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	   Abstract: In the current research landscape, microbiota composition studies are of extreme interest, 
since it has been widely shown that resident microorganisms affect and shape the ecological niche 
they inhabit. This complex micro-world is characterized by different types of interactions. Under-
standing these relationships provides a useful tool for decoding the causes and effects of communities’ 
organizations. Next-Generation Sequencing technologies allow to reconstruct the internal composition 
of the whole microbial community present in a sample. Sequencing data can then be investigated 
through statistical and computational method coming from network theory to infer the network of in-
teractions among microbial species. 
Since there are several network inference approaches in the literature, in this paper we tried to shed 
light on their main characteristics and challenges, providing a useful tool not only to those interested 
in using the methods, but also to those who want to develop new ones. In addition, we focused on the 
frameworks used to produce synthetic data, starting from the simulation of network structures up to 
their integration with abundance models, with the aim of clarifying the key points of the entire genera-
tive process. 
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1. INTRODUCTION 

 The microbiota is the set of population microorganisms 
such as bacteria, archaea, viruses and unicellular fungi that 
characterize a specific environment and ecosystem, such as 
human gut or saliva, environmental microecological niches 
(such as animals and vegetables), water or soil. This com-
plex micro-world is characterized by several interactions 
that determine its nature. Mainly, two types of relationships 
are observed in a bacterial community: microbial and eco-
logical.  
 Microbial interactions refer to a number of different 
kinds of relationships that occur between different taxa, that 
can bring a positive (+), negative (-) or neutral (0) effect for 
each of the two taxa involved:  
• (+, +) Mutualism is a common benefit relationship estab-

lished between biological species. In some cases, micro-
organisms cooperate in carrying out the same physiolog-
ical function, in others, they exchange the metabolic 
products for the mutual sustenance, as in syntrophy or 
cross-feeding case. 

• (+, -) Parasitism and Predation are two phenomena relat-
ed to the survival of an organism subject to host or 
prey’s life, respectively. Parasitic associations can be 
observed 
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between host and bacteriophage virus that infects bacte-
ria and archaea for the replication purpose. Bdellovibrio 
is an example of a predator that attacks other bacteria 
and feeds on the biomolecules produced. 

• (+, 0) Commensalism occurs when a member of the 
population benefits from the presence of others, without 
any advantage or harm to them. In the biodegradation 
process, commensal bacteria feed on others’ products.  

• (-, 0) Amensalism describes a relationship in which an 
organism harms another component of the community 
without positive or negative implications for itself. This 
type of interaction can happen when the metabolic prod-
ucts of one species alter the environment, making it ad-
verse towards another species. 

• (-, -) Competition takes place when two species inhabit-
ing the same environment vie for a common resource. If 
the resource is in limited supply and the species niches 
totally overlap, the weaker competitor will be pushed 
toward extinction or will undergo a gradual shift toward 
a different ecological niche. This latter phenomenon is 
summarized in Gause's competitive exclusion principle. 

• (0, 0) Neutralism indicates the absence or irrelevance of 
relationships. 

 Ecological interactions, on the other hand, occur be-
tween taxa and the environment. As an example, in the hu-
man gut, host cells live in symbiosis with the microbiota. 
Molecular signals from bacteria promote many physiologi-
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cal functions and, in the other direction, host cells secrete 
metabolites that influence the microbial ecosystem [1, 2]. 
Furthermore, age, lifestyle and diet, influence the local envi-
ronment through hormone and metabolite secretion, thus, in 
turn, changing the environment in which bacteria live [3]. 
Considering the entire time span from pregnancy to birth up 
to the first months of life, there are different factors that 
influence microorganisms transfer between the mother and 
the children: prenatal factors, such as mother’s diet and life-
style; the delivery mode, i.e., Caesarean or natural birth; the 
first contacts that occur between the mother and the skin or 
the mucous membrane surfaces of the new-born child [4]; 
the type of supply, i.e., breastfeeding or formula-fed [5]. 
Recently, airways or lung microbiota has also aroused inter-
est in the study of the causes related to environmental expo-
sures [6] or smoking habits [7]. Hanski et al. [8] have shown 
results regarding the impact of biodiversity in the natural 
landscape on the skin microbiota in relation to the allergic 
predisposition. 
 Deciphering the complex networks of associations 
among microbial communities, and between them and the 
environment, tries to shed light on questions like: “how do 
microbes interact?”, “how does the environment change the 
microbial population?”, “what is the effect of external per-
turbations on microbial dynamics?”. These are the main 
reasons that guide the study of microbial ecosystems, where 
the answers are sought by exploiting the information con-
tained in sequencing data. 
 The study of microbe-microbe, environment-microbes 
and host-microbes interactions is extremely important to 
understand community organization in relation to the factors 
that determine biodiversity. In addition, microbial networks 
could provide a powerful predictive and therapeutic tool in 
the field of human health. Information on how the commu-
nity is modified due to an introduced stimulus could allow, 
for example, to act on the network by means of probiotics to 
restore the correct composition of the community [9]. 
 To investigate the complex bacterial communities’ land-
scape, network theory provides useful tools [10]. Graphs are 
frequently used in molecular biology to represent the rela-
tionships between entities, the nodes of the network, where 
edges correspond to some interactions between them. Edges 
may be directed when they link two nodes asymmetrically, 
from one to the other, or undirected, when they link two 
nodes symmetrically. Edges can be weighted if there is a 
strength score associated with the link between the nodes. 
Indeed, biological networks describe relationships that are 
established between different actors involved in physiologi-
cal processes, such as proteins, genes or biomolecules (Ta-
ble 1 for some examples).  
 In a microbial community landscape, the nodes of the 
network represent different members, while edges corre-
spond to some of the previously described interactions that 
occur between them. The presence of a relationship between 
taxa is inferred from taxa abundance values, using different 
reverse engineering approaches [11-14] stemming from 
network theory. Microbial networks can also contain nodes 
related to ecological or physiological variables that present 
significant association patterns with the abundance values of 
microorganisms. 

 In this review, we will focus on the microbes-microbes 
interaction networks that shape the microbial community. 
The aim is to give an overview of the literature of microbial 
networks reconstruction, providing useful information not 
only for analysts looking for available methods, but also for 
researchers interested in developing new ones. In section 2, 
we introduce one of the most popular sequencing techniques 
used to produce abundance data, 16S rRNA gene sequenc-
ing, and into well-known standard analysis tools; in section 
3, we summarize the main literature methods for the recon-
struction of microbial interaction networks; in section 4, 5 
and 6, we consider the need for benchmarking studies that 
evaluate the performance of the developed methods, the 
simulation frameworks used to generate the gold standard 
and the assessment scores. In section 7, we discuss the lim-
its and challenges still open in the field.  

2. 16S SEQUENCING AND STANDARD ANALYSIS 
METHODS 

 In the current research landscape, there are two main 
sequencing techniques used to carry out studies on microbi-
al communities in terms of species abundance: the Whole 
Genome Sequencing (WGS) and the targeted amplicon se-
quencing of 16S ribosomal RNA (16S rDNA-seq). In this 
section, we will focus on the latter, which is still the most 
commonly used, since it is much cheaper than WGS.  
 16S rRNA gene encodes for a small subunit of the pro-
karyotic ribosome. The 16S rRNA gene contains highly 
conserved regions, mainly shared by all the species, and 
hypervariable regions, which are characteristic for each phy-
logenetic lineage [15] and that are used to discriminate and 
identify the different community members in the sample. 
Since the 16S rRNA gene is characteristic of prokaryotes, 
only microorganisms belonging to bacteria and archaea 
kingdoms can be detected by this sequencing technique.  
 Conserved regions, which flank the hypervariable ones, 
are used as binding sites for primers during the amplifica-
tion phase preceding 16S rDNA-seq. The choice of primers 
is a crucial point for the correct characterization of the bac-
terial community [16] since one should maximize the bal-
ance between efficiency and specificity in the targeted am-
plicon amplification and maximize the coverage, in terms of 
the fraction of all bacterial 16S sequences matched by at 
least one primer pair. In the literature, several papers ad-
dress the identification of primers that show better resolu-
tion in terms of taxonomic profiles [17-19]. An alternative is 
to use software for 16S primer design and optimization like 
SPYDER [20] or mopo16S [21], that might also account for 
possible variations in the conserved regions [22].  
 Targeted amplification produces a large number of 16S 
rRNA fragments, called amplicons, which are then se-
quenced using Next-Generation Sequencing (NGS) plat-
forms, such as Illumina or Ion Torrent [23]. These widely 
used technologies allow deep, high throughput, in-parallel 
DNA sequencing, and produce a large amount of data in a 
timely and cost-effective fashion. Indeed, NGS can produce 
millions of short sequences, called reads, that can be used to 
detect the presence and abundance of different taxa in the 
original population. The obtained reads are preprocessed 
using different software tools like QIIME2 [24], Mothur 
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[25] or USEARCH [26]. Generally, these tools incorporate 
several methods for denoising and quality filtering, to dis-
card short and low-quality base pairs sequences. Further-
more, different algorithms perform reads clustering in Op-
erational Taxonomic Units (OTUs), namely, clusters of 
organisms usually grouped by DNA sequence similarity. 
Clustering methods of more recent publication allow the 
reconstruction of the so-called Amplicon Sequence Vari-
ants (ASVs), a higher resolution version of the classic 
OTUs obtained by clustering sequences that differ by at 
least one single nucleotide. ASV methods infer the biolog-
ical sequences in each sample using amplification and se-
quencing error models and can distinguish sequence vari-
ants differing by as little as one nucleotide, without setting 
an arbitrary dissimilarity threshold to cluster sequences as 
previously done for OTUs. The last step of all prepro-
cessing pipeline is the taxonomy annotation assignment to 
each OTU/ASV by a classifier trained on a reference data-
base (such as RDP classifier [27]), or read alignment to 
potential target sequences (as VSEARCH [28]). 
 The final output of the whole process is the so-called 
OTU/ASV table, where each element contains the number 
of times a read coming from a given sample was found to 
belong to a particular OTU/ASV, and the related taxonomy, 
which describes and characterizes each OTU/ASV at the 
deepest possible taxonomic level. All the processing steps 
require technological or methodological choices that have 
an impact on the final tables and, consequently, on the fol-
lowing analysis. In the literature, there are studies that try to 
find the best tool or tool configuration for each prepro-
cessing step [29, 30], providing useful information to guide 
the choice of analysts. Unfortunately, there is currently no 
standard global preprocessing pipeline defined and the de-
velopment of new methods and technologies is still in pro-
gress. 
 Sequencing count matrices have peculiar characteristics 
that are linked to both biological and technical features. 
Firstly, the limited obtainable sequencing depth together 
with the sample harvesting makes 16S rDNA-seq count data 
highly sparse (70-95% of null values). Secondly, count data 
do not reflect absolute abundance, but rather portions of a 

whole (the sequencing depth), that reflect the proportion of 
individuals belonging to a specific taxonomic group [31, 
32]. Therefore, an increase in the absolute abundance of a 
community member causes a decrease in the other entries, 
an artifact called compositional bias. Finally, the total of 
counts experimentally obtained during the sequencing run 
usually differs from sample to sample. 
 Several methods have been proposed in the literature to 
normalize, correct for sampling and compositional biases 
and account for technical variability, in order to make the 
samples comparable. Considering the compositional nature 
of the data, the log ratios transformations are used to trans-
form abundance value from the Simplex space (proportion 
space that keeps the relative information of counts) to the 
Real space. The most known transformations are the addi-
tive log-ratio (alr) and the centered log-ratio (clr), proposed 
by Aitchison [33], although another transformation, the 
isometric log-ratio (ilr) [34], is available. In short, alr trans-
forms each sample with the logarithm of the ratio between 
each relative component (OTU/ASV) and a reference fea-
ture. Conversely, clr uses the geometric mean of the relative 
abundances of the sample as a denominator. The orthonor-
mal bases of the clr-plane allow to retain the metric proper-
ties in mapping data in real Cartesian coordinates. Since the 
transformations involve the logarithm function, the presence 
of many null values represents a problem. To overcome this 
obstacle, some studies add a small constant amount to the 
data matrix or to just zero values, the pseudo-count. Howev-
er, this approach alters the internal proportions by changing 
the relationships between the compositional parts. Martin-
Fernandez et al. [35] developed a Bayesian framework to 
impute zero values in compositional data. The method as-
sumes that count values follow a multinomial distribution 
with Dirichlet distribution as conditional prior. All null val-
ues are replaced with the a posteriori estimate obtained 
from the model, while the positive counts are multiplied by 
a quantity dependent on the replaced values, the so-called 
multiplicative replacement strategy. Therefore, this method 
reconstructs lost values by maintaining the relationships 
between the non-null components. In the R package zCom-
positions [36], several approaches that use different prior 
distribution or replacement strategies are implemented. 

Table 1. Some examples of biological networks. 

Biological Networks Nodes Edges’ Meaning 

Gene Co-Expression Networks Genes Co-expression level 

Gene Regulatory Networks Transcription factors and binding sites or genes and 
their regulators 

Regulatory relationships 

Metabolic Networks Metabolites Biochemical reactions 

Microbial Interaction network Taxa (and ecological or physiological variables) Microbe-microbe, (environment-microbes and 
host-microbes) interactions 

Protein-Protein interaction network (PPI) Proteins Interactions involving the activation of a mo-
lecular and cellular mechanism 

Sequence Similarity Networks (SSNs) Proteins or genes sequences The similarity in the amino acid or nucleotide 
chain 
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Hron et al. [37], instead, proposed two different alternatives 
that are implemented in the robComposition R package [38]. 
The first, k-nearest neighbor (knn) imputation, considers a 
sample with zero values and finds a set of other more simi-
lar to it, based on compositional distance measure. Then, the 
replacement step involves the information from the neigh-
bors to replace the missing values. The second, called itera-
tive model-based imputation, models the missing values as a 
regression of all the other non-null. Since regression cannot 
be applied to compositional data, the authors transform data 
into the simplex space using the ilr on the dataset where 
zeros are replaced using knn. Finally, the regression is 
performed on the transformed data by distinguishing the 
dependent variables based on their value in the original data. 
 As an alternative, there are some methods that deal with 
both sparsity and compositional bias. GMPR [39] is an in-
ter-sample normalization method designed for microbiota 
sequencing data. In brief, the algorithm calculates for each 
pair of samples in the dataset, the median of the abundance 
ratios for taxa with non-zero values. Finally, the size factor 
for each sample is obtained from the geometric mean of the 
median ratios for all the other samples. Moreover, Wrench 
[40] exploits a Bayes normalization approach. Basically, 
after choosing the reference vector as the average propor-
tions present in the dataset, the ratios of the taxa proportions 
pairs are modeled using a hurdle log-normal model. The 
identification of the model allows to estimate the true taxa-
wise proportion ratios that are linked to the compositional 
scaling factors used to normalize the taxa between samples 
and intra-sample. 
 After the count data are normalized, statistical analysis is 
carried out. In most cases, alpha and beta diversity are com-
puted to investigate and quantify the compositional com-
plexity of a community within a sample and the variability 
between samples, respectively. There are several formula-
tions of these metrics with different properties [41]. In many 
studies, contrary to the classic evaluation of the difference 
between abundance profiles, beta diversity is also evaluated 
in terms of the distance between the samples. The most used 
metrics belong to the UniFrac family [42] that considers 
phylogenetic distances between observed organisms in the 
computation. Principal Coordinate Analysis (PCoA) or Non-
Metric Multidimensional Scaling (NMDS) is often used to 
visualize samples in a lower dimensional space and to iden-
tify subgroups of samples visually. These dimensionality 
reduction techniques are applied to dissimilarity or distance 
matrices. In addition, Lê Cao et al. [43] proposed the use of 
Principal Component Analysis directly on the clr or ilr 
transformed data as an alternative to the aforementioned 
techniques.  
 Differential Abundance (DA) testing is the first step of 
the downstream analysis. DA purpose is to quantify differ-
ences observed in the microbiota composition of groups of 
subjects identified by the covariates of interest. These meth-
ods test taxa abundance between two sets of subjects identi-
fied by a binary variable (e.g., healthy and sick), thus find-
ing the main culprits of differences. The most used statisti-
cal methods are mainly divided into nonparametric tests, 
such as the Wilcoxon rank-sum or Kruskal-Wallis test, and 
model-based approach taking into account the characteristic 

distribution of OTU/ASV samples, e.g. ALDEx2 [44] AN-
COM [45], mixMC [43], BhGLM [46]. The application of 
DA methods has contributed to significant advances in iden-
tifying the role of taxa in disease status [47]. Despite this, it 
is necessary to further improve current methods perfor-
mance, since some have shown poor control of false posi-
tive rate and low power to detect differences, especially for 
taxa with low abundance [48]. In the literature, most studies 
focus on alpha and beta diversity or DA. To get an idea of 
the number of articles in the literature dealing with down-
stream analyses, we queried the PubMed 
(https://www.ncbi.nlm.nih. gov/pubmed/) database search-
ing for keywords related to the microbiota field and the 
name of each investigation. Fig. (1) shows the counts ob-
tained from this research, starting from the rise of NGS 
technology. The trend relating to the analysis of the diversi-
ty in the sample composition (in square and triangle dots) 
has been continuously growing for several years. Although 
these analyses are part of the standard procedure in the mi-
crobiota field, the search for new, more performing method-
ologies is still active, as mentioned above. On the contrary, 
network analysis (circle dots) is a recent research topic and, 
given the remarkable insights it has brought, it represents 
the future of studies in this landscape. Probably, as usually 
happens with the introduction of new methods, it takes time 
for the user community to recognize their value and poten-
tial. Certainly, the complexity of the developed methods, the 
lack of numerous experimentally validated results, or the 
challenges still opened represent an obstacle to the spread of 
network inference methods. Aware of innovation and the 
potential of knowledge of interaction mechanisms, we pro-
pose this review in order to provide a useful tool to those 
interested in applying or developing these methods. 
 

 
Fig. (1). Number of articles in the literature relating to the main 
downstream analyses. Counts are obtained by querying the Pub-
Med database searching in the title/abstract: (network OR network 
analysis OR microbial interactions) AND (16S OR microbiota OR 
microbial communities) for Network Analysis; (Differential OR 
abundance OR analysis OR statistical) AND (16S OR microbiota 
OR microbial community) for DA Analysis; (Alpha OR beta OR 
diversity OR analysis) AND (16S OR microbiota OR microbial 
community) for Alpha/Beta Diversity.  
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3. INFERRING MICROBIAL INTERACTION NET-
WORK 

 The microbiota is a complex system in which a large 
number of variables act in concert, contributing to the com-
munity’s biodiversity. Generally, two main categories of 
experiments can be found in the literature: cross-sectional 
and longitudinal studies.  
 Cross-sectional studies involve multiple samples at a 
specific time point. In this case, a snapshot of the bacterial 
community of several subjects is available, so any consider-
ation of dynamics is impossible. The networks inferred on 
this type of dataset are usually indirect graphs that represent 
the pairwise relationships between taxa abundances. The 
basic idea is that two taxa co-occur when they have similar 
abundance values according to the defined metric, and 
therefore the arc between the two is present. Thus, from 
cross-sectional studies, static co-occurrence network can be 
explored.  
 Conversely, longitudinal studies consist of multiple 
measurements at different time points. Therefore, it is pos-
sible to study the evolution of bacterial interactions and con-
sider pre-post relationships as putative cause-effect relation-
ships, also correlated with external factors that perturb the 
system. Consequently, the inferred networks are generally 
directed, and represent a cause-effect relationship in the 
time window considered.  
 In this section of the review, we will present a number of 
statistical methods presented in the literature for the charac-
terization of static and dynamic networks. Table 2 
summarizes all the methods commented in this review, also 
providing useful indications regarding the availability of the 
software. 
 In order to facilitate the reading, we first introduce terms 
and concepts that will be widely used in the following sec-
tions. With i and j, we will indicate two generic taxa related to 
the row indices i and j of the OTU/ASV table. The final goal 
of each method presented in this review is the inference of a 
network structure that can be represented by an adjacency 
matrix θ in which element θij = 0 if there is no edge connect-
ing the two nodes i and j, θij = 1 otherwise. To obtain θ and 
draw the interaction graph, some methods exploit the Covari-
ance matrix Γ, where diagonal elements Γii correspond to the 
variance of the i-th taxa abundance, while off-diagonal values 
Γij are covariances between i and j, i.e., the expected value of 
the products of their distances from the average. Alternative-
ly, others use the Precision matrix Ω, that is the inverse of the 
covariance matrix previously defined.  

3.1. Methods based on Pairwise Microbial Relationships 

 The first network inference methods proposed in the 
literature are non-parametric, as they do not make any as-
sumptions about data distribution. Pairwise scores are de-
fined with correlation metrics, such as Pearson or Spearman, 
or similarity and dissimilarity measures, such as Bray–
Curtis or Kullback–Leibler [49]. The null model, i.e., the 
probability distribution of the metric in a random situation, 
of the chosen metric is calculated on the OTU/ASV matrix 
with rows independently permuted a high number of times. 
Then, the p-value is defined as the probability that the corre-
lation/similarity value observed for each taxa pair is greater 

than the one obtained by chance. In general, the correction 
for multiple tests, such as Bonferroni or False Discovery 
Rate, is used to correct the p-values, ensuring global False 
Positive Rate control. In a correlation-based approach, the 
sign of the interaction (positive or negative correlation) is 
also available. 
 Another metric used is Mutual Information (MI), a di-
mensionless number that quantifies mutual dependence be-
tween two random variables. MI can be interpreted as the 
expected reduction in uncertainty regarding one variable, 
given the observation of the other. In particular, in a study 
by Reshef et al. [50], the Maximal Information Coefficient 
(MIC) was used. MIC has the following properties: gener-
ality, i.e., it can infer different types of non-linear relation-
ships with sufficient sample size, and equitability, i.e., same 
noisy associations give a similar score. Basically, for each 
node pair (i, j), MIC(i,j) is the maximum value of the mutual 
information overall i-by-j grid (up to a maximal grid resolu-
tion) normalized between grids of different dimensions. The 
network is not directed, but the edges identify nonlinear 
relationships that cannot be determined by linear correla-
tion.  

3.1.1. Ensemble Approach for Pairwise Metrics 

 In the literature, there are several ways to define the 
pairwise association from two variables, and the resulting 
networks may present some structural variations. Thus, 
some authors proposed to use ensemble approaches based 
on merging several inferred networks obtained from differ-
ent metrics. 
 CCREPE [51] combines a linear model, 2 correlation 
metrics (Spearman and Pearson) and 2 similarity metrics 
(Bray–Curtis distance and Kullback–Leibler divergence). 
To determine the significance of the scores, the authors de-
veloped the ReBoot method. The aim of this procedure is to 
build a null distribution that reflects correlation caused only 
by compositional bias and a bootstrap distribution as a con-
fidence interval for the observed value of correlation from 
data. More in detail, for each pair of taxa, the null distribu-
tion is obtained iterating the following steps: permute the 
relative abundances, normalize the data and finally calculate 
the correlation between them. On the other hand, bootstrap 
distribution is constructed by calculating several times the 
correlation between each pair of taxa on a resampled da-
taset. A pooled variance Z-test is used to assess differences 
between the two distributions, defining the p-value for the 
associations. For Bray–Curtis and Kullback–Leibler metrics, 
the authors calculate p-values comparing the bootstrap dis-
tribution with a null point value calculated with the permu-
tation approach. Then, all the identified networks are 
merged with the Simes p-value combination method [52], 
and the edges are then corrected using the Benjamini-
Hochberg-Yekutieli procedure. The final network represents 
all significant co-occurrence and co-exclusion links between 
taxa pairs. Co-exclusion refers to nonlinear patterns that 
underlie an adversity relationship between micro-organisms.  
 Another ensemble approach is CoNet [53]. The underly-
ing rationale of this tool is that the identification of a net-
work coming from the intersection of different methods 
reduces false-positive edge calls. In CoNet, there are various
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Table 2. Table of methods covered in this review with indications for code availability, base approach and type of data. 

Method Software Source Approach Developed 
for 

Meta-network Python code http://www.microbioinformatics.org/software/Meta-Network.htm Rule Mining 
Association 

Cross-
sectional 

MDiNE R package 
https://github.com/kevinmcgregor/mdine Bayesian 

Graphical 
Model 

Cross-
sectional 

SPRING - - Graphical 
Model 

Cross-
sectional 

TIME web app https://web.rniapps.net/time/ Granger Cau-
sality 

Time 
Series 

MPLasso R package https://github.com/ChiehLo/MPLasso_Rpackage Graphical 
Model 

Cross-
sectional 

gCoda R code https://github.com/huayingfang/gCoda Graphical 
Model 

Cross-
sectional 

BAnOCC R package 
https://bitbucket.org/biobakery/banocc/src/master/ Bayesian 

Graphical 
Model 

Cross-
sectional 

MTPLasso - - gLV Time 
Series 

Ridenhour et al.  R code  https://www.nature.com/articles/ismej2017107#Sec10 ARIMA Time 
Series 

cooccur R package https://cran.r-project.org/web/packages/cooccur/index.html Probability 
Theory 

Cross-
sectional 

CoNet Cytoscape plugin 
http://apps.cytoscape.org/apps/conet Ensemble 

Pairwise Met-
rics 

Cross-
sectional 

metaMIS Matlab (stand-alone GUI) https://sourceforge.net/projects/metamis/ gLV Time 
Series 

SPIEC-EASI R package https://github.com/zdk123/SpiecEasi#analysis-of-american-gut-data Graphical 
Model 

Cross-
sectional 

REBACCA R code http://faculty.wcas.northwestern.edu/~hji403/REBACCA.htm Covariance 
Estimation 

Cross-
sectional 

CCLasso R code https://github.com/huayingfang/CCLasso Covariance 
Estimation 

Cross-
sectional 

RMN - - rule-based 
algorithm 

Time 
Series 

LIMITS Mathematica  http://physics.bu.edu/~pankajm/Code/code.html gLV Time 
Series 

eLSA Python package  https://bio.tools/elsa LSA Time 
Series 

SparCC Python package1 https://bitbucket.org/yonatanf/sparcc Compositional 
Correlation 

Cross-
sectional 

MENAP Web App http://ieg2.ou.edu/MENA Random Ma-
trix Theory 

Cross-
sectional 

CCREPE R package2 
http://www.bioconductor.org/packages/release/bioc/html/ccrepe.html  Ensemble 

Pairwise Met-
rics 

Cross-
sectional 

MIC 
MINEv2.jar (Java), 

minepy (Python-Matlab), 
minerva (R) 

http://www.exploredata.net/Downloads/MINE-Application Pairwise Rela-
tionship 

Cross-
sectional 

1. There is also an R implementation in SpiecEasi, gCoda and CCLasso package, 2. This information comes from the SpiecEasi paper. 
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correlations (i.e., Pearson, Spearman, Kendall), similarity 
(i.e., MI, Steinhaus, distance correlation) or dissimilarity 
(i.e., Kullback-Leibler, Euclidean, Bray-Curtis, Jensen-
Shannon) metrics implemented, that the user can choose to 
combine. The significance level of each pairwise compari-
son can be assigned with a permutation test or with the 
above-mentioned ReBoot procedure. The strategy recom-
mended by the authors to evaluate the final score of each 
network edge is the Brown p-value merging method [54], 
because it weighs the results considering the dependence 
between the different metrics used. 

3.1.2. Association Metrics Based on Network Topology 

 Recently, Yang et al. [55] proposed Meta-Network, a 
workflow based on association rule mining. The method 
transforms abundance data into a binary presence-absence 
matrix on which it calculates the probability of each (i,j) co-
occurrence as the percentage of co-existence with respect to 
the total number of samples. Subsequently, the Pearson cor-
relation between the abundance profile of (i,j) is calculated 
on pairs that exceed a predefined probability threshold. In 
order to identify the possible indirect interactions between 
nodes, for example, when taxa share a functional scheme, 
Meta-Network uses the functional similarity (FS) weight 
measure on the correlation-based network [56]. In short, FS-
weight assigns a functional similarity score to each pair (i,j) 
based on the network topology considering the first and se-
cond level neighbors. Again, a threshold on the calculated 
weights filters network’s arcs and draws new ones relating 
to indirect associations. In addition, the Meta-network 
framework contains another method based on Part Mutual 
Information (PMI), that takes into account nonlinear rela-
tionships. The algorithm starts by building a zero-order net-
work using MI as an association metric. Then, partial infor-
mation of each (i,j) pair conditioned by the abundance of N 
neighbors is calculated. Path Consistency Algorithm (PCA) 
with a defined correlation threshold is applied to adjust edg-
es distribution in the network. PCA-PMI algorithm is ap-
plied iteratively considering an increasing value of N until 
the final network reaches convergence, i.e., the increase in 
the number of considered neighbors does not change the 
topology.  

3.1.3. Compositional Correlation Approach 

 Different methods are based on correlation to account 
for pairwise associations between taxa. However, since the 
abundances of the count matrix are compositional data, the 
correlation calculation can lead to reconstruct erroneous 
edges unless data are not previously transformed, so to lie 
on a Euclidean space. SparCC [57] is a proposed method to 
overcome the compositional effect in calculating the corre-
lation. The authors refer to Aitchison's theory, which defines 
the variance of log-ratios as a metric to quantify the depend-
ence between two compositional variables. In particular, the 
developed algorithm is based on a relationship between the 
variation matrix, i.e., variance of the component log frac-
tions in all the samples, and the unknown Γ of the true log-
transformed variables. In order to infer Linear Pearson cor-
relations between the log-transformed variables, some ap-
proximations are necessary. SparCC works under the hy-
pothesis that the number of different taxa in the dataset must 
be large, and the number of strongly correlated variables is 
low. However, the authors demonstrated in a simulated con-

text that the method is robust even when the hypothesis of 
the sparsity of Γ is not fully verified. In addition, they found 
that there is a relationship between alpha diversity, calculat-
ed with Shannon effective number (neff) [58], and composi-
tional bias. For this reason, the method is recommended in 
datasets with low diversity (at least neff = 50).  

3.2. Methods Based on Multivariate Approach 

 In this section, we will deal with different methods that 
have the aim of estimating the Covariance matrix Γ or its 
inverse, the Precision matrix Ω. The estimate of these enti-
ties takes place through the formulation of an optimization 
problem. Essentially, the desired model parameters are those 
that minimize an objective function (also known as loss 
function). In the case of Least Absolute Shrinkage and Se-
lection Operator (Lasso) estimation, the loss function is 
defined as the difference between the expected values 
obtained by the model and the real ones. Alternatively, if a 
maximum likelihood estimator is used, the problem be-
comes the maximization of the probability distribution of 
the observed values given the model parameters, the so-
called likelihood function. Usually, the optimization prob-
lem is formulated considering an element of penalization on 
the number of model parameters controlled by a regulariza-
tion value. 

3.2.1. Lasso-based Covariance Estimation 

 Regression-based methods build a linear system that 
relates the Γ matrix of the log-transformed relative abun-
dances with the covariance matrix of the unknown real 
abundances, Γ’. The final estimate of the true Γ’ is obtained 
by solving a Lasso problem with a regularization element 
that controls the sparsity of the associations.  
 CCLasso [59], for example, combines the loss function 
with an l1-penalty on the off-diagonal components of the 
log-basis covariance matrix to take into account the sparsity. 
The authors have shown that the estimated matrix is 
positive-definite with the elements included in the range [-
1,1], as opposed to SparCC, which does not guarantee this 
property.  
 REBACCA [60] uses the same regularization method 
but sets a different objective function. Furthermore, the two 
methods use distinct approaches to handle parameter tuning. 
CCLasso uses a K-fold cross-validation on the loss function 
choosing the parameter value that minimizes the mean K-
fold error. Instead, REBACCA utilizes a stability 
resampling method [61], which regulates the number of se-
lected variables taking into account their selection probabil-
ity, based on the independent application of Lasso on two 
datasets deriving from the random split of the original data. 

3.2.2. Graphical Lasso Models 

 Some network inference tools are based on the estimate 
of the undirected graphical model from the data. The struc-
ture of the interaction graph is reconstructed, starting from 
the concept of conditional independence between the varia-
bles involved in the model. Taxa i and j are conditionally 
independent when the abundance value of i, compared to all 
the other taxa in the dataset (X-i-j), does not add information 
to the probability of occurrence of j, and vice versa. In the 
special case of the multivariate normal distribution of the 
variables, a null partial correlation between i and j corre-
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sponds to their conditional independence i⊥j|X-i-j. Remem-
bering that Ω = Γ -1, the estimate of variables that satisfy the 
previous definition can be carried out based on precision 
matrix elements. If Ωij = 0, it means that the partial correla-
tion between i and j is zero, and the variables are condition-
ally independent. Consequently, the non-null elements of Ω 
identify the network structure θ, and therefore the condi-
tionally dependent pairs of nodes. In the literature, there are 
methods that directly estimate the entire precision matrix 
based on graphical lasso (Glasso) [62], and those that try to 
estimate the individual null components Ωij by neighbor-
hood selection of Meinshausen and Bühlmann (MB) [63]. 
 SPIEC-EASI [64] is one of the methods based on graph-
ical models to infer the structure of the underlying network 
based on conditional independence. The Γ matrix of the clr 
transformed data is related to the covariance matrix of the 
true log-transformed abundances Γ’. When the number of 
taxa is greater than the number of subjects, the estimator of 
Γ becomes an approximation of the estimator of Γ’. Moreo-
ver, in this case, the sparsity of the data represents a prob-
lem for the network identification and the hypothesis of 
graph sparsity is taken into consideration. The authors esti-
mate the true abundances Ω using a penalized maximum 
likelihood method (Glasso problem). The regularization 
parameter, which is linked to the edges’ sparsity, is identi-
fied by means of the StARS selection algorithm [65].  
 Similar to SPEAC-EASI, another method based on estimat-
ing the sparse inverse covariance from penalized maximum 
likelihood is gCoda [66]. There are two major assumptions 
characterizing this approach: the logarithm of the real absolute 
abundances is derived from the multivariate normal distribution 
and the edges density is sparse. The distribution hypothesis 
leads to the formulation of an optimization problem different 
from SPIEC-EASI, which is solved through a Majorization-
Minimization algorithm developed by the authors. 
 Another graph-based method is MPLasso [67]. The 
Glasso optimization problem to estimate Ω requires the as-
sumption of edge sparsity regulated by tuning parameters. 
On the other hand, in MPLasso, regularization takes place 
through the penalty on the l1 component (the sum of the 
inverse correlation matrix elements) of the objective func-
tion in which the co-occurrence matrix prior (P) is also con-
sidered. The a priori knowledge on associations between 
taxa is extracted from the literature through a text mining 
algorithm. The authors, in reference to the @MInter method 
[68], access the PubMed database to perform queries. In 
particular, for each (i,j) pair, the number of papers which 
contain in the abstract only taxa i, only taxa j, both and nei-
ther, are obtained. Then, on the contingency matrix identi-
fied by the previous values, the Fisher's exact test with Bon-
ferroni correction is carried out to find the prior probability 
of associations. Finally, Bayesian information criterion 
(BIC) in Gaussian Graphical models context is used to 
choose the best penalty parameter, since it considers a bal-
ance between the maximized value of the likelihood func-
tion and the corresponding edge number in relation to sam-
ples size. 
 Compared to the estimate of the global conditional inde-
pendence performed by Glasso formulation, the MB method 
exploits the relationship between the partial correlations and 

the coefficients of the linear regression in which each node 
is the dependent variable of the other predictor nodes. 
 A variant of the previously described Glasso method 
exploiting the MB approach is also implemented in SPIEC-
EASI. The algorithm defines each clr-transformed taxon as 
the linear regression of the others, and requires solving a 
penalized regression problem (Lasso). Then, for each node, 
the non-zero coefficients identify the set of its local neigh-
bors, and the final edges are selected through the union or 
intersection of all these sets. The regularization parameter, 
which controls the sparsity of local associations, is still de-
tected by the StARS algorithm. 
 SPRING [69] is a Semi-Parametric Rank-based ap-
proach based on the truncated Gaussian copula model [70] 
to estimate the true underlying correlation matrix for zero-
inflated count data. In short, the authors rewrite the MB 
optimization problem by replacing the sample correlation 
matrix with Semi-Parametric Rank-based (SPR) correlation 
estimator. They use the same stability-based method 
(StARS) used in SPIEC-EASI to identify the tuning parame-
ter. In addition, they propose a modified version of the clr 
transformation, called mclr, to overcome the limits of add-
ing the pseudo-count in the calculation of the log-ratios. 
Briefly, mclr consists of calculating the clr on the non-zero 
elements of the relative abundance vector, and then adding a 
constant to shift the transformed values in the positive direc-
tion. This transformation is consistent if zero-counts are 
added, does not change the original zero measurements, and 
keeps the order of the measurements unchanged. The au-
thors suggest transforming the data with the mclr and subse-
quently applying the SPRING framework for the conditional 
independence network inference. 

3.2.3. Bayesian Formulation of Graphical Model 

 Usually, those methods that consider abundance data as 
compositional estimate Γ’ of the unknown log true value, or 
its inverse Ω. Instead, BAnOCC [71] sets a Bayesian solu-
tion scheme that allows to estimate both matrices and a con-
fidence value for the estimate. The method assumes that the 
unknown true count values follow a log-normal distribution. 
The authors identify the posterior likelihood function for Ω, 
given the observed compositional values. Then, a Glasso 
prior is introduced to estimate Ω under sparsity constraint. 
 MDiNE [72], on the other hand, uses a Bayesian frame-
work to infer the two precision matrices of two groups of 
subjects (ΩA and ΩB) identified by a binary variable. In the 
hypothesis of multivariate normality of the alr transformed 
counts, the authors rely on a logistic normal multinomial 
model of counts to draw a Glasso problem that considers 
separately the two matrices ΩA and ΩB. To induce sparsity in 
the estimation of the elements of Ω, a Laplace prior with 
mean zero and scale parameter λ is introduced. This step is 
the Bayesian analogue of considering an l1-penalty in the 
objective function of a usual Lasso problem. The penalty 
parameter λ has its exponential prior distribution. Finally, 
the model is fitted using the Hamiltonian Monte Carlo pro-
cedure. Therefore, MDiNE is useful in the presence of two 
groups in the dataset, because from the posterior probability 
function, final estimates of the two matrices are available, 
from which different interaction networks can be built. The 
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main advantage of MDiNE is modeling the difference be-
tween ΩA and ΩB. Indeed, the dataset is not split into two 
groups of subjects to independently infer the network, as 
would be done with the other methods. As a result, MDiNE 
addresses the problem of the reduced number of samples 
compared to the high number of taxa, an issue that is exac-
erbated when the dataset is split into groups for the investi-
gation of possible differences. 

3.2.4. Methods based on Probability Theory 

 In MENAP [73], the authors resort to the Random ma-
trix theory by developing an algorithm that automatically 
finds the correlation threshold for network reconstruction. 
Briefly, when the eigenvalue spacing distribution of an ad-
jacency matrix follows Poisson distribution, it means that 
the system has non-random properties, instead when it pre-
sents Gaussian Orthogonal Ensemble (GOE) statistics, the 
generative process is random. Under the hypothesis that the 
eigenvalues of θ obtained from a complex biological system 
also have the previous properties, the correlation threshold 
is iteratively defined at the transition point between GOE 
and Poisson distribution identified by a statistical test on 
eigenvalues probability density.  
 A probabilistic approach to define the type of association 
between pairs (i,j) has been used by Veech et al. [74] and 
implemented in the R package cooccur [75]. Although this 
method is not originally developed for metagenomic data, 
there are studies that use it to analyze association patterns 
also in 16 rDNA-seq field [76, 77]. Observed co-occurrence 
between i and j is defined as the number of co-presences 
among all samples (Qobs). The exact probability that the two 
taxa co-occur in s samples (Ps) is given by the probability 
mass function of the hypergeometric distribution. Varying s 
from 0 to Qobs and summing all the Ps give the probability 
that i and j co-occur in at least Qobs samples if their co-
presence patterns were random, (i.e., the p-value of positive 
association). The p-values for negative associations are cal-
culated similarly, and a threshold can be applied directly to 
identify network edges. Alternatively, the effect size (ES) 
can be calculated as the difference between Qobs and its ex-
pected value E(Qobs)=Pobs·N. Then, ES values obtained are 
normalized with respect to the total number of samples. The 
standardized ES has a range in [-1,1] which defines the sign 
of the association. The probabilistic model is based on the 
assumption that the probability of (i,j) co-occurrence in each 
subject is equal to its frequency calculated among all sub-
jects. Note that the model is distribution-free, since no ran-
domization is required to create the null hypothesis, and 
metric-free because it is based on presence-absence values. 

3.3. Methods for Time Series Data 

 Longitudinal studies involve several microbiota se-
quencing measures in time. Therefore, for each involved 
subject, the data can be rearranged into a matrix containing 
the measurements of p taxa on the rows and the n instants 
on columns. In the rest of the manuscript, we will refer with 
Xi = [xi(1), xi(2),…, xi(n)] to the vector of the ith taxon abun-
dances in the n temporal instants, xi(t) the measure of the ith 
taxon in the generic time point t=1,...,n, Xt = [x1(t), x2(t),…, 
xp(t)] the vector of the values of all p taxa in t. In addition, 
we will use the indices i, j, o, for taxa, whereas z, w will be 
used for points in the time axis.  

 The methods developed for time series analysis try to 
infer the relationships between the p taxa in mainly two 
ways. In section 3.3.1, we will present algorithms based on 
pairwise association metrics between time profiles; in the 
remaining part of the section, we will deal with methods that 
involve different mathematical models to describe the entire 
observed dynamics of each taxon.  

3.3.1. Local Association in Time-windows 

 In studies where measures of many different time points 
are available, the search for relationships based on the entire 
time span could obscure the associations that occur in short 
sub-intervals, perhaps crucial for the future evolution of the 
bacterial community. Local Similarity Analysis (LSA) is a 
useful tool for identifying dependencies between taxa that 
occur in short periods over time, also accounting for some 
delay in the putative cause-effect relationship. In the litera-
ture, there are several methods and applications of the LSA, 
starting from the problem of aligning sequences, the search 
for relationships between gene expression levels up to local 
association in the microbial population. The main idea is the 
calculation of a similarity score LS between two variables Xi 
and Xj (in our case, taxa) carried out on each possible time 
window of length l<n. To be more precise, LS is calculated 
finding the temporal interval [w,w+l-1] and [z,z+l-1] of 
length l that maximizes an association score S between the 
variables considered: 
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where the values of the variables Xi and Xj have previously 
been normally standardized, l denotes the value of the time 
shift sought, w and z are the possible beginning instants of 
the relationship to be identified and k is the index that 
defines the time windows in the interval considered. In gen-
eral, the search for the maximum score for short delays can 
be limited by forcing the combinations of the starting point 
w and z to follow a constraint such as |w-z|<D, where D is 
the number of time units of the delay. After calculating the 
maximum association score in its relative time segment, 
statistical significance is identified by means of a permuta-
tion-based approach. Considering the high number of all 
taxa pairs and the time required for the dynamic program-
ming algorithm used for calculating the LS, the main prob-
lem of the LSA is the runtime.  
 Xia et al. [78] proposed eLSA, which speeds up the ap-
proach described above, exploiting a theoretical approxima-
tion of the statistical significance distribution of the LS 
scores. The authors also provided indications on the number 
of time points necessary to maintain the validity of the ap-
proximation used, and extended the method in the presence 
of replicated measures.  
 In general, LSA is used for the study of associations 
over time and allows to reconstruct a direct network in 
which the direction is identified by the time-delay associa-
tion, i.e., an edge from i to j indicates that the relational pat-
tern is observed later in j with respect to i. However, LSA 
can also be applied to static data, if the delay parameter is 
set to null. In this case, the inferred network will be without 
temporal causality indications of the significant associations 
found among the taxa. 
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3.3.2. Rule-based Interaction Inference 

 LSA-based methods make no assumptions about the 
type of relationship between taxa. As mentioned above, 
complex mechanisms of interaction are established within a 
bacterial community that usually involves more than one 
taxon. In a study by Tsai et al. [79], a rule-based algorithm, 
RMN, is used to infer cooperative and competitive associa-
tions that occur simultaneously. The authors borrow the idea 
from smooth response surface (SRS) algorithm developed 
for gene regulatory network inference [80], in which the 
relationship between the target, repressor and activator 
nodes is modeled by a 3-dimensional surface. The main 
assumption of RMN is that under the community regulation 
network, there is a cooperation-competition system. Consid-
ering a triplet (Xi, Xj, Xo) composed of the relative abun-
dances of taxa i, j and o, in which cooperation between i and 
o and competition between j and o are hypothesized, the 
method models the two relations based on the values of the 
triplet. In practice, RMN describes each possible taxa triplet 
according to a piecewise nonlinear quadratic polynomial 
that involves the use of hyperbolic tangent functions (tanh):   

        (2) 
where  is the estimated standard relative abundance of Xo 
expressed as a function of the other taxa involved in the 
triplet. Briefly, RMN applies the model assumed for each 
triplet across all time points, and assigns a goodness score to 
the model using the lack of fit function L. Subsequently, L is 
adjusted by means of a function which assigns a reliability 
score to the measure of L. Finally, thresholds on the calcu-
lated scores allow for filtering the triplets that will build the 
nodes of the final network. Given the assumptions on the 
relationships of (Xi, Xj, Xo), if the triplet exceeds the filtering 
step, a directed edge from taxa i to taxa o will identify coop-
eration, and on the other hand, from i to j competition. The 
authors state that RMN may not be able to identify linear 
correlations that could instead be found with similarity-
based methods. Consequently, the information obtained on 
the complex relationships between taxa via RMN could be 
complementary to that obtained from methods that exploit 
similarity to have a greater resolution on microbial interac-
tion landscape. 

3.3.3. Modelling Community Dynamic through the Lotka-
Volterra Model 

 Other methods, on the other hand, seek to model the 
dynamics of changes in taxa abundances by considering the 
entire bacterial community. A known model for population 
dynamics is the generalized Lotka-Volterra (gLV) model, 
also called the Ricker model in its discrete form. gLV de-
scribes the temporal evolution of the abundance of taxa i in 
relation to its growth rate and to the bond strength that un-
dertakes with all the other subjects of the population. In de-
tail, the dynamic model is defined as follows: 
!
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where ri is the growth rate of taxa i, mik is a vector which 
takes into account the influence of taxa k on the growth of 

taxa i, and εi is an additive stochastic noise which considers 
the measurement error and possible environmental factors 
influencing abundance changes. The previous differential 
equation can be rewritten considering the definition of de-
rivative of the logarithm as follows: 
!
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 In this way, it is possible to refer to a standard linear 
regression problem in which the objective is the estimation 
of the model interaction coefficients: 

! = !" + !            (5) 
where the element Yti of the response matrix Ynxp is defined 
as the difference ln Xi(t+1) - ln Xi(t), Enxp is the matrix con-
taining errors, Φnx(p+1) is the design matrix of the abundance 
measures, and the parameters matrix Ξ (p +1)xp is formed by 
the vector of the growth rates gp flanked by the coefficients 
matrix Mpxp (Ξ = [g; M]). In practice, |mij| determines edges 
weight in the network, while the sign is linked to the direc-
tion of the association between taxa. As a consequence, mij> 
0 involves a beneficial contribution of taxa j to i, vice versa 
mij <0 a competitive relationship, and a null value means no 
association.  
 In the literature, there are several methods that parame-
terize the Lotka-Volterra model. LIMITS [81] is based on 
sparse linear regression. The design matrix Φ is composed 
of relative abundances measure, therefore it is singular. The 
non-invertibility of Φ causes impossibility in using the Least 
Square estimate procedure. As seen above, the sparsity hy-
pothesis of the intersections is necessary in order to identify 
the model. The basic idea of LIMITS is to iteratively con-
sider an increasing number of non-zero coefficients mij in 
the regression until the prediction error of the model reaches 
a predefined threshold. For each step of the greedy algo-
rithm, a bootstrap aggregation or "bagging" method is used 
to control the instability that occurs in the forward stepwise 
regression procedure. Briefly, the entire available dataset is 
randomly half divided into training and test sets. Then, for 
each taxon i, the model coefficients on the training set are 
estimated considering at each step the j-th taxon, which 
leads to a lower prediction error on the test set. The error 
threshold determines the sparsity of the model, since the 
procedure ends at the j-th taxon if the prediction error 
reaches it. Finally, a network is obtained from the matrix of 
the coefficients M. The entire algorithm is repeated several 
times resulting in B coefficient matrices, where B indicates 
the bootstrap number. Finally, MB matrices are aggregated 
by calculating the median of the coefficients of each model 
with respect to all B instances. The authors choose the me-
dian as the aggregation metric because it preserves the spar-
sity of the final interaction matrix and improves its stability. 
 MetaMIS [82], on the other hand, estimates the model 
coefficients by relying on the Partial Least Square Regres-
sion technique. After that, the estimated M interactions are 
replaced in the gLV model to assess the reliability of the 
reconstructed time profiles. The method sorts the taxa based 
on the average abundance value with respect to all the sam-
ples in the dataset. Several networks are reconstructed con-
sidering a set of taxa that grows with each new added ele-
ment that follows a decreasing order of the ranking (from 
high to low abundance taxa). The application of the gLV 
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model for each set of taxa determines the success or failure 
in the reconstruction of the abundance profile in the estab-
lished time interval. Successful interaction networks are 
maintained, and a final consensus network can be built us-
ing one sample Z-test calculated on the proportions. In prac-
tice, for each coefficient mij, there will be n+

ij positive and n-

ij negative interactions, so if the ratio n+
ij / (n+

ij + n-
ij) is sta-

tistically greater than a predefined threshold, then the posi-
tive direction is consistent across networks, similarly for 
negative relationships.  
 In analogy with previous work in cross-sectional studies 
[67], MTPLasso [83] tries to solve the regression problem 
exploiting information on known interactions between taxa 
from the literature. Starting from the gLV model parameter-
ized as in Eq. (5), the authors formulate the Lasso regression 
with the mean square error in the objective function flanked 
by l1-penalty on the interaction matrix. To treat the high 
dimensional problem, the authors introduce a prior matrix P 
that multiplies (element-wise) the interaction matrix in the l1 
norm of the objective function. P is obtained by assigning a 
weight to the interactions identified by the precision matrix 
estimated with the MPLasso framework. The penalty pa-
rameter λ is selected by a 5-fold cross-validation procedure. 
To stabilize the accuracy of the model used, several interac-
tion matrices are estimated following the bootstrap aggre-
gating approach. Finally, for each mij, on the median interac-
tion matrix, a confidence score is calculated, taking into 
account model performance with and without the presence 
of the corresponding coefficient. The final network is ob-
tained by selecting the relationships based on the previously 
calculated score. 

3.3.4. Modelling Community Dynamic through Auto-
regressive Model 

 Another widely-used tool to estimate the dynamics of 
the time series is the autoregressive integrated moving aver-
age (ARIMA) model. In short, the model is composed of: an 
autoregressive component “AR”, which considers the time-
variance of the variable of interest as a regression of its pre-
vious values; an integrated part “I” which treats the variable 
as a difference with its former values; finally a linear propa-
gation of the error in the preceding instants is the “MA” 
element. To clarify, the ARIMA model for a generic taxon 
of interest is defined by: 
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where Ψ is the matrix of the interactions, Λ is the coeffi-
cients matrix of the residual error ε, while parameter u is the 
number of lag in AR part, d is the degree in the differencing 
process k, and q is the error propagation order.  
 In a study by Ridenhour et al. [84], the ARIMA model is 
used to describe the temporal evolution of the bacterial 
community as above. The authors choose to consider the 
error on the counts measurement as a Poisson process. As a 
consequence, they rewrite the model as a log-linked Poisson 
regression. The parameter estimation requires a regulariza-
tion algorithm to achieve the best performance with the min-
imum number of interactions, due to the usual high-
dimensionality problem. Therefore, the authors choose the 
elastic-net approach that introduces l1 and l2 norm penalties 
to the parameters vector in the objective functions. The op-

timal value of the penalty coefficients is obtained using the 
cross-validation procedure. The authors use a linear model 
corresponding to a first-order ARIMA model, i.e., ARI-
MA(1,0,0), to analyse a real dataset because the limited 
number of samples suggests limiting the model complexity. 
However, a high-order model or a different choice of pa-
rameters u, d, q can be used to describe a more complex 
dynamic with the awareness that the number of parameters 
to be estimated in the model and the difficulty in interpret-
ing the interaction coefficients will increase. 

3.3.5. Modelling Community Dynamic through the 
Granger Model 

 Another approach used to determine a causal relation-
ship is based on the concept of Granger Causality. Follow-
ing the definition, if a time series Xi can be better predicted 
considering the past history of both Xi and Xj rather than just 
Xi's past, then taxon Xj G-causes Xi (Xj →Xi) [85, 86]. There-
fore, using an autoregressive representation, the comparison 
is made between the models: 
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where α and β are the time regression coefficients, while ε 
and ξ the autoregressive prediction error of the two models. 
Xj G-causes Xi , Xj → Xi, when the variance of ε(t) decreases 
with the introduction of the Xj series in the model. The con-
cept can be extended to the multivariate case in which p taxa 
are involved in the model. In practice, the conditional 
Granger model can be rewritten as follows: 
!! = !!!!!! + !!!!!! +⋯+ !!!!!! + !!            (9) 

where A is the matrix of the regression coefficients. When 
Aij

t* is statistically significant for a generic instant t* then
. Consequently, an edge can be drawn in the adja-

cency matrix θt, which describes the network of relation-
ships for the corresponding time point. In general, the model 
leads to reconstruct a graph of n×p nodes.  
 Mainali et al. [87] developed TIME, where a Granger 
framework is used for finding causal relationships among all 
taxa. The authors implement three different approaches that 
can be chosen by the user. The first is based on the inference 
of the pairwise Granger causality for each pair Xi and Xj 
starting from the comparison of the two regressions de-
scribed in Eqs. (7 and 8). The second one estimates the coef-
ficients in the multivariate case using a Granger Lasso with 
a regularization procedure to deal with a high number of 
parameters in the model. The third method consists of an 
ensemble approach which selects the pairs of nodes Xj → Xi 
identified by both the previous options. 

4. BENCHMARKING STUDIES 

 All the aforementioned methods deal with the interactions 
inference problem through different approaches or hypothe-
ses, or formulations of the solution strategy. Since it is impos-
sible to know the complex reality of the interactions that oc-
cur within a real microbial community, the authors usually 
demonstrate the best performance of their method on simulat-
ed data (section 5), or validate the associations found by 
comparing them with the literature. In Fig. (2), a graph is 
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shown to describe the comparisons made between methods 
presented in this review. Each node represents a network 
inference tool, with edges going from the method presenting a 
paper in which the comparison is proposed to the literature 
methods compared with it. Looking at the number of edges 
entering different nodes, it can be observed that CCREPE, 
SparCC and SPIEC-EASI are the most used methods in per-
formance assessments. A possible reason is that they were 
developed less recently, so they are the most used tools in 
many analyses. The Spearman and Pearson correlation-based 
methods are used as the baseline for comparisons also by re-
cently developed methods such as SPRING and BAnOCC. 
The figure also highlights the limited number of comparisons 
between time series methods (in the box square), although 
some of them use simulated data to test hypotheses or the 
effect of the parameters of the model used. The results of 
multiple comparisons between several methods and the same 
target tool are influenced by design used in each individual 
collation. Indeed, the use of different simulation frameworks 
or performance evaluation metrics complicates the possibility 
of drawing general conclusions regarding the reliability of the 
target.  
 

 
Fig. (2). Comparison graph. Each node corresponds to a method 
mentioned in the review. An edge from node A to node B means 
that in the article of method A there is a comparison between 
method A and method B in simulated context. The methods inside 
a circle deal with cross-sectional data, while in square with time 
series. Pearson and Spearman nodes do not have a specific form 
since they are correlation measures that can be applied to any pro-
file vector. The graph was built with the R package network using 
circle layout option.  
 Benchmark articles represent an independent, simultane-
ous assessment between many network reconstruction 
methods. Consequently, they are a valid tool to understand 
the performance of the developed algorithms. Recently, 
Hirano et al. [88] tested several correlation-based methods, 
such as Pearson, Spearman, MIC, SparCC, REBACCA, and 
CCLasso, and graphical model-based, i.e., Pearson's partial 
correlation, Spearman's partial correlation, and SPIEC-
EASI. Within the two categories, some methods are based 
on a compositional approach, while others on a measure of 

count association. The results seem to demonstrate that 
compositional approaches have comparable or sometimes 
lower performance compared to correlation-based. Howev-
er, authors highlight the dependency of the results on the 
type of associations between taxa, which causes a difficult 
interpretation of co-occurrence networks. To the best of our 
knowledge, there is no benchmark in the literature that con-
siders all the static methods mentioned in this review simul-
taneously.  
 The lack of independent comparative studies also char-
acterizes the time series landscape. In general, there are 
comparisons between different configurations of the same 
approach. For example, Chen et al. [89] showed in a simu-
lated study that the use of the Granger causality calculated 
on each pair of time series individually (pair-wise formula-
tion) can lead to the reconstruction of spurious causal links. 
On the contrary, the multivariate approach (conditional 
Granger causality) is more robust to these errors. 
 The importance of this research area and the continuous 
development of new methods requires a careful and deeper 
evaluation in order to identify the best performing ap-
proaches. 
 An important step to assess methods performance in the 
absence of biological truth is the simulation of microbial 
community networks and, consistently, in silico sequencing 
count data originating from microbial interactions. 

5. SIMULATING SYNTHETIC COUNT DATA 

 The tools infer the complex web of microbial interac-
tions starting from abundance data, but in the absence of a 
ground truth network, it is impossible to verify the reliabil-
ity of the estimates. In order to demonstrate the performance 
of inference methods, synthetic data generation is necessary. 
The challenge is to simulate count data that reflect a realistic 
output of a sequencing process by imposing a known de-
pendency structure between variables. The simulation 
frameworks are, therefore, divided into two steps. First, 
there is a need to define an underlying structure of the inter-
action between each taxon, i.e., which variables are in-
volved in the network and the strength of the relationship. 
The second goal is to find a count data model that simulates 
abundance profiles conditioned by the imposed relational 
structure. At the end of the entire procedure, a comparison 
between the network inferred by the methods and that im-
posed in the generative process needs to be carried out to 
evaluate the reconstruction performance.  
 Fig. (3) shows a scheme of the steps that constitute the 
general simulation strategy. In paragraphs 5.1 and 5.2, we 
describe in detail two different approaches used to define a 
ground truth of associations between variables (the two dif-
ferent ways in the figure). Subsequently, in section 5.3, we 
summarize several models used to produce the final matri-
ces of the abundances (i.e. the last step in the framework). 
Besides, Table 3 provides an overview of the simulation 
procedures that the single tools use to perform a comparison 
with other methods. 

5.1. Network Structure Generation 

 A graph of microbial interactions can have different top-
ological characteristics that describe the natural mechanisms 
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established between the members of the community in a 
given ecological niche. Simulating a network similar to a 
possible ecological scenario corresponds to generate an ad-
jacency matrix θ starting from different hypotheses on the 
properties of the graph. Remembering that the adjacency 
matrix only describes the presence or absence of the edges 
between the nodes, it is necessary to subsequently define 
weight of the interaction strength in order to obtain the 
ground truth of the associations. Many of the methods in the 
review use this approach to simulate synthetic data with 
different underlying topology. In subsections 5.1.1 and 
5.1.2, we describe the different topologies considered and 
the common methodologies for assigning the strength 
scores. 
 

 
Fig. (3). Scheme of the overall synthetic count data procedure. The 
two approaches for generating association structures are shown 
separately. Both alternatives produce the ground truth network, 
which represents the input to the count data simulation step.  

5.1.1. Network Structure Topologies 

 The simulation of a taxa interaction network of a bacterial 
community is challenging. Firstly, it is necessary to have an 
idea of the possible structure that could be observed within a 
real ecological scenario. Generally, the network topology is 
influenced by specific environmental conditions. For exam-
ple, in the hypothesis that a particular niche favors only one 
species that dominates all the others, the resulting network 
will have a hub node (parent) highly connected to other 
sparsely connected nodes. In a simulated context, a network 
inference method must be robust to the variability of the pos-
sible relationship schemes. Therefore, some of the previously 
seen methods use a simulation framework, for performance 
comparison purposes, which considers different graph 
structures in the process of synthetic data generation. In the 
literature, there are several topological models used to create 
a graph with a defined structure and properties. In the follow-

ing, we will summarize only the approaches that the tools use 
to create synthetic data with a known underlying network.  
• Random Graph: It is a network built on a probability 

distribution of nodes or by a random process that models 
the graph, such as the Erdös-Renyi model. Considering 
the total number of possible edges e, to obtain a random 
configuration, it is necessary to set the probability of 
connection PRG between two taxa. The sparsity level of 
the network depends on the chosen probability that de-
termines the value 1 in the adjacency matrix.  

• Neighbor Graph: It is a graph where each node is con-
nected with a fixed number of neighbors. In a [0,1]2 
plane, p points are randomly selected. Subsequently, for 
each point, an edge is assigned linking the K nearest 
neighbors. 

• Band Graph: It is a chain graph with each node linked 
to its K nearest. For each node pair (Xi,Xj), an edge is set 
in the corresponding adjacency matrix when 1<|i-j|<K. 
Another approach (B2 in Table 3) iteratively sets edges 
in the adjacency matrix for the next available off-
diagonal vector, if the number of available edges is 
greater than the off-diagonal components. 

• Hub Graph: It is a type of network that includes inde-
pendent subnets characterized by hub nodes with a high 
degree. The first option is to choose g points at random 
as hub nodes. Then, the other p-g nodes are connected to 
hubs with a defined probability Ph and to non-hubs with 
Pnh. Another way (H2 in Table 3) is to divide nodes into 
g random groups. Then, for each group, a center node is 
connected to the others.  

• Cluster Graph: It is a network made up of independent 
subnets. Basically, p nodes are clustered in g independ-
ent groups with equal size. Then, the number of edges 
for each subnet is set to esub. Then, the Erdös-Renyi 
model is used to construct a random graph for each 
group with a defined edge probability Pc. Another ap-
proach used to create a cluster graph (denoted as C2 in 
Table 3) consists of assigning an edge with probability 
Pc for each pair in the uniformly distinct g groups. 

• Block Graph: In general, the network has several 
sparsely connected blocks. To obtain this type of net-
work, methods divide the nodes set in blocks of the same 
dimension. An edge between node couples in the same 
block is assigned with high probability Psb, while the 
connection between nodes belonging to different blocks 
has a lower probability Pdb. 

• Scale-free Graph: It is a network with the property that 
the node degree follows a power law, so the probability 
that a node is connected with other h nodes is a decreas-
ing exponential with base h. Usually, methods use the 
Barabàsi-Albert (B-A) scheme [90] to generate this type 
of graph. In brief, the algorithm starts with 1 or 2 nodes, 
then each new node is iteratively connected to c nodes in 
the network with a probability dependent on the node 
degree in the building network. Alternatively, the 
Chung–Lu model [91] can be used to build scale free 
networks. Edges connect nodes based on node weight 
(i+i0-1)ζ, where ζ in [0,1] is node index, and i0 is a con-
stant. The output network follows a power law in which 
the exponential parameter is related to ζ.  
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• Small-world Network: It is a network where many nodes 
are not directly connected to each other, but each node can 
reach any node on the network through a short path. 
Watts–Strogatz model [92] is usually used to generate this 
type of network. Briefly, the algorithm starts building a 
ring lattice with p nodes and E(deg)/2 edges that connect 
each node neighbors on both sides, where E(deg) is the 
desired mean degree. Then, for each edge, the algorithm 
proceeds with rewiring the target node given a predefined 
probability Psw avoiding duplicate and self-loop. 

5.1.2. Interaction Score Assignment 

 When the network structure θ is simulated, the next step 
is to set the strength of the interaction, i.e., the weight of the 
edges. As seen previously, the inference methods are based 
on the estimation of the covariance matrix Γ, the precision 
matrix Ω or directly the network adjacency matrix θ. There-
fore, the basic idea is to generate one of these matrices by 
choosing correlation values, conditional dependence, or 
coefficients for non-zero values of θ. There are mainly 4 
different methodologies: 
1. Assign Values to Γ: Some authors directly set the ele-

ments of Γ with a defined strength value, depending on 
the type of network considered. Then, the components in 
the diagonal of the matrix are chosen sufficiently large 
to ensure that the covariance matrix is positive-definite, 
and then the elements are normalized to 1.  

2. Assign Values to M: In the dynamic model, M scores 
are usually obtained from different uniform distribu-
tions. If the authors decide to consider the type of inter-
action between taxa in design M, the Mij and Mji ele-
ments are set based on the sign score. 

3. Assign Values to Ω (first method): The approach is to 
assign at the corresponding non-null entries in θ a correla-
tion strength score sampled uniformly in a given interval. 
The certainty that the Ω is positive-definite with a prede-
fined number of conditions κ is given by scaling the diag-
onal for a constant using binary search. The Γ obtained by 
reversing the precision matrix is then rescaled. A variant 
of the previous method consists of assigning the values to 
Ω from a uniform distribution to the corresponding non-
null elements of the lower triangular matrix of θ. Then, 
the elements of the upper triangular part are set equal to 
their symmetrical element in the lower part. The diagonal 
is imposed on a constant in order to obtain an Ω with a 
predefined number of conditions κ. 

4. Assign Values to Ω (second method): In the R huge 
package [93], often used to generate the types of net-
works cited in the previous section, a different strategy is 
adopted to ensure a positive-definite Ω. The smallest ei-
genvalue of θ · v is calculated, where v is a parameter 
that controls the magnitude of partial correlations. The 
final precision matrix is θ = θ · v + (| min(eig) | + 0.1 + 
u) I, where min(eig) is the minimum eigenvalue calcu-
lated before, u is a shift parameter for the diagonal, and I 
the identity diagonal matrix. At the end of all the proce-
dures described, Γ will be available inverting θ.  

5.2. Network Structure without Topology Assignment 

 Testing the developed methods is important to provide 
the robustness of the method in relation to different bacterial 

communities’ scenarios. However, some procedures do not 
take into account topologies in the synthetic count generative 
process, but directly design association pattern in Γ or Ω.  
 SparCC uses a simulation approach where communities 
are modeled by a multivariate log normal distribution. The 
elements of µ are the same except for one taxon, which is 
chosen in order to ensure a given neff on average for the 
community. In addition, variance values are constant and Γ 
is obtained by defining for each pair of taxa a certain proba-
bility of perfect positive or negative correlation. Finally, Γ is 
transformed into the nearest positive-definite matrix for in-
vertibility assurance.  
 In BanOCC, the authors use the model adopted by the 
method to generate a small synthetic dataset. Basically, they 
start from a given correlation structure of the true abundanc-
es with no true correlations or at least one. Then, they set 
different parameters to obtain a final count matrix with sev-
eral scenarios of negative spurious correlation induced. Be-
sides, other simulations are conduced starting from a real-
data template of correlation structure, where all the p/2 ran-
dom selected off-diagonal values are set to the same 
strength. 
 In the MDiNE simulation approach, the Ω is obtained by 
Cholesky decomposition. In practice, the authors define a 
lower triangular matrix L0 by sampling from two different 
uniform distributions for each entry and for the diagonal 
elements. Subsequently, Ω is obtained by decomposition Ω 
= L0L0

T. Then, the authors use the NorTA approach [94] 
with Γ derived from the previously precision matrix. We 
delve into this approach in the next section.  
 In LIMITS, the Ricker model is used to simulate the 
temporal abundance profile. In this discrete form, the re-
gression of species i abundance involves the difference be-
tween all other species and their abundance at the equilibri-
um of the system. Therefore, the generative process starts 
sampling abundances Xi at equilibrium from a lognormal 
distribution. Then, the interaction matrix is built with the 
coefficients in the diagonal mii sampled from a uniform dis-
tribution dependent on the equilibrium point Xi. The off-
diagonal parameters mij are added up one by one to the 
model stability maintenance and all the interaction coeffi-
cients are determined.  
 RMN builds, for assessment purposes, a predefined rela-
tional scheme using tanh functions to simulate a regulation 
network composed of 10 nodes. In detail, given a network 
of 10 nodes and 3 latent factors, the authors build a system 
of equations that describe the links between the i-th taxon 
and its connected nodes. 

5.3. Simulation of True Abundances and Count Data 

 Each community sample is composed of a set of reads 
that characterize the different species present within it. The 
count values can be interpreted as the result of a random 
sampling of the reads, based on the fact that a DNA sample 
can be seen as a collection of fragments taken from the spe-
cies present within it and then DNA sequencing can be 
compared to a random sampling of the species. A classical 
approach for modelling count data is by using a Poisson ran-
dom variable, thinking that each DNA fragment has the same
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Table 3. Summary of the generative processes used by the inference methods present in the review to evaluate performance 
against the ground truth structure. 

Method Network Structure 
Score  

Assignment 
Count Data Sim-

ulation 
Assessment Metrics 

MDiNE Ω obtained by Cholesky decomposi-
tion 

- NorTA 
-AUROC and AUROC of edge difference be-

tween two precision matrix ΩA , ΩB 

-Wnc 

SPRING 

-Band (B2) 

-Cluster 

-Scale-free (B-A) 

method 3 

(variant) 

 

NorTA 

-dij 

-scatter plot (estimate vs true correlation). 

-PR curve 

-AUPRC 

-dH (in relation to the tuning parameter) 

-average number of overlapping edges between 
methods 

MPLasso 

-Cluster (C2) 

-Band 

-Scale-free 

-Random 

-Hub (H2) 

method 4 
-ln (y) ⁓N (µ, Γ) 

-y⁓NB 

-AUPRC 

-ACC (also on edge sign recovery for log nor-
mal model) 

-L1 

gCoda 

-Random  

-Neighbor  

-Band  

-Hub 

-Block 

method 1 ln (y) ⁓N (µ, Γ) 
-AUROC 

-ROC curve 

BAnOCC 

- 4 correlation scenarios 

- log-basis correlation set on differ-
ent strength 

 

- 

- model of the 
method  

 

-sparseDOSSA  

-heatmap of the estimates and significance of 
correlations 

-Type I error rate 

-Type II error rate 

-AUROC  

-ROC curve 

MTPLasso 
-Random   

-Scale-free 
method 2 gLV 

-AUPRC 

-IACC 

Ridenhour et al.  
-Small-world (Watts-Strogatz) 

method 2 Xi(t+1)=Xi(t)eCiX(t) 
-ROC curve 

-MSE 

SPIEC-EASI 

-Band: (B2) 

-Cluster 

-Scale-free (B-A) 

method 3 NorTA 

-PR curve 

-AUPRC 

-node degree 

-betweenness centrality 

-geodesic distance 

REBACCA 

-3 fix structure:  

case 1: hierarchical structure  

case 2: 4 mostly negative correlated 
taxa 

case3: 3 correlated cluster groups  

-Scale-free (B-A) 

-Cluster 

method 1 

-y⁓log ratio nor-
mal (LRN) 

- y⁓Poisson log 
normal (LNP) 

- y⁓Dirichlet log 
normal (LND) 

+ 

multinomial dis-
tribution with 

given sample size 

-AUROC 

-ROC curve 

-FP rate 

 

 

 

 

 

(Table 3) contd…. 
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Method Network Structure 
Score  

Assignment 
Count Data Sim-

ulation 
Assessment Metrics 

CCLasso 

-Random 

-Neighbor 

-Band 

-Hub 

-Block 

method 1 ln (y) ⁓N (µ, Γ) 

-AUROC 

-ROC curve 

-RMSE 

-dF 

RMN 
- Association structure imposed by 

the system 
- 

system of tanh 
equation with 3 

latent factors 
considered 

-TP rate 

-TN rate 

-accuracy 

-F measure 

-Pr values 

LIMITS 
- mii sampled from a uniform distri-

bution, mij are iteratively added up to 
the model stability maintenance 

method 2 

 
gLV 

-scatter plot (interactions vs correlation coeffi-
cients) 

-scatter plot (true interactions vs estimated 
interactions) for both abundance and relative 

abundance values. 

-correlation between true and inferred interac-
tions  

-Frequency of error in interaction sign 

-sensitivity and specificity 

SparCC 
-random Γ where each OTU pair has 
a given probability of being perfect-

ly correlated 
method 1 ln (y) ⁓N (µ, Γ)  

-Visual comparison of network 

-RMSE 

Ω = precision matrix;  mij = interaction coefficients of M ; Γ = covariance matrix;  y = true compositional abundance; µ = the mean abundance vector; x(t)= abundance of taxon i in 
t;  Wnc= Weighted natural connectivity; dij= pairwise absolute difference; dH= Hamming distance; dF= Frobenius norm distance; Pr=probability of prediction for pairs with less 
than 0.5 of non linear correlation coefficient. 

chance of being selected for sequencing and the fragments 
are selected independently [95]. However, taking into ac-
count biological noise, i.e., the number of fragments for the 
same species among different samples, is affected by bio-
logical variability. The Negative Binomial (NB) distribution 
has been adopted in sequencing count data modelization 
[96, 97]. However, as previously mentioned, 16S sequenc-
ing data are also characterized by a high sparsity. To model 
this characteristic, a mixed-model zero-inflated approach, 
such as zero-inflated negative binomial distribution (ziNB) 
is often used, which is a mixture of Negative Binomial 
(ZINB) models with a point mass at zero [98, 99]. More 
recently, Patuzzi et al. [100] proposed a model based on a 
Gamma – Multivariate Hypergeometric distribution, able to 
describe the compositional nature of 16S sequencing count 
data, thus explicitly accounting for the constraint imposed 
by the fact that sequencing platforms can produce reads only 
up to their capacity (i.e., the sequencing depth).  
 In any case, the simulation of count data must proceed 
from the simulation of true abundances that should reflect the 
topology of a known network. For example, if we assume that 
the true compositional abundance y follows a log normal dis-
tribution with mean µ and covariance matrix Γ, ln(y)⁓N(µ,Γ), 
then the simulated observed relative value can be calculated 
as xi = yi / Σyi with i = 1,2,…, p where p is the number of taxa. 
In REBACCA, the generative process is essentially composed 
of two steps. First, the true basis proportion of each taxon is 

given by a log normal multivariate distribution with zero 
mean and a defined covariance matrix Γ. The true abundance 
values given the proportion obtained are modeled by a Pois-
son log normal distribution and proportions are recalculated. 
In alternative, the true basis proportions are obtained from the 
same normal distribution with given mean and Γ and the final 
values are sampled using a Dirichlet log normal. The second 
step draws counts values from a Multinomial distribution 
using the true proportions as probabilities and given sequenc-
ing depth (corresponding to the number of extractions). All 
models require the definition of the mean true abundances µ 
vector, which control the balance of the components. Gener-
ally, each element of µ vector is sampled by a multivariate 
uniform distribution.  
 SPIEC-EASI proposes a simulation strategy based on 
the Normal to Anything (NorTA) approach to simulate 
count matrices with a known underlying structure. In short, 
the method allows to generate a multivariate distribution 
with a defined correlation structure and with a defined uni-
variate marginal distribution starting from a normal multi-
variate distribution. Firstly, a p×s matrix U with independ-
ent rows drawn from a multivariate normal distribution 
N(µ,Γ) is generated, where p is the number of taxa and s is 
the number of samples. Then, for each column of U, each 
marginal element is transformed using cumulative distribu-
tion function (CDF) of univariate normal distribution. Final-
ly, data are generated from the inverse CDF of the desired 
marginal distribution for each column of the transformed U. 
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 In SPIEC-EASI, the marginal distribution chosen by the 
authors is the ziNB. Parameters of the marginal distribution 
are estimated from real data using R package VGAM [101]. 
However, in SPRING, the authors show that taking the in-
verse of the empirical cumulative distribution function 
(ecdf) calculated independently for each OTU leads to syn-
thetic data that are more reliable. 
 Another way to simulate abundance matrices that reflect 
a realistic data structure is proposed in BAnOCC. In particu-
lar, the authors use SparseDOSSA [102] simulator, which 
can consider known correlation structures in the generative 
process. Each taxon has a marginal distribution modeled by 
a zero-inflated, truncated log-normal distribution where pa-
rameters are obtained from a log normal distribution with a 
given correlation matrix. 
 The gLV model is also used to generate microbial popu-
lation abundances given a defined interaction matrix M. In 
the previously cited comparison [88], taxa abundances de-
rive from the model after 1000 time points in which the 
steady state has already been reached. The initial abundanc-
es values are sampled independently from a Poisson distri-
bution of average 100 and a total population of 100n, while 
the growth rates r are sampled from a uniform distribution. 
Finally, the relative abundances are obtained by dividing 
each Xi by the total sum of the population. The simulation 
procedure used in MTPLasso, sets the growth rates vector in 
a different interval, while the M elements on diagonal mii 
and outside the diagonal mij are sampled by two different 
uniform distributions excluding zero, because it would elim-
inate edges from the underlying structure.  
 In the simulation framework used by Ridenhour et al. 
[84], the abundance value of each taxon is chosen by a 
negative binomial distribution with defined parameters. The 
generative model assumed follows an exponential growth of 
the abundances of each i-th taxon over time 
Xi(t+1)=Xi(t)eCiX(t), where Ci is the weights vector in the i-th 
row of the adjacency matrix.  

5.4. Simulation Parameters 

 In a simulated context, researchers can manage covari-
ates not possible in a real dataset. Usually, the above-
mentioned approaches are used to simulate different syn-
thetic data by varying the number p of taxa present in the 
dataset and the number s of samples or n of time points. 
Then for each configuration and, where used, each network 
structure θ, several datasets are generated. In the time series 
scenario, an additional parameter is usually considered to intro-
duce a noise component in the simulation. In MTPLasso, for 
example, different additive noise levels in the gLV model are 
tested, while in RMN, a random noise component is added to 
the equations in the system. 

6. METRICS TO ASSESS METHOD PERFORMANCE 

 Synthetic networks represent the ground truth on which 
comparisons are made. Different metrics are then used to 
evaluate and summarize the differences between the simu-
lated reality and the inferred networks.  
 The choice of metrics to be used in the comparison be-
tween the simulated ground truth and the inferred network is 
extremely important.  

 Indeed, the evaluation should be carried out in an unbi-
ased way, without favoring some methods with respect to 
others. Generally, the performance evaluation is carried out 
using metrics that look at two different aspects: the correct 
edges identification, and the maintenance of the characteris-
tic properties of the topology considered. 

6.1. Edge Recovery Metrics 

 Correct edge recovery, i.e., the ability to reconstruct the 
true relationships between the nodes of the network, can be 
calculated in a static way, in terms of the number of true posi-
tives (TP) and true negatives (TN), also accounting for the 
statistical significance of the inferred edges. In this review, 
we have seen how many methods associate a p-value to each 
edge of the network. In the graphical-based methods, on the 
other hand, pseudo p-values are obtained from the stability 
score in correspondence with the chosen regularization pa-
rameter. The calculated p-values are sorted and a Precision-
Recall curve is calculated as the threshold changes across the 
p-value range. In particular, the values of the contingency 
matrix (i.e., TP, TN, FP, FN) consider the presence-absence 
of the edge with respect to the underlying network and, where 
possible, the sign of the association. The performance can 
then be summarized with the area under the PR curve 
(AUPRC) to assess the performance in terms of precision and 
recall of network edge detection or, similarly, with the area 
under the Receiver Operating Characteristic curve (AUROC), 
to assess the performance in terms of specificity and recall. 
The AUPRC reaches its maximum when the estimated net-
work is perfectly reconstructed (AUPRC = 1), whereas 
AUPRC = 0.5 corresponds to the performance of random 
relationship assignments. Different AUPRC, obtained across 
different simulations, can be averaged and their distribution 
can be considered to compare the performance of different 
methods under different scenarios. The same considerations 
regarding the interpretation of the values of the areas can be 
done for AUROC. The main difference is that AUPRC curves 
do not take into account true negative, so precision is affected 
by how rare the true values of the positive class are. Conse-
quently, AUPRC is usually used when there is an unbalance 
between the two possible classes.  
 As a parallel approach, in MPLasso, the authors use an 
accuracy estimate (ACC), which takes into account the total 
number of pairwise correlations (nc) defining ACC= 
(TP+TN)/nc.  
 Other metrics are used to test the performance, not only 
in terms of identified edges, but also with respect to the 
weight of the association identified. Usually, the evaluation 
is done by comparing the values of the correlation, precision 
or interaction matrix with the related ground truth matrix, 
based on the type of inference method used.  
 In MTPLasso, the authors exploit the Interaction Type 
Classification Accuracy (IACC) calculated as the fraction of 
correctly estimated interacting interactions, since the meth-
od deals with time-series data. In addition, distance metrics 
between matrices are used to quantify the differences be-
tween estimates and simulated values, such as pairwise ab-
solute difference dij, Hamming distance dH, L1 distance be-
tween matrix, mean square error (MSE) or its rooted version 
(RMSE), Frobenius norm distance dF.  
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6.2. Network Topology Metrics 

 In the previous section, different types of networks have 
been described. Each graph has different properties charac-
teristic of the topology considered. For example, scale-free 
or hub graphs have few nodes with a high degree, while in 
band graphs, the degree is constant on all nodes. As pointed 
out previously [49], the main properties concern node de-
gree distribution, Hub nodes, modularity and average short-
est path length. Usually, these aspects are investigated in 
networks reconstructed on real data in order to find known 
associations between taxa in the microbial population. In the 
literature, several topological measures have been proposed. 
In MENAP [73] paper, there is a useful comprehensive de-
scription of network topological indices.  
 In a simulated context, authors sometimes verify that 
network properties are efficiently reconstructed by their own 
methods. In SPIEC-EASI, the authors compare the node 
degree, betweenness centrality and geodesic distance distri-
butions of the real and estimated network using the Kull-
back – Leibler divergence as a comparison measure. In 
MDiNE, the authors rely on Weighted natural connectivity 
(Wnc) [103] as a measure of the overall network structure. 
Wnc measures how much edge removal affects network 
connectivity. Wnc measures on inferred networks are com-
pared with those on simulated data by calculating the log 
squared error.  

7. OPEN CHALLENGES AND PERSPECTIVES 

 Despite the strong efforts of scientific research to recon-
struct microbial network interactions, some challenges are 
still open. We have already seen how numerous are the tools 
that deal with the problem related to data compositionality 
and sparsity. However, the recent comparison by Hirano et 
al. [88] shows that the compositional approach does not 
always lead to a better inferred network. Accordingly, fur-
ther insights through independent benchmarking studies are 
still needed to evaluate this aspect. Data imputation 
represents a frontier yet little explored in the microbiota 
research landscape. However, the identification of the real 
and technical zeros and the subsequent recovery of the 
information on the abundances lost due to the sequencing 
process could help reduce sparsity.  
 A consolidated phenomenon that also emerges from 
simulation studies concerns the positive effect of increasing 
the number of samples or time points in interactions recov-
ery. In cross-sectional studies, a higher number of samples 
could allow to relax the sparsity hypothesis or to improve 
model identifiability, addressing the problem of a high 
number of taxa with respect to the number of samples. Alt-
hough the costs of sequencing are continuously falling, in-
creasing the number of samples can still be expensive. Fur-
thermore, in many cases, it is difficult to gather or find nu-
merous samples useful for the study of interest. The risk is 
an increase in the time required to carry out the entire re-
search with a consequent greater expenditure of resources. 
Most importantly, design issues generally limit the possibil-
ity of overcoming the problem of high dimensionality in 
microbiota data. To reduce the number of rows in the 
OTU/ASV tables, one could think of carrying out studies at 
higher taxonomic levels such as family or order. In this way, 
however, some of the potential driver interactions of 

physiological phenomena may not be detectable because 
they are masked by the taxonomic resolution. A potential 
solution is to try to integrate the information inferred by the 
different networks obtained at increasing levels of the taxa 
classification tree. The increase in the samples present in the 
study is mainly linked to the resources available to carry out 
the research. Over the past few years, several consortia, 
international projects and multicenter studies have been 
created with the aim not only of collecting a large amount of 
data, but also of providing guidelines for the treatment and 
analysis of such data. In the future, we expect to see a 
consolidation of databases available to the scientific 
community. In addition, an important ever closer 
perspective is represented by multi-omics studies that seek 
to associate microbiome data with the genome, epigenome, 
transcriptome and metabolome of the human host.  
 Another aspect to consider is that many methods filter the 
data focusing only on the most abundant taxa present in the 
samples. The reason is to remove potential spurious interac-
tions by focusing on core taxa. However, filtered taxa could 
play a crucial role in the development of some mechanisms 
that are established in the community. A possible technique 
could be considered not only the abundance percentage, but 
also the variance observed in the samples. Modelling the 
abundance profile noise could help filter data by reducing 
potential spurious interactions. Again, the correct imputation 
and recovery of the information on low abundance values 
could help to reduce this technical obstacle. 
 There are also limitations related to experimental design. 
In cross-sectional studies, the subjects are sampled at a sin-
gle point in time, but in a bacterial community, interactions 
develop over time. Therefore, if the sampling of different 
subjects is not carried out by checking all the possible fac-
tors that convey the dynamics, the inferred patterns could be 
unrealistic. On the other hand, longitudinal studies enable to 
infer the causal direction and, therefore, to study the whole 
underlying generative mechanism behind the microbial 
ecosystem. The sampling frequency is a crucial point. In-
deed, if samples are not measured at a temporal resolution 
suitable for dynamics variation of the microbial system, they 
will not convey the information to correctly infer the under-
lying interactions, the well-known aliasing phenomenon. 
System biology studies can help in defining the time ranges 
characteristic of the phenomena that guide microbial 
interactions. The knowledge of the time required for the 
development of a certain effect on the bacterial community 
due to a stimulus is of fundamental importance for outlining 
the sampling times. In the future, we expect a growing 
interest in studying the effect of time resolution on the 
network's inference.  
 Cross-sectional studies generally do not allow to esti-
mate the sign of the interaction between species, complicat-
ing the interpretation of the relationship. In the absence of a 
direction, in fact, it is difficult to reconstruct the 
mechanisms that develop in the observed communities, but 
only the driver relationships that determine their 
composition can be identified. A potential solution to the 
absence of directed edges is integration with the results 
obtained through other studies in the literature, e.g., from 
longitudinal studies. Furthermore, this prior information 
could be used to build predictive models related to the new 
co-occurrence interactions found. 
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CONCLUSION 

 In this review, we have summarized different approaches 
related with the microbial community network inference 
problem, specifically from 16S sequencing data.  
 We first introduced several methods based on pairwise 
association metrics that mainly differ in the strategy of as-
signing edge significance, in the use of information on the 
topological structure, and in considering the compositional 
nature of data. Then, we presented some multivariate mod-
els with the aim of estimating the entire interaction struc-
ture. The main distinction is between regression-based mod-
els, where the estimation of the covariance matrix of real 
abundances is obtained by solving a Lasso problem, and 
those that rely on the notion of conditional independence, 
where the estimation process based on Glasso involves the 
precision matrix. Other multivariate approaches, on the oth-
er hand, infer associations using probability theory. In addi-
tion, we presented some methods with the aim of recon-
structing the evolution of microbial interactions exploiting 
the temporal information of the longitudinal data. We saw 
the concept of local association between time profiles as a 
metric of cause-effect relationship that can be established in 
different time-lagged windows. Finally, we have defined the 
different formulations of models that estimate the overall 
dynamic community.  
 Another aspect that we have covered is the importance 
of using simulated data as a necessary evaluation tool in the 
development of new reliable methods. For this purpose, we 
provided an overview of some simulation framework used 
by the methods to generate synthetic count data. We have 
not only seen how to generate several network structures, 
but also how to integrate them into the models used to pro-
duce synthetic abundance data.  
 Although the developed approaches have shown encour-
aging results in several applications, further efforts are still 
needed to ensure greater reliability of the inferred microbial 
interactions. To achieve this goal, not only new statistical or 
computational methods, but also a solid and reliable simula-
tion framework must be improved. The lack of direct obser-
vation of biological ground truth makes it difficult to vali-
date the many interactions that can arise in a complex com-
munity. However, if the method is robust, the results ob-
tained are more trusted, even if in contrast with previously 
observed biological results. Unfortunately, modeling the 
biological ground truth is a difficult task to propose, since it 
is based on hypotheses that may not correspond to the reali-
ty of the phenomenon. For this reason, a simulation frame-
work that considers different network structures, different 
count matrix generation approaches and finally, different 
parameters is desirable. The main idea is that if the inferred 
networks are robust not only with respect to the simulation 
parameters, but also with respect to the different possible 
biological scenarios. With these two objectives achieved, 
interaction networks will surely be one of the most useful 
tools for understanding how to control and manipulate the 
complex micro-world of the microbiota. 

LIST OF ABBREVIATIONS 

16S rRNA = Gene encodes for a small subunit of 
the prokaryotic ribosome 

WGS = Whole Genome Sequencing 
16S rDNA-seq = Targeted amplicon sequencing of 

16S ribosomal RNA 
NGS = Next-Generation Sequencing  
OTU = Operational Taxonomic Unit 
ASV = Amplicon Sequence Variant  
alr = Additive Log-ratio  
clr = Centered Log-ratio  
ilr = Isometric Log-ratio  
DA = Differential Abundance  
MI = Mutual Information 
MIC = Maximal Information Coefficient 
Lasso = Least Absolute Shrinkage and Se-

lection Operator 
Glasso = Graphical Lasso 
MB = Neighborhood Selection of Meinshau-

sen and Bühlmann Method. 
mclr = Modified version of clr proposed 

by SPRING's authors 
LSA = Local Similarity Analysis 
gLV = Generalized Lotka-Volterra Model 
NorTA = Normal to Anything Method 
NB = Negative Binomial 
ziNB = Zero-inflated Negative Binomial 

Distribution 
TP, TN, FP, FN = The values of the contingency ma-

trix: true positive, true negative, 
false positive, false negative 

AUPRC = Area Under the Precision-Recall 
Curve 

AUROC = Area Under the Receiver Operating 
Characteristic Curve 

ACC = Accuracy of the Prediction 
IACC = Interaction Type Classification 

Accuracy 
MSE = Mean Square Error  
RMSE = Rooted Version of MSE 
Wnc = Weighted Natural Connectivity 

LIST OF SYMBOLS 

i, j = Two generic taxa related to the row 
indices i and j of the OTU/ASV ta-
ble 

θ = Adjacency matrix 
Γ = Covariance matrix 
Ω = Precision matrix 
N = Number of neighbors  
Γ’ = Covariance matrix of the true 

abundance 
neff = Shannon effective number 
X-i-j = The abundance value of taxon i, 

compared to all the other j in the da-
taset 

i⊥j|X-i-j = Definition of conditional independ-
ence between two variables 

P = Prior co-occurrence matrix 
ΩA, ΩB = Precision matrix of two groups of 

subjects 
λ = Penalty parameter  
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Qobs = Number of co-presences among all 
samples 

s = Number of samples 
Ps = Exact probability that the two taxa 

co-occur in s samples 
ES = Effect size 
p = Number of taxa 
n = Number of time points 
Xi = [xi(1), xi(2),…, xi(n)] = vector of 

the ith taxon abundances in the n 
temporal instants 

xi(t) = The measure of the ith taxon in the 
generic time point  

t = Generic time point in [1,...,n] 
Xt = [x1(t), x2(t),…, xp(t)] = vector of the 

values of all p taxa in t.  
i, j, o = Generic indices for taxa 
z, w = Generic indices for time points  
LS = Measure of Local Similarity 
l = Length of a time window 
S = Association Score 
k = General index for the summations 

involved in the formulas 
D = The temporal unit of the interested 

interval in LS calculation 
   = Estimated standard relative abun-

dance of Xo 
ri = The growth rate of taxa i in gLV 

model 
mik = Interaction coefficient which takes 

into account the influence of taxa k 
on the growth of taxa i 

εi = An additive stochastic noise in gLV 
model 

Ynxp = The response matrix of the regres-
sion in Eq. (5) 

Enxp = The matrix containing errors in Eq. (5) 
Φnx(p+1) = The design matrix of the abundance 

measures in Eq. 5 
Ξ(p +1)xp = The parameters matrix in Eq. (5) 
gp = Vector of the growth rates  
Mpxp = Interaction coefficients matrix  
B = Bootstrap number 
n+

ij , n-
ij = Number of positive or negative in-

teraction for a generic coefficient mij 
Ψ = The matrix of the interactions in Eq. 

(6) 
Λ = The coefficients matrix of the re-

sidual error ε in Eq. (6) 
u = The number of lag in AR part in Eq. 

(6) 
d = The degree in the differencing pro-

cess k in Eq. (6) 
q = The error propagation order in Eq. (6) 
l1 , l2 = Norm penalties to the parameters 

vector in the objective functions 
Xj →Xi = Definition of Granger causality (Xj 

G-causes Xi) 
α , β = The time regression coefficients in 

Eq. (7-8) 
ε, ξ = The autoregressive prediction error 

of the two models in Eq. (7-8) 
A = The matrix of the regression coeffi-

cients in Eq. (9) 
e = Total number of edges in a generic 

network 
PRG = Probability of connection between 

two taxa in random graph 
K = Number of nearest neighbors 
g = Number of hub points or cluster 

group chosen  
Ph ,Pnh = Probability of connection between 

nodes and hubs 
esub = The number of edges for each clus-

ter graph subnet 
Pc = Edge probability in the cluster sub-

graph 
Psb = Edge probability in the same block 
Pdb = Edge probability in the different 

block 
(i+i0-1)ζ, = Node weight in Chung–Lu model 
E(deg) = Mean degree  
Psw = Rewiring probability in Watts–

Strogatz model 
κ = Number of conditions in Ω 
eig = The eigenvalues of θ · v where v is 

a parameter that controls the mag-
nitude of partial correlations. 

θ=θ · v + (| min(eig) | + 0.1 + u)I 
 = The precision matrix calculated in 

R huge package, where u is a shift 
parameter for the diagonal, and I 
the identity diagonal matrix 

y = True compositional abundance 
µ = Vector of mean abundances 
L0 = Lower triangular matrix used in 

MDiNE simulation approach 
U = A matrix with independent rows 

drawn from a multivariate normal 
distribution. 

Ci = The weights vector in the i-th row 
of the adjacency matrix used in the 
exponential growth model 

nc = The total number of pairwise corre-
lations 

dij = Pairwise absolute difference  
dH = Hamming distance  
L1 = Norm distance between matrix 
dF = Frobenius norm distance 
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