI-Ft@Au Systemic inflammatory
response syndrome

[236]

0.002 pg/mL MoO3 /Au@rGO Bacterial infections and sepsis [237]

3 x  10−4 ng/mL NiFe/PBA nanocubes@TB Viral and
bacterial infections, sepsis

[239]

0.15 pg/mL CuWO4@rGO Bacterial infections [240]

2.0 fg/mL GCE/sulfur-doped MXene/AuNPs Septicemia, bacterial inflammation [241]

130 fg/mL Fe3S4 -Pd/PBG Sepsis [242]

0.02 ng/mL Gold thin layer microfluidic Sepsis [243]

0.011 pg/mL AuPtCu-ND/G-Co@ NCNB Sepsis [270]

0.013 pg/mL OMCSi-Zn Bacterial infections, sepsis [271]

0.36 pg/mL PdNPs@MoS2/NiCo Sepsis [272]

82.6 fg/mL AuNPs/CuCo2S4 Sepsis [273]
IL-6, TNF-α 8 ng/mL and 2 ng/mL 3D skeletal muscle tissue/SPGEs Muscular disease [235]
PCT, CrP 0.10 ng/mL and 0.10 μg/mL ZnO Sepsis [238]
CrP, cTn, PCT 0.38 ng/mL, 0.16 pg/mL, and 0.27 

pg/mL
ePAD/GO Cardiovascular diseases [274]

IL-6, IL-8, IL-10, TRAIL 0.1 pg/mL (IL-6, IL-8, IL-10), 1 
pg/mL (TRAIL)

READ Sepsis [275]

miRNA 0.29 fM MOF@Pt@MOF Cancer [276]
56.7 amol cMWCNTs/GCE Cancer [277]

Vitamin D 1.35 ng/mL CH/CD Infectious, autoimmune, and 
cardiovascular diseases, rickets, 
skeletal deformation growth 
retardation, muscle weakness, 
and osteoporosis

[278]

0.1 ng/mL Asp-Gd2O3NRs Rickets, osteomalacia, hyperten-
sion, Parkinson’s, Alzheimer’s, 
cardiovascular, and cancer 
diseases

[279]

0.01 ng/mL GCN-β-CD/Au Rickets and asthma, osteomalacia, 
hypersensitive infections, heart 
diseases, diabetes, depression, 
multiple sclerosis, obesity, 
COVID-19

[280]

0.01 ng/mL AuNPs/rGO-SeO2 Hypersensitive infections, heart 
diseases, diabetes, depression, 
multiple sclerosis, obesity, 
COVID-19

[281]

0.49 pg/mL Au-Pt NPs/APTES Rickets, osteoporosis, cardiovas-
cular diseases, liver malfunction, 
diabetes, and colon cancer

[282]

GCE glassy carbon electrode, pABA p-aminobenzoic acid, AuNPs gold nanoparticles, MIPs molecularly imprinted polymer, MWCNT multi-
walled carbon nanotube, GQDs graphene quantum dots, rGO reduced graphene oxide, NPs nanoparticles, GO graphene oxide, NB Nile blue, 
BNQD boron nitride quantum dots, UiO-66 Universitetet i Oslo-66 , N-prGO N-doped porous reduced graphene oxide, AuNpChi chitosan/
gold nanoparticles, DHP dihexadecylphosphate, Ppy polypyrrole, WS2-B biosurfactant-stabilized tungsten disulfide, QDs quantum dots, GFETs 
graphene-based field-effect transistors, NGHS nanogold hollow microsphere, GNR gold nanorod, IL ionic liquid, ABEI N-(aminobutyl)-N-
(ethylisoluminol), FT ferritin, PMPC-SH poly(2-methacryloyloxyethyl phosphorylcholine), PBA Prussian-blue analog, TB toluidine blue, PBG 
pineal mesoporous bioactive glass, NCNB N-doped carbon nanobrushes, OMCSi ordered mesoporous carbon-silica nanocomposites, SPGEs 
screen-printed gold electrodes, ePAD electrochemical paper-based analytical device, TRAIL TNF-related apoptosis-inducing ligand, READ 
Rapid ElectroAnalytical Device, MOF metal–organic framework, cMWCNTs carboxylated multi-walled carbon nanotubesCH chitosan, CD car-
bon dot, NRs nanorods, GCN graphitic carbon nitride, APTES 3-(aminopropyl)triethoxysilane.carboxylated multi-walled carbon nanotubes



Detection of COVID‑19‑related biomarkers by electrochemical biosensors and potential for…

1 3

been closely related to this infection, mainly to the cytokine 
storm in severe disease cases. In addition, it has been related 
to miRNA, genes and their variants, and even cells of the 
immune system that can predict the path followed by the 
disease and may be the key to designing a targeted treatment 
for each patient in a personalized manner.

Detection of the mentioned biomarkers is the initial step 
to achieving precision medicine for COVID-19 manage-
ment, where electrochemical biosensors play a pivotal role. 
Electrochemical biosensors enjoy exceptional properties for 
monitoring biomarkers in a sensitive and specific manner, 
being amenable for implementation at the POC. They also 
present the outstanding versatility to be multiplexed, not 
only enabling the diagnosis of the disease but also elucidat-
ing the prognosis of patients, responding quickly to the pos-
sibility of severe disease and/or death, and finally, following 
up the post-COVID-19 sequelae remaining in many people. 
Furthermore, notwithstanding the advances in sequencing 
the human genome, its variations and prevalence have been 
highly significant, so it is necessary to continue studying 
the effects of polymorphisms or variants in the susceptibil-
ity and progression of COVID-19, providing specific tar-
gets for detection and monitoring. Therefore, it is critical to 
unite research efforts in biology, medicine, clinical science, 
metrology, data processing, deep learning algorithms, and 
artificial intelligence to advance the development of inte-
grated tools for the prevention, diagnosis, monitoring, and 
treatment of the disease.

Despite the progress discussed above, there are still sev-
eral challenges to address, such as the need for regulatory 
agencies to compare and test the validity of different detec-
tion platforms to maintain reliability and demonstrate their 
efficacy relative to the current standard of care. For example, 
electrochemical biosensors for SARS-CoV-2 with validated 
response to the latest circulating variants are still needed. 
Another critical challenge is demonstrating the clinical effi-
cacy of these devices and the high benefit/cost ratio, as pre-
vention and early diagnosis can significantly reduce costs 
associated with treating serious diseases. The final chal-
lenge would be to bring these outstanding achievements 
and results to the industry, moving us closer to the future of 
health and personalized medicine. Finally, further advances 
are also needed in developing multiplexed devices and moni-
toring several biomarkers simultaneously, allowing health 
personnel to make more rapid and precise decisions in treat-
ing patients. Furthermore, achieving a personalized treat-
ment could improve response times, reducing side effects, 
drug resistance, and even the psychological effects that can 
impede recovery due to nonspecific treatment.

Overall, personalized medicine for COVID-19 and other 
diseases that currently claim millions of lives per year is 
the way to the future—taking advantage of electrochemical 
biosensors as simple tracking tools and versatile monitoring 

strategies would make it possible to implement unique and 
individualized approaches for prevention, diagnosis, and 
treatment of diseases, toward establishing a new paradigm 
of personalized medicine.
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