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ABSTRACT
Aim. In recent years, connectivity studies using neuroimaging data have increased
the understanding of the organization of large-scale structural and functional brain
networks. However, data analysis is time consuming as rigorous procedures must
be assured, from structuring data and pre-processing to modality specific data
procedures. Until now, no single toolbox was able to perform such investigations on
truly multimodal image data from beginning to end, including the combination of
different connectivity analyses. Thus, we have developed the Multimodal Imaging
Brain Connectivity Analysis (MIBCA) toolbox with the goal of diminishing time
waste in data processing and to allow an innovative and comprehensive approach to
brain connectivity.
Materials and Methods. The MIBCA toolbox is a fully automated all-in-one
connectivity toolbox that offers pre-processing, connectivity and graph theoretical
analyses of multimodal image data such as diffusion-weighted imaging, functional
magnetic resonance imaging (fMRI) and positron emission tomography (PET). It
was developed in MATLAB environment and pipelines well-known neuroimaging
softwares such as Freesurfer, SPM, FSL, and Diffusion Toolkit. It further implements
routines for the construction of structural, functional and effective or combined
connectivity matrices, as well as, routines for the extraction and calculation of
imaging and graph-theory metrics, the latter using also functions from the Brain
Connectivity Toolbox. Finally, the toolbox performs group statistical analysis
and enables data visualization in the form of matrices, 3D brain graphs and
connectograms. In this paper the MIBCA toolbox is presented by illustrating its
capabilities using multimodal image data from a group of 35 healthy subjects
(19–73 years old) with volumetric T1-weighted, diffusion tensor imaging, and resting
state fMRI data, and 10 subjets with 18F-Altanserin PET data also.
Results. It was observed both a high inter-hemispheric symmetry and an
intra-hemispheric modularity associated with structural data, whilst functional
data presented lower inter-hemispheric symmetry and a high inter-hemispheric
modularity. Furthermore, when testing for differences between two subgroups (<40
and >40 years old adults) we observed a significant reduction in the volume and
thickness, and an increase in the mean diffusivity of most of the subcortical/cortical
regions.
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Conclusion. While bridging the gap between the high numbers of packages and tools
widely available for the neuroimaging community in one toolbox, MIBCA also offers
different possibilities for combining, analysing and visualising data in novel ways,
enabling a better understanding of the human brain.

Subjects Neuroscience, Computational Science
Keywords DTI, MRI, Toolbox, Connectivity, fMRI, PET, MIBCA, Multimodal

INTRODUCTION
For a long time there has been an interest in unravelling the mechanisms and circuitry that

allow human beings to perform very complex tasks. In particular, the study of how the

brain is organized and how different brain regions communicate (brain connectivity) has

been thoroughly studied at several scales. At the microscale, the first techniques were

developed for the measurement of electrical activity in animals (Hodgkin & Huxley,

1952), which allowed for individual neuronal communication and synaptic activity

to be detected. Another approach was to perform post-mortem dissections of neural

tissue and try to infer the architecture of different neuro-anatomical systems (Buren &

Baldwin, 1958). Histological staining was used to distinguish between different types of

neurons (the functional and structural unit of the central nervous system) (Eickhoff et al.,

2006). The first results were obtained by the use of techniques such as animal axonal

tracing, which allows to undercover the neural connections from its origin to where

they project (Schmahmann et al., 2007). However, these studies are unable to show how

the structure is linked to individual functions and are generally of invasive nature or

inapplicable to humans. Therefore, the motivation of the study of macroscale brain

connectivity, which is much more accessible for human studies, is to map different patterns

of activation and different routes of information that link highly specialized centres of

information and explain their integration in the major network (Rubinov & Sporns, 2010).

Macroscale brain connectivity
Macroscale brain connectivity is generally assessed at various different modes or types,

but it can be mainly subdivided into structural, functional, and effective connectivity

(Fig. 1). Structural connectivity is linked to the routes of information in the brain and how

they allow information to be transmitted. It can be measured using diffusion-weighted

magnetic resonance imaging (dMRI) where the displacement of water molecules is used to

trace a three dimensional reconstruction of their path in the brain via tractography (Catani

et al., 2013). Tractography is not only extremely useful to localize tracts on a subject, but

also to register tracts into an atlas, and to understand or predict dysfunction caused by

(structural) disconnections in specific locations (Catani & Mesulam, 2008), remaining

the only tool to do so in vivo and non-invasively. Additionally, it is also very important

in the study of brain connectivity, even with limited spatial resolution (at the scale of

millimetres) (Jbabdi & Johansen-Berg, 2011). On the other hand, functional connectivity,
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Figure 1 Macroscopic brain connectivity display through 3D Graphs. (A) Undirect and weighted
Structural Connectivity (different number of connections). (B) Undirect and weighted Functional Con-
nectivity (different node strength connexion). (C) Direct and weighted Effective Connectivity (different
directionality connections).

on the other hand, demonstrates how different areas of the brain with similar patterns

of activation enable brain functions at rest and in response to external stimuli (Van den

Heuvel et al., 2009). It has helped undercover concepts about the basal level of activations

in the brain as reflected in the more commonly described resting state networks, of

which the default mode network has been one of the more exploited (Behrens & Sporns,

2012). Functional magnetic resonance (fMRI) is one of the tools that has provided such

information by inferring changes in the local magnetic properties of blood in response

to variable brain activity (Ogawa et al., 1990). Functional metabolic changes have also

been explored with Positron emission tomography (PET), where radioactive tracers are

injected in the body and bind to target molecules of interests to measure their activity over

time (Friston et al., 1993). In addition to these techniques, there are a family of methods

that allow the exploration of the electric properties of neuronal conduction, whether by

measuring them directly using electrodes such as Electroencephalography (EEG) (Berger,

1933) or the magnetic fields generated by them, using Magnetoencephalography

(MEG) (Cohen, 1968). Finally, effective connectivity may be seen as a way of combining

the two types of connectivity described above, where the intention is to infer a causal

relation between functionally linked activated areas and how they can be related through

structural connections depicted independently (Frye, 2011).

Different types of analysis have been reported for brain connectivity studies, and a large

interest has arisen in the field of network theory and connectomics (Sporns, Tononi &

Edelman, 2000), in which connectivity metrics are extracted from functional and structural

neuroimaging techniques. These techniques assume that the information collected from

neuroimaging data, representing different aspects of brain anatomy and function, can be

encoded as a graph (Ginestet et al., 2011). A graph is a collection of nodes linked with each

other via edges and can, therefore, represent different regions of the brain and the interplay

of information between them. Depending on the type of information, one can have

undirected or directed graphs (if the information holds no directionality or entails some

sort of casual response (Bassett & Bullmore, 2006), respectively) for structural/functional

and effective connectivity (Fig. 1).
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Brain connectivity analysis toolboxes
There are several available toolboxes that use a single and (to some extent) more than

one neuroimaging technique to perform individual connectivity analysis but not in a

truly multimodal fashion, where information is combined from the very beginning to the

desired goal by the combination of different connectivity analyses (Cui et al., 2013; Zhou,

Thompson & Siegle, 2009; Song et al., 2011; Chao-Gan & Yu-Feng, 2010; Zang et al., 2012;

Lei et al., 2011a; Lei et al., 2011b; He et al., 2011; Whitfield-Gabrieli & Nieto-Castanon,

2012; Seth, 2010; Hadi Hosseini, Hoeft & Kesler, 2012; Marques et al., 2013). In this work,

we summarize the different toolboxes divided into Structural, Functional, Effective and

Multimodal.

Structural connectivity toolboxes
Pipeline for Analysing braiN Diffusion imAges (PANDA) (Cui et al., 2013): This toolbox

allows fully automated processing of brain diffusion images. The tool uses processing mod-

ules of established packages, including FMRIB Software Library (FSL Smith et al., 2004),

Pipeline System for Octave and Matlab (The MathWorks Inc., Natick, Massachusetts, USA,

2000), PSOM (https://code.google.com/p/psom/), Diffusion Toolkit (Wang et al., 2007)

and MRIcron (Rorden, Karnath & Bonilha, 2007). Using any number of raw dMRI datasets

from different subjects, in either DICOM or NIfTI format, PANDA can automatically

perform a series of steps to process DICOM/NIfTI and extract metrics with the diffusion

tensor imaging (DTI) formalism that are ready for statistical analysis at the voxel-level, the

atlas-level and the Tract-Based Spatial Statistics (TBSS)-level.

Functional connectivity toolboxes
MATLAB toolbox for functional connectivity (Zhou, Thompson & Siegle, 2009): This toolbox

calculates functional connectivity measures extracted from both resting state functional

magnetic resonance imaging (rs-fMRI) and task based blood oxygen level dependent

(BOLD) data, using a free and user-friendly interface available through MATLAB. These

measures are categorized into two groups: whole time-series and trial-based approaches,

including zero-order and cross-correlation, cross-coherence, mutual information, peak

correlation, and functional canonical correlation.

RESting-state fMRI data analysis Toolkit (REST) (Song et al., 2011): Based on MATLAB,

REST can exchange files/data with SPM, AFNI, and FSL under the NIfTI or ANALYZE

formats. After data preprocessing with SPM or AFNI, a few analytic methods can be per-

formed in REST, including functional connectivity analysis based on linear correlation, re-

gional homogeneity, amplitude of low frequency fluctuation (ALFF), and fractional ALFF.

To increase the processing capability and usability of REST, an extension was implemented:

Data Processing Assistant for Resting-State fMRI (DPARSF) (Chao-Gan & Yu-Feng, 2010).

Conn (Whitfield-Gabrieli & Nieto-Castanon, 2012): Conn is able to spatially and

temporally pre-process fMRI data as well as perform first- and second- level analysis.

The toolbox also offers a batch processing environment facilitating the implementation of

functional connectivity analysis. Conn is also able to derive Graph theory measures from

fMRI measures.
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Effective connectivity toolboxes
Multimodal Functional Network Connectivity (mFNC) (Lei et al., 2011a): The mFNC

toolbox was proposed for the fusion of Electroencephalography (EEG) and fMRI in

network space. First, functional networks (FNs) are extracted using spatial independent

component analysis (ICA) separately in each modality. Then, the interactions among

FNs in each modality are explored by Granger causality (GC) analysis. The fMRI FNs

are then matched to EEG FNs in the spatial domain using network based source imaging

(NESOI Lei et al., 2011b).

Electrophysiological Connectome (eConnectome) (He et al., 2011): Major functions of

eConnectome include EEG and Electrocorticography (ECoG) preprocessing, scalp spatial

mapping, cortical source estimation, connectivity analysis, and visualization.

Granger causal connectivity analysis (GCCA) (Seth, 2010): The GCCA toolbox provides

a range of MATLAB functions (but without a Graphical User Interface (GUI)) enabling the

application of Granger-causality analysis to a broad range of neuroscience data.

REST-Granger causality analysis (REST-GCA) (Zang et al., 2012): REST-GCA is the

second extension of the REST toolbox. It integrates two algorithms of GCA and provides a

transformation programme of residual-based F to normal-distributed Z scores.

Structural-functional connectivity toolboxes
Connectome Mapping Toolkit (CMTK) (Gerhard et al., 2011): The CMTK comprises

the Connectome Mapper and the Connectome Viewer Toolkit software. Although

the Connectome Mapper computes only structural connectivity matrices from dMRI

registered to a T1-weighted atlas, the Connectome Viewer Toolkit (CVT) is able to

visualize both dMRI connectivity and fMRI connectivity processed elsewhere. CVT has

the particularity of having been developed in Python, and uses a number of available

libraries for visualisation, graph metrics calculation and network analysis.

Graph-Theoretical Analysis Toolbox (GAT) (Hadi Hosseini, Hoeft & Kesler, 2012): GAT

provides a GUI that facilitates construction and analysis of brain networks, comparison of

regional and global topological properties between networks, analysis of network hub and

modules, and analysis of resilience of the networks to random failure and targeted attack.

GAT does not, however, provide a preprocessing pipeline for the different modalities and is

not yet able to analyse weighted and directed networks.

The UCLA Multimodal Connectivity Database (UMCD) (Brown et al., 2012): The

UMCD is a web platform for connectivity matrix data repository, sharing and analysis. The

platform is able to analyse connectivity matrices derived from imaging techniques such

as DTI or rs-fMRI using graph theory, and builds a report of the data. Like the previous

toolbox, the platform does not provide a preprocessing pipeline.

BrainNet Viewer (BNV) (Xia, Wang & He, 2013): The BNV is another toolbox for

visualization only. It uses connectivity matrices computed elsewhere and has a number

of options for displaying connectivity data and graphs.

BrainCAT (Marques et al., 2013): BrainCAT implements a predefined pipeline for

fMRI and DTI data preprocessing, ICA of the fMRI data and combination with DTI

tractography analysis. BrainCAT does not yet apply connectivity analysis such as graph
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theory, nor does it easily allow the combination of different modalities in more complex

ways.

Connectome Visualization Utility (CVU) (LaPlante et al., 2014): CVU is a visualization

software for connectivity analysis that includes matrix visualization, Connectogram view,

and 3D Graph view for different modalities. However, the visualization features of CVU

are limited to single-edged, undirected networks, i.e., effective connectivity cannot be

visualized through this software. Further, CVU is unable to represent networks from

multiple modalities in the same file.

The Virtual Brain (TVB) empirical data pipeline (Schirner et al., 2015): This pipeline

derives structural and functional connectivity data from dMRI and fMRI, and optionally

from EEG. Also, this pipeline has the particularity of being able to compute a novel

structural connectivity metric to quantify the strength of signal transmission between

regions. The computed connectivity data can then be imported to the TVB, a brain

simulation platform that also displays connectivity relations in the form of matrices,

graphs and topography maps (Sanz Leon et al., 2013).

Anatomical-structural-functional-effective connectivity toolbox
In this paper, we propose a fully automated all-in-one connectivity analysis toolbox—

Multimodal Imaging Brain Connectivity Analysis toolbox (MIBCA)—that offers pre-

processing, connectivity and graph theoretical analyses of multimodal image data such

as anatomical MRI (aMRI), dMRI, fMRI and Positron Emission Tomography (PET).

MIBCA was developed as an effort to diminish research time waste by pipelining

state-of-the-art methods and to allow an innovative approach to brain connectivity

research via multimodal matrix analysis and graph theory metrics. It has been shown

before that knowledge derived from structural connectivity is important to recover

functional aspects of the brain, such as predicting the degree of neural dynamics based

on anatomical patterns variability (Honey, Thivierge & Sporns, 2010). Furthermore, the

combination of both types of information may lead to a more accurate depiction of

how the brain works, providing care is taken into account for the specifications of each

technique. Specifically, tractography can be used to target the placement of electrodes

for MEG/EEG for improved spatial localization of electric activity and also to drive

better functional connectivity analyses (Phillips et al., 2012). Additionally, the recent

development of integrated systems such as PET-MR scanners is expected to bring novel

highlights into multimodal connectivity analysis (Shah et al., 2013), systems for which the

MIBCA toolbox is particularly suited.

In particular, the MIBCA toolbox is able to combine information from the different

connectivity matrices in order to enable novel insights into the data, such as the depiction

of directed and mediated connections in the brain, as shown later in the article. A

comparison between the different toolboxes is presented in Table 1.

In this paper we present the MIBCA toolbox and several of its applications. The

software, tutorial and test data is made available upon registration in http://www.mibca.

com/.1 The software is free to download and follows the Creative Commons Copyright

1 The toolbox is demonstrated with data
from the International Consortium for
Brain Mapping (ICBM) dataset http://
www.loni.usc.edu/ICBM/.

License (CC-BY) 4.0.
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Table 1 Comparison between different connectivity toolboxes.

Toolbox Pre-
Process.

Anat.
Conn.
MRI

Struct.
Conn.
MRI

Funct.
Conn.
MRI

Effect.
Conn.
MRI

Funct.
Conn.
PET

Funct.
Conn.
EEG

Imaging/
Physio.

Graph
Analy.

Conn.
Visual

Group
Stats

References

PANDA X X X X Cui et al., 2013

FCT X X X Zhou, Thompson & Siegle, 2009

DPARSF/ REST/
REST-GCA

X X X X X Chao-Gan & Yu-Feng, 2010; Song
et al., 2011; Zang et al., 2012

Conn X X X X Whitfield-Gabrieli & Nieto-
Castanon, 2012

mFNC X X X X Lei et al., 2011a; Lei et al., 2011b

eConnectome X X X X X He et al., 2011

GCCA X X X X X Seth, 2010

CMTK X X X X X X X X Gerhard et al., 2011

GAT X X X X X X Hadi Hosseini, Hoeft & Kesler,
2012

UMCD X X X X X X Brown et al., 2012

BNV X X X X X Xia, Wang & He, 2013

BrainCat X X X X Marques et al., 2013

CVU X X X X LaPlante et al., 2014

TVB data pipeline X X X X X X Schirner et al., 2015

MIBCA X X X X X X X X X X Ribeiro et al., 2015 (This article)

Notes.
Pre-Process., Pre-processing of raw data; Anat. Conn. MRI, Anatomical connectivity derived from T1-weighted MRI data; Struct. Conn. MRI, Structural connectivity derived from diffusion
MRI data; Funct. Conn. MRI, Functional connectivity derived from blood oxygen level dependent (BOLD) (functional MRI) data; Effect. Conn. MRI, Effective connectivity derived from
BOLD (functional MRI) data; Funct. Conn. PET, Functional/Metabolic connectivity derived from PET data; Funct. Conn. EEG, Functional/Effective connectivity derived from EEG, ECoG
and/or MEG data; Physio., Physiological (EEG); Graph Analy., Graph analysis; Conn. Visual., Connectivity visualization tools; Group Stats, Statistical analysis/Classification of groups of
subjects.
See text for details.
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Figure 2 Main interface of the MIBCA toolbox.

MATERIAL AND METHODS
MIBCA
MIBCA is an application developed in MATLAB (Fig. 2) and combines multiple

freely-available tools in order to optimize and automate data processing pipeline, and

to combine different imaging modalities into the same framework.

Currently, MIBCA’s framework is able to process aMRI from volumetric T1-weighted

data, dMRI from DTI data, resting state or task-based fMRI, and PET. Succinctly,

MIBCA is organized as follows: pre-processing of the data from the different modalities,

connectivity matrix estimation and graph theory analysis, and visualization Fig. 3.

A default pipeline is recommended to perform a typical analysis, even though the

user has the option to add or remove certain steps, as well as modifying the processing

parameters for each step.
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Figure 3 MIBCA processing pipeline diagram. Filled circles, Data generated and used on this study;
Non-filled circles, Data generated but not used on this study. Gray circle, Database; Green circles,
pre-processing; Blue circles, Connectivity Matrix estimation; Purple circles, Graph Theory analysis; Red
circles, Group analysis.

After technique/modality specific connectivity matrix computation, MIBCA enables

matrix operations to generate new connectivity data (e.g., Structural + Functional) and

also intra-modality and inter-modality group analysis. Finally, MIBCA allows the user

to visualize the computed connectivity data in a matrix form (Fig. 4), 3D-graph (Fig. 5)

and/or a connectogram (Fig. 9).
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Figure 4 Matrix visualization of structural (A), (B) and (C), and functional (D), (E) and (F) brain con-
nectivities. (A) and (D) presented the mean connectivity matrices; (B) and (E) robustness connectivity
matrices; (C) and (F) combined connectivity matrices. A jet color code was used for all matrices, leading
to the representation of lower values with colder colors and higher values with warmer colors. Matrix
A shows the matrix organization with rows/columns (I, left/right subcortical regions; II, left cortical
regions; III, right cortical regions) and areas (I/I, intra-subcortical connections; II/II, intra-hemispheircal
left connections; III/III, intra-hemispherical right connections; I/II and I/III, subcortical-cortical con-
nections; II/III, inter-hemispherical connections). Matrix organization is symmetrical with respect to the
principal diagonal.

Preprocessing
For each subject, raw data (aMRI, dMRI, fMRI and PET) are automatically preprocessed

using state-of-the-art processing toolboxes, namely Freesurfer (aMRI) (Fischl, 2012),

Diffusion Toolkit (dMRI) (Wang et al., 2007), FSL (fMRI) (Smith et al., 2004) and

PET (SPM) (Friston, 1995). Once processing has been completed, intra-modality and

inter-modality group analysis is performed using processed data. A summary of the

generated files is shown in Table 2.

Preparing the data for analysis. In neuroimaging studies, different imaging techniques

and/or modalities are often used to acquire data from several healthy subjects or patients,

thus resulting in large datasets.

To reduce the manual burden of researchers in sorting such amount of data, the

developed toolbox is able to identify and process data following two simple rules. First,

data must be organized in the following way: “Study-Subject-Acquisition-Images.” This

allows the toolbox to differently pre-process images acquired with different imaging

techniques or modalities (aMRI, dMRI, fMRI, PET), and to combine them in subsequent

steps (Fig. 3—top row). Further, this organization allows the toolbox to identify different

subjects and to use this information to automatically estimate group connectivity

metrics (e.g., mean and standard deviation), as well as to perform group statistical tests
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Figure 5 3D Graph visualization of structural (A) and (C) and functional (B) and (D) brain connectivities. Here we considered the respective
robustness matrices data (A) and (B) and highlighted the highest degree brain regions, (C) and (D).

(Fig. 3—bottom row). Second, although it is not required from the user to use fixed names

for each acquisition image (e.g., aMRI, dMRI, fMRI, PET), it is required that each subject’s

name be consistent for each technique/modality.

Furthermore, to maximize automation, different types of images can serve as input to

the toolbox, such as DICOM, NIfTI, Analyze and ECAT; thus, the user is not required to

convert between the different formats prior to the processing pipeline.

aMRI preprocessing. Each subject’s anatomical image is first corrected for intensity

non-uniformity using the Non-parametric Non-uniform intensity Normalization

(N3) (Sled & Zijdenbos, 1998). Next, the volume is registered in the MNI305 atlas through

an affine registration. Intensity normalization and skull stripping are then performed
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Table 2 Generated files and folders description. Due to the large amount of generated files during the pre-processing step, only the most relevant
files are described here.

Filename Contents

..\[subjectName]\sMRI\aparc+aseg.nii Cortical and sub-cortical atlas image registered to aMRI

..\[subjectName]\sMRI\[subjectName] smri data.mat Matlab file (.mat) with extracted aMRI connectivity metrics

..\[subjectName]\sMRI\[run#]\[run#].nii.gz NIFTI 3d raw T1 image

..\[subjectName]\DTI\aparc+aseg2DTI.nii Cortical and sub-cortical atlas image registered to dMRI

..\[subjectName]\DTI\[subjectName] dti data.mat Matlab file (.mat) with extracted dMRI connectivity metrics

..\[subjectName]\DTI\[run#]\[run#].nii.gz NIFTI 4d raw diffusion image

..\[subjectName]\DTI\[run#]\[run#].bvec gradient vector file

..\[subjectName]\DTI\[run#]\[run#].bval b-value file

..\[subjectName]\DTI\[run#]\[run#].dt\ DIFFUSION TOOLKIT folder with intermediate files

..\[subjectName]\fMRI\aparc+aseg2fMRI.nii Cortical and sub-cortical atlas image registered to fMRI

..\[subjectName]\fMRI\[subjectName] fmri data.mat Matlab file (.mat) with extracted fMRI connectivity metrics

..\[subjectName]\fMRI\[run#]\[run#].nii.gz NIFTI 4d raw functional MR image

..\[subjectName]\fMRI\[run#]\[run#].feat\ FEAT folder with intermediate files

..\[subjectName]\fMRI\[run#]\[run#].ica\ MELODIC folder with intermediate files

..\[subjectName]\PET\aparc+aseg2PET.nii Cortical and sub-cortical atlas image registered to PET

..\[subjectName]\PET\[subjectName] pet data.mat Matlab file (.mat) with extracted PET connectivity metrics

..\[subjectName]\PET\[run#]\[run#].nii.gz NIFTI 4d raw PET image

..\[subjectName]\PET\[run#]\[run#].pet\ Generated PET folder with intermediate files

to improve further processing. Data is non-linearly registered to an average brain, and

the brain is parcellated into cortical and subcortical structures according to an atlas. The

parcellated regions-of-interest (ROIs) are then mapped to the subject’s native space. Data

finally follow a pipeline to derive the cortical thickness (CT), surface area (SA) and gray

matter volume (GMV) measures for the subject cortical ROIs and also the volume of

subcortical structures. All of the above processes were implemented using Freesurfer

(http://surfer.nmr.mgh.harvard.edu/). The generated measures are then loaded and

converted into a MATLAB (.mat) file. Finally, anatomical connectivity matrices (a-CM)

are computed from ratios of these measures between each pair of ROIs (CT, SA and GMV

connectivity matrices).

dMRI preprocessing. If the raw diffusion images are in DICOM format, then they are

converted into a NIFTI 4D image, a gradient vector file (.bvec) and a b-value file (.bval)

using the dcm2nii function available in the MRIcron package (Rorden, Karnath & Bonilha,

2007). Otherwise, the 4D image, gradient vector and b-value files are searched in the

directory for further analysis. The raw images are first corrected for motion and eddy

currents using eddy correct (available in FSL). The diffusion tensor is reconstructed from

the corrected images using dti recon (available in Diffusion Toolkit). Processing results

include the main eigenvector maps, b0 and diffusion weighted images, the apparent

diffusion coefficient (ADC), Mean Diffusivity (MD) and Fractional anisotropy (FA) maps.

For fiber tracking purposes, the dti tracking (Diffusion Toolkit) function was used with an

interpolated streamline method of fixed step-length and a deterministic tractography
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algorithm. The generated track file is first smoothed with the spline filter (Diffusion

Toolkit) and then loaded into MATLAB.

The b0 image generated from the dti recon is non-linearly registered to the aMRI and

the aligned parcellated ROIs mapped back to the diffusion space. The loaded track file

is used to calculate the number of fibers, mean fiber length and mean fiber orientation

between pairs of ROIs, thus providing 3 different matrices. The matrix of the number of

fibers is defined as the structural connectivity matrix (s-CM). Additionally, the MD and FA

mean values for each region are calculated.

fMRI preprocessing. FMRI data processing is carried out using FEAT (FMRI Expert

Analysis Tool) Version 6.00, part of FSL. The following pre-statistics processing is applied:

motion correction using MCFLIRT (Jenkinson et al., 2002); slice-timing correction using

Fourier-space time-series phase-shifting; non-brain removal using BET (Smith, 2002);

spatial smoothing using a Gaussian kernel of FWHM 8 mm; intensity normalization

of the entire 4D dataset by a single multiplicative factor; high pass temporal filtering

(Gaussian-weighted least-squares straight line fitting, with sigma = 50.0 s). The fMRI

data is then non-linearly registered to the aMRI and the aligned parcellated ROIs mapped

back to the fMRI space. For each ROI, the functional (BOLD) time series is extracted to

MATLAB for further analysis.

Functional connectivity analysis involves calculating the Pearson correlation between

each ROIs’ BOLD time series. A correlation matrix is then obtained for every ROI pair

combination. The correlation matrix or functional connectivity matrix (f-CM) is finally

thresholded for a significance level of 5% and Bonferroni correction.

Effective connectivity metrics are further evaluated for each pair of ROIs through the

pairwise implementation of the time domain Granger Causality (Granger, 1969). From

the estimated effective connectivity metrics for each pair of ROIs, an effective connectivity

matrix (e-CM) is calculated.

PET preprocessing. The original PET data is first converted from the original format

to NIFTI 4D. The converted PET data is further corrected for motion using SPM and

smoothed with a 8 mm Gaussian filter. The dynamic PET data is then summed into a

NIFTI 3D image and non-linearly registered to the aMRI. The aligned parcellated ROIs are

then mapped back to the PET space through the inverse transformation. For each ROI the

dynamic PET series are extracted and its mean value per ROI is calculated. The Pearson

correlation is then used to generate a correlation matrix between each pair of ROIs (PET

connectivity matrix). Further, for the summed image, the mean standard uptake values

(SUV) are calculated for each ROI.

Group connectivity and graph theory analysis
For each subject, a hybrid structural + functional connectivity matrix (sf-CM) is

calculated resulting from the multiplication of s-CM and f-CM matrices (if raw data

of both modalities are provided). Further, binary s-CM (number of fibers > 0), f-CM

(p-values < 0.05, Bonferroni corrected), and e-CM (p-values < 0.05, Bonferroni

corrected) are generated.
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After computation of matrices and metrics has been performed for all subjects, mean

connectivity (mean-CM) and robustness connectivity (robustness-CM) matrices are com-

puted. The mean-CM result from averaging technique/modality or hybrid connectivity

weighted matrices translating information regarding the strength of connections (number

of fibers in dMRI, or correlation coefficient in fMRI). The robustness-CM results from the

mean of the binary matrices, providing a measure of the robustness of each connection

(e.g., a value of 0.1 in the robustness-CM states that only 10% of the subjects show

connections between a certain ROI pair, while a value of 0.9 states that those connections

are present in 90% of the subjects).

Group s-CM, f-CM and sf-CM are further evaluated regarding general graph-theory

metrics, namely mean network degree, mean clustering coefficient, characteristic path

length and small-worldness calculated using the Brain Connectivity Toolbox (BCT: https://

sites.google.com/site/bctnet/ (Rubinov & Sporns, 2010)). Additionally, normalized indexes

based on these general metrics were calculated for an easier comparison between the

different graphs. These normalized indexes were then calculated by the ratio of the metrics

and their variant obtained from 10 random graphs, which were generated by shuffling the

data-driven graph while maintaining symmetry and mean degree.

Individual ROI graph theory metrics, such as node degree and clustering coefficient,

were also calculated using the BCT toolbox and saved for further analysis.

Visualization and statistical analysis
For an enhanced comprehension of the connectivity matrices and metrics three different

types of visualisations were implemented, a matrix visualization (Fig. 4), a 3D Graph view

(Fig. 5–8), and a Connectogram view (Figs. 9 and 10).

Figure 4A depicts matrix organization: left/right subcortical brain regions are

represented in rows/columns. I; left cortical regions are represented in rows/columns II

and right cortical regions are represented in rows/columns III. Thus, the intra-subcortical

connections are represented in matrix area I/I, the intra-hemispherical left cortical

connections are represented in matrix area II/II and the intra-hemispherical right

cortical connections are represented in matrix area III/III. The remaining matrix areas

I/II, I/III represent subcortical-cortical connections and matrix area II/III represent

inter-hemispherical cortical connections. The matrix organization is symmetrical with

respect to the principal diagonal. In the matrix visualization, any CM can be visualized

using the jet color scheme (colder colours referring to lower values, and warmer colours to

higher values).

The connectogram may contain, but is not limited to, the following variables as rings:

ROIs labels, SA, GMV, CT, aMRI node degree, aMRI cluster coefficient, MD, FA, dMRI

node degree, dMRI cluster coefficient, fMRI node degree, fMRI cluster coefficient, PET

SUVs. The different ROIs are connected through lines based in one of the processed

connectivity matrices, and can be, but not limited to: a-CM, s-CM, f-CM, sf-CM, e-CM.

Line colour mapping can be based in any directed matrix produced, or a negative/positive

encoded matrix (Figs. 9 and 10). Further, the connectogram can be used to observe
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connected regions to a certain ROI, by moving the cursor over the selected ROI, which

turns blue while connected ROIs turn green.

The implemented 3D-Graph presents the same information as the connectogram but

in a 3D view of the brain. Therefore, the different ROIs are connected through lines based

in any of the processed connectivity matrices. Line colour mapping is again based in any

directed matrix produced, or a negative/positive encoded matrix. The information from

rings presented in the connectogram is shown in the 3D-Graph as a text box when the

selected node is highlighted. As well as the connectogram, the 3D graph view is interactive

and can be used to access to where a specific ROI is connected.

MIBCA also provides group comparison for all the above mentioned metrics and can

display the significance of those tests both in a conectogram (Fig. 10) or 3D graph. The

automated group analysis is based in the mean and standard deviation of the different

connectivity matrices, as well as in the summation of the binary connectivity matrices,

obtained for the total subject database. MIBCA enables the selection of different groups

according to the available data and allows regression of specific variables of interest,

displaying in red significant increases and in blue decreases for the performed tests.

A comprehensive manual of the toolbox with a more detailed description

of data processing and capabilities is made available in the application website

http://www.mibca.com.

Healthy subject data
A group of 35 healthy subjects (16 males and 19 females) with an average age of 43 ± 17

years (range: 19–73 years old) were selected from the ICBM database (http://www.loni.usc.

edu/ICBM/) (Mazziotta et al., 2001) containing T1-weighted MR images (aMRI), 3 DTI

series and 3 resting state fMRI series. PET data was only available for 10 subjects (5 males

and 5 females) with an average age of 26.6 ± 5.7 years. In total, 255 images per subject were

automatically processed by the toolbox.

T1-weighted, DTI and rs-fMRI data were acquired using a Siemens 1.5T scanner.

T1-weighted images were acquired with a TR = 22 ms and a TE = 9.2 ms, yielding a

matrix volume of 256 × 256 × 256 and a pixel spacing of 1 × 1 × 1 mm3. The DTI images

were acquired with a TR = 8,000 ms, TE = 94 ms, b = 0,1,000 s/mm2 and 35 non-collinear

diffusion-sensitising gradients directions, yielding a matrix volume of 96 × 96 × 2,100 and

a pixel spacing of 2.5 × 2.5 × 2.5 mm3. The fMRI images were acquired at rest with a

TR = 2,000 ms and a TE = 50 ms, yielding a matrix volume of 320 × 320 × 138 and a pixel

spacing of 4 × 4 × 5.5 mm3.

PET images were acquired for each subject using a Siemens HR+ scanner and

18F-Altanserin radiopharmaceutical for 30 min. The images were corrected for attenuation

(measured), scatter (simulated 3D) and source decay, and reconstructed using the Fourier

transform. The final image yielded a matrix volume of 128 × 128 × 63 with 8 frames and a

pixel spacing of 2.06 × 2.06 × 2.43 mm3.
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RESULTS
Modality specific connectivity analysis
In order to test the MIBCA toolbox, we first investigated the connectivity similarities

between s-CM (DTI based) and f-CM (rs-fMRI based) in different subjects using

mean-CM (Figs 4A and 4D) and robustness-CM (Figs 4B and 4E). Further, we combined

these matrices, through the following expression: ∗ c = ∗ mean × (∗ robustness > 0.8)

(∗ representing the type of connectivity matrix), to obtain a matrix that preserved the

information from the mean matrix, while assuring that the results were different from zero

in at least 80% of the subjects.

In Fig. 4A it can be observed that, regarding structural connectivity, there is an average

higher number of intra-hemispherical connections than inter-hemispherical connections.

Conversely, regarding functional connectivity, both intra-hemispherical and inter-

hemispherical connections are observed (Fig. 4D). It can also be seen a higher variability

in functional connectivity than in structural connectivity (Figs. 4B and 4E). In particular,

structural connectivity displays some clusters of intra-hemispherical regions with highly

conserved connections between subjects (hot colours). The combined mean × robustness

matrices (Fig. 4C and 4F) show more clearly the structural and functional brain connec-

tivity organization: a predominance of intra-hemispherical structural connections and the

more distributed intra and inter-hemispherical functional connectivity. Both structural

and functional connectivity though, seem to roughly show a left–right symmetry.

This same information can be perceived from the 3D graph representations of the

robustness s-CM and f-CM (Fig. 5A, 5B and 5D, respectively). These graph representations

also illustrate the ROIs with higher degree (i.e., establish structural or functional

connections with a higher number of regions), as they are represented as larger nodes.

In particular, for the s-CM (Fig. 5C) the highest degree ROIs are the superiorfrontal and

rostramiddlefrontal gyri, whilst for f-CM (Fig. 5D) these are the lingual gyri and insula.

Hybrid structural-functional connectivity analysis
The structural and functional connectivity matrices were further combined to generate a

direct sf-CM matrix and an indirect/mediated sf-CM, Fig. 6. The direct sf-CM represents

connections that are present in both s-CM and f-CM and therefore represent a direct

structural (“axonal”) connection between two functionally related regions. The mediated

sf-CM represents the connections of the f-CM that do not have a direct “axonal”

connection between them, yet are functionally correlated. Here, in mediated sf-CM,

connections between regions are presumably mediated by a third region or more regions.

The sf-CM is therefore the sum of the direct and mediated sf-CMs.

It can be seen in Fig. 6, that the number of direct connections (Fig. 6A) is smaller

than the mediated connections (Fig. 6B). Furthermore, most of the direct connections

are observed to be intra-hemispherical and short-range (small distance between

nodes/ROIs), whilst the mediated connections tend to be longer range, and both intra-

and inter-hemispherical.
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Figure 6 3D Graph visualization of direct (A) and (C), and mediated (B) and (D) hybrid structural-functional brain connectivities. (A) and
(B) Full display of the hybrid connectivity matrices; (C) and (D) example of a mediated connection: functional connectivity between the rostral
middle frontal gyri (D) mediated by the structural connections with the superior frontal gyri (C).

To access which regions may mediate two functionally connected regions which are

not connected directly, an algorithm that makes use of both source and target regions

estimate the possible paths between them. As an example, the functional connectivity of

the rostral middle frontal gyri was evaluated. As it can be seen, although there is no direct

connection between them (easily seen in Fig. 6A), there is a possible path consisting of

4 regions2 (Fig. 6C): right rostral middle frontal gyrus → right superior frontal → left

2 The path presented is the one with the
fewest number of intermediate regions.

superior frontal → left rostral middle frontal gyrus.

To further understand if such path is viable the modularity of both structural and

functional connectivity matrices were analysed, see Fig. 7. As shown, both the rostral

middle frontal gyrus and the superior frontal gyrus belong to the same functional network
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Figure 7 3D Graph visualization of modularity of structural connectivity (A) and (C), and functional connectivity (B) and (D) matrices.

(f-CM green module), yet also belong to two similar structural intra-hemispherical

modules (s-CM’s dark blue and light blue modules).

Finally, the dynamics of this connection was analysed through Granger causality using

an analysis of order 1. As can be seen in Fig. 8 the connection between the rostral middle

frontal gyri seems to be of an order >1 consistant with the mediation from the superior

frontal gyri. The connection between the rostral middle frontal gyri and the superior

frontal gyri seems to be bidirectional. Also, it is interesting that both rostral middle frontal

regions presented an effective connection with the respective parstriangularis regions.
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Figure 8 3D Graph visualization of effective connectivity restricted to direct connections. Black lines, bidirectional connections; Gradient lines,
directional connections from red to blue.

Multimodal connectivity analysis
The intra-inter hemispherical behaviour presented in the previous section can also be

easily and comprehensively observed in Fig. 9. Direct connections (red lines) connect

mostly regions of the same hemisphere (between same shade of gray of the outer ring),

while the mediated connections (blue lines) tend to be both intra and inter-hemispherical

(between different shades of gray). Additionally, we can observe that contra-lateral regions

tend to present similar metric values (i.e., similar mean diffusivity, fractional anisotropy,

cortical volume, SUVs, fmri and dti node degree), supporting the idea of a symmetric

brain. This is easily seen for the subcortical regions for all metrics.

Connectivity analysis using statistical tests
In this subsection is presented another potentiality of the MIBCA toolbox. In addition to

the individual visualization of connectograms and 3D graphs for single and multimodal

connectivity analysis, MIBCA also allows the user to perform statistical tests, while

controlling for some variables of interest. In order to test this feature, subject data was

divided into two age groups: 15 young adults (<40 years old) and 20 old adults (>40 years

old), respectively with mean age of 26 ± 6 and 56 ± 8 years old and age range of 19–37 and

42–73 years old. A t-test was performed to evaluate significant differences between both

groups. Figure 10 displays significant differences between both groups in several brain re-

gions, both at the cortical and the subcortical level. The most notorious differences are re-

gional decreased cortical thicknesses and grey matter volumes, as well as increases in mean

diffusivity in the older subjects’ group in comparison with the younger subjects’ group.

DISCUSSION
Here the MIBCA toolbox was presented. To the knowledge of the authors, this is the

first toolbox that pre-processes both MRI and PET data and computes anatomical (T1-
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Figure 9 Multimodal connectogram. From the outer to the inner ring: Regions-of-Interest (ROIs);
Mean Diffusivity (MD); Fractional Anisotropy (FA); ROI volume; 18F-Altanserin rSUV (cerebellum as
the reference region); functional connectivity degree (fMRI correlations); structural connectivity degree
(diffusion tensor imaging-based tractography). Blue fibers, Direct structural/functional connections; Red
fibers, Mediated functional connections.
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Figure 10 Statistical test connectogram between younger and older subjects. From the outer to the inner rings: Regions-of-Interest (ROIs), mean
diffusivity, ROI volume, cortical thickness, fmri degree. The lines represent tract connections between brain regions. Blue and red colors, respectively,
represent increased and decreased metrics’ mean values or number of tracts in older subjects group vs. youger subjects group.
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weighted based), structural (dWI), functional and effective connectivities. This toolbox

also computes both imaging and graph-theory metrics, performs group statistics and

displays data in matrices, brain graphs and connectograms, making it the first all-in-one

connectivity toolbox (see Table 1). In particular, the MIBCA toolbox enables the researcher

to combine multimodal information in a straightforward way using connectivity matrices

operations, and therefore enabling innovative research questions. Finally, the toolbox

does batch processing for multiple subjects, meaning that the researcher needs only to

place raw data within a specific folder architecture and all the pre-processing and imaging

and graph-theory connectivity computations are made autonomously. This saves the

researcher from wasting time in repetitive operations and assures the correct pipeline in

data processing, which is an advantage over other toolboxes.

In order to demonstrate the general capabilities of the toolbox, an example dataset

was pre-processed and analysed. In Fig. 4, two different views of brain connectivity were

proposed via the use of mean and robustness matrices, both of which are specific outputs

of the developed toolbox resulting from matrices operations. Such an approach allows

researchers to study subjects’ similarity and variability for different pairwise relations.

Thus, it is possible to study the pairwise connectivity mean and variance,3 such as the

3 The matrices connectivity variance was
calculated but not shown in this work.

distribution of the number of connecting fibers (obtained from s-CM). Additionally, both

mean and robustness matrices can be combined to increase the confidence of the results.

Figures 4, 5 and 9 show that there is a predominance of intra-hemispherical connections

in the s-CM, whilst this is not the case in f-CM. These results suggest that the brain

is organized to have direct communication within the same hemisphere with fewer

direct connections between hemispheres and, consequently, with a higher mediated

inter-hemispherical communication (Park & Friston, 2013). Further analysis of the direct

and mediated sf-CM (Fig. 6) show that direct connections tend to be short, while mediated

connections appear to be long. These results also suggest that long-range connections can

be based in more than one combination of direct short connections.

From these results, a mismatch of high degree nodes can be observed between the

s-CM and f-CM (Fig. 5). For the s-CM, the higher degree nodes are related to regions

where several physical connections to different cortical regions exist. For the f-CM, the

high degree nodes are related to a high number of connections in resting-state. Therefore,

although the first system is approximately static, the second is dynamic and can change

when presented with a perturbation, probably leading to the observation of new higher

degree nodes.

Moreover, in Figs. 4, 5, 7 and 8, a high regularity and hemispherical symmetry is shown

for the s-CM, and in Fig. 9 a general symmetry for the different analysed metrics can be

observed. For some systems in the human brain, this behaviour may be related to parallel

computational processing in which two general processing units (the two hemispheres)

process information simultaneously exchanging small packages of information between

them, similarly to mechanisms present in visual processing (Baird et al., 2005; Doron

& Gazzaniga, 2008). Additionally, the results suggest a certain degree of functional

hemispherical asymmetry which may be related to the distributed behaviour of the brain,
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something that has been demonstrated in language pathways (Toga & Thompson, 2003;

Catani et al., 2007).

Finally, an application of the MIBCA toolbox for the study of ageing in a multimodal

approach was demonstrated (Fig. 10). The fairly generalized decrease in cortical thickness

and regional gray matter volume, as well as the increased mean diffusivity observed in the

group of older subjects, are consistent with neuronal loss commonly observed in healthy

ageing (Salat et al., 2004; Minati, Grisoli & Bruzzone, 2007; Walhovd et al., 2005). Here,

the statistical connectogram related in the same schematic different metrics, such as mean

diffusivity and number of fibers derived from DTI data, with regional volume and cortical

thickness obtained from T1-w images, and fMRI node degree derived from rs-fMRI data.

This approach can lead to better discrimination of groups, and provide an uniform view

of different metrics. This connectogram representation is also a comprehensive example

of the toolbox capabilities, displaying multimodal imaging and graph-theory metrics,

structural connections between brain regions and group statistics.

LIMITATIONS AND FUTURE DEVELOPMENTS
It is very important to understand that several of the methods described throughout

this paper still require validation to a certain extent. For the particular case of dMRI,

new methods are required to fully reflect the index of anisotropic diffusion in regions

of complex white matter configurations like crossing fibers, which cannot be resolved

with DTI. Efforts have been made to devise techniques that allow to further explore

the structural basis of human neuroanatomy, and these advents might be useful to

validate techniques such as tractography (Amunts et al., 2013; Chung et al., 2013). New

techniques are also associated with advances in methodological advances which may

help us increase the resolution and speed of current techniques, maintaining or even

increasing the obtained signal-to-noise ratio (Feinberg & Setsompop, 2013; Setsompop

et al., 2012). These techniques are not exclusive for improving structural imaging but

also for functional information (Feinberg et al., 2010). Effective connectivity algorithms

still lack a gold standard onto which we can compare our results. It is worrying to think

that in some cases causality is inferred from data with a small temporal resolution, when

the actual neural stimulus is transmitted in the miliseconds time scale (Rodrigues &

Andrade, 2014). To overcome this limitation, it is also possible to explore other techniques

such as EEG and magnetoencephalography, which provides a much better picture of

the dynamic activations of the human brain (Dammers et al., 2007). Finally, in order

to efficiently compute large databases of multimodal brain connectivity analysis, the

current implementation of the MIBCA toolbox only performs ROI-based analysis and

not voxel-by-voxel analysis. Optimization and parallelization of the current algorithms is

being pursuit for this purpose and should be available in future releases.

CONCLUSION
We have introduced a flexible and automatic multimodal approach for the analysis of brain

connectivity that can integrate information from different imaging modalities (MRI and

PET). While bridging the gap between the high numbers of packages and tools widely
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available for the neuroimaging community, including pre-processing, connectivity and

graph theoretical analyses in one toolbox, MIBCA also offers different possibilities for

combining, analysing and visualising data in novel ways enabling a better understanding

of the human brain. This is also a request from the neuroimaging community, where

the number of multi-modal systems available worldwide (e.g., MR-PET) increased

considerably in the last two years.
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