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An emerging opportunistic pathogen
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Acinetobacter baumannii is an opportunistic bacterial patho-
gen primarily associated with hospital-acquired infections.
The recent increase in incidence, largely associated with
infected combat troops returning from conflict zones,
coupled with a dramatic increase in the incidence of
multidrug-resistant (MDR) strains, has significantly raised the
profile of this emerging opportunistic pathogen. Herein, we
provide an overview of the pathogen, discuss some of the
major factors that have led to its clinical prominence and
outline some of the novel therapeutic strategies currently in
development.

Introduction

Acinetobacter baumannii is a Gram-negative bacillus that is
aerobic, pleomorphic and non-motile. An opportunistic patho-
gen, A. baumannii has a high incidence among immunocompro-
mised individuals, particularly those who have experienced a
prolonged (. 90 d) hospital stay.1 Commonly associated with
aquatic environments,2 it has been shown to colonize the skin as
well as being isolated in high numbers from the respiratory and
oropharynx secretions of infected individuals.3 In recent years, it
has been designated as a “red alert” human pathogen, generating
alarm among the medical fraternity, arising largely from its
extensive antibiotic resistance spectrum.4

This phenomenon of multidrug-resistant (MDR) pathogens
has increasingly become a cause for serious concern with regard
to both nosocomial and community-acquired infections.5

Indeed, the World Health Organization (WHO) has recently
identified antimicrobial resistance as one of the three most
important problems facing human health.6 The most common
and serious MDR pathogens have been encompassed within
the acronym “ESKAPE,” standing for Enterococcus faecium,
Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter bau-
mannii, Pseudomonas aeruginosa and Enterobacter spp.7

While in the 1970s A. baumannii is thought to have been
sensitive to most antibiotics, today the pathogen appears to
exhibit extensive resistance to most first-line antibiotics.8 More

recently, A. baumannii has become a major cause for concern in
conflict zones, and has gained particular notoriety in the resent
desert conflicts in Iraq, earning it the moniker “Iraqibacter.” In
particular, high incidences of MDR bacteremia (bloodstream
infections) have been noted among US Army service members
following Operation Iraqi Freedom (OIF).9 Interest from the
scientific community over the past 15 years has led to significant
advances of our understanding of this organism.10

Genus Acinetobacter

The Dutch microbiologist Beijerinck first isolated the organism in
1911 from soil using minimal media enriched with calcium
acetate.11 Originally described as Micrococcus calco-aceticus, the
genus Acinetobacter (coming from the Greek “akinetos,” meaning
non-motile) was proposed some 43 years later by Brisou and
Prevot12 to differentiate it from the motile organisms within the
genus Achromobacter. The genus Acinetobacter was widely
accepted by 1968 after Baumann et al.13 published a compre-
hensive study of organisms such as Micrococcus calco-aceticus,
Alcaligenes hemolysans, Mima polymorpha,Moraxella lwoffi, Herellea
vaginicola and Bacterium anitratum, which concluded that they
belonged to a single genus and could not be further sub-classified
into different species based on phenotypical characteristics.13 In
1971, the sub-committee on the Taxonomy of Moraxella and
Allied Bacteria officially acknowledged the genus Acinetobacter
based on the results of Baumann’s 1968 publication.14

The genus Acinetobacter, as currently defined, comprises
Gram-negative, strictly aerobic, non-fermenting, non-fastidious,
non-motile, catalase-positive, oxidase-negative bacteria with a
DNA G + C content of 39% to 47%.5 Following DNA-DNA
hybridization studies performed by Bouvet and Grimnot in 1986,
the Acinetobacter genus now consists of 26 named species
and nine genomic species.15 Four species of Acinetobacters
(A. calcoaceticus, A. baumannii, Acinetobacter genomic species 3
and Acinetobacter genomic species 13TU) have such phenotypic
similarities that they are difficult to differentiate, and as such
are often referred to as the A. calcoaceticus-complex.16 This
nomenclature can be misleading as the environmental species
A. calcoaceticus has not been implicated in clinical disease, while
the other three species in the A. calcoaceticus-complex are perhaps
the most clinically significant species, being implicated in both
community-acquired and nosocomial infections.5
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Species

Acinetobacters may be identified presumptively to the genus level
as Gram-negative, catalase-positive, oxidase-negative, non-motile,
non-fermenting coccobacilli. However, the organisms are often
difficult to de-stain and, as such, are often incorrectly identified as
Gram-positive (see Fig. 1). There is no definitive metabolic test
that can distinguish Acinetobacters from other non-fermenting
Gram-negative bacteria.5 A method which is often used to identify
to the genus level relies on the ability of the mutant A. baylyi
strain BD413 trpE27 to be transformed by crude DNA of any
Acinetobacter species to a wild-type phenotype (i.e., the
transformation assay of Juni17). While for species level identifica-
tion, the 28 available phenotypic tests have proven to be 95.6%
effective in identifying human skin-derived Acinetobacters.18

However, phenotypic tests alone have proven to be ineffective
in identifying more recently discovered genomic strains of
Acinetobacters.5

More advanced molecular diagnostic methods have been
developed for identification of Acinetobacters to the species level,
these include:

N Amplified 16S rRNA gene restriction analysis (ARDRA)19

N High-resolution fingerprint analysis by amplified fragment
length polymorphism (AFLP)20

N Ribotyping21

N tRNA spacer fingerprinting22

N Restriction analysis of the 16S–23S rRNA intergenic spacer
sequences23

N Sequence analysis of the 16S–23S rRNA gene spacer region24

N Sequencing of the rpoB (RNA polymerase β-subunit) gene
and its flanking spacers25

Natural Habitat

Organisms belonging to the genus Acinetobacter are often
considered to be ubiquitous in nature given that they can be

recovered from almost all soil and surface water samples.13 This
understanding has contributed to the common misconception
that A. baumannii is also ubiquitous.26 While not all
Acinetobacters find their habitat in the natural environment, a
thorough and systematic study to investigate the natural
occurrence of the various Acinetobacter species in the environment
has yet to be performed.5

As a pathogen, A. baumannii specifically targets moist tissues
such as mucous membranes or areas of the skin that are exposed,
either through accident or injury. Skin and soft tissues infected
with A. baumannii initially present with a “peau d’orange”
appearance (similar to the skin of an orange) followed by a
sandpaper-like presentation which eventually gives way to clear
vesicles on the skin.3 In areas of skin disruption hemorrhagic
bullae can be seen, with a visible necrotizing process followed by
bacteremia.3 If left untreated, this infection can lead to septicemia
and death. Although it is likely that A. baumannii is responsible
for these recognizable features, copathogens, such as Klebsiella
pneumoniae, Candida albicans and Enterococcus faecalis, are
thought to be a contributing factor. These co-pathogens may
cause necrotizing infection and may create a nidus of entry into
the bloodstream for A. baumannii.3

Despite its association with skin infections, A. baumannii is
found only rarely as part of the normal skin microflora, with one
study estimating that only 3% (at most) of the population are
colonized by the bacterium.18 Interestingly, Acinetobacter was
recovered from 22% of body lice sampled from homeless people,
suggesting another potentially important reservoir for the
pathogen.25

A key risk group for A. baumannii infection is members of the
armed forces who have been deployed to conflict zones, parti-
cularly Iraq, earning A. baumannii the notorious moniker of
‘Iraqibacter.’ The dry, sandy conditions associated with these desert
campaigns provide an ideal environment for the physiologically
robust A. baumannii, making it the main source of infection
among injured soldiers.9 A 2003 study on board the US Navy

Figure 1. (A) Complex streak of Acinetobacter baumannii following overnight growth on Luria-Bertani agar at 37°C. (B) Gram-stain of log phase
A. baumannii cells grown in Luria-Bertani broth. Arrow indicates an individual A. baumannii cell.
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hospital ship USNS Comfort (T-AH-20) providing emergency
on-site care for injured US combat forces situated on the Persian
Gulf, revealed that 4.1% of all skin and soft-tissue infections
(SSTIs) encountered were A. baumannii related, with the axilla,
groin and toe webs being the areas of highest colonization.9

Furthermore, although originating in isolated conflict zones,
the incidence of A. baumannii infections is on the increase,
particularly in the UK and the US, as the coalition troops exposed
to the bacterium in field hospitals return home to convalesce,27

making it a formidable emerging pathogen.28 Once A. baumannii
is isolated in a hospital environment, this poses a significant risk,
particularly in ICU wards where patients are chronically ill. As
most of these patients are immunocompromised and spend a
prolonged period of time in hospital, they represent a high risk
group for A. baumannii infection.1 Patients that acquire artificial
devices such as catheters, sutures, ventilators and those who have
undergone dialysis or antimicrobial therapy within the past
90 days are also at risk of developing A. baumannii infections.1

The respiratory tract, blood, pleural fluid, urinary tract, surgical
wounds, CNS, skin and eyes may be sites for infection or
colonization.29,30 Pneumonia may pose a threat to those patients
who require mechanical ventilation as A. baumannii has the
ability to form biofilms on the surface of the endotracheal tube,
which may account for the relatively high levels of colonization in
the lower part of the respiratory tract.31

Pathogenesis-Virulence Potential

Despite extensive research into the virulence potential of this
emerging pathogen, little is still known about its true pathogenic
potential or virulence repertoire. While it is believed that several
factors may contribute to the virulence potential of A. baumannii,
one factor in particular, OmpA, a member of the Outer
membrane proteins (OMPs), has been determined to contribute
significantly to the disease causing potential of the pathogen.32

A. baumannii OmpA bind to the host epithelia and mitochondria,
once bound to the mitochondria, OmpA induces mitochondrial
dysfunction and causes the mitochondria to swell. This is followed
by the release of cytochrome c, a heme protein, which leads to
the formation of apoptosome. These reactions all contribute
to apoptosis of the cell.32 OmpA, being the most abundant
surface protein on the pathogen, is also involved in resistance to
complement and the formation of biofilms33,34—two key stress
survival strategies and potentially important virulence associated
factors that help to promote bacterial survival both inside and
outside the host. The ability of A. baumannii to form biofilms
allows it to grow persistently in unfavorable conditions and
environments. Indeed, A. baumannii has been shown to form
biofilms on abiotic surfaces, which can include glass and
equipment used in intensive care units, and/or on biotic surfaces
such as epithelial cells.33 The most common factors that control
biofilm formation can include nutrient availability, the presence
of pili and outer membrane proteins and macromolecular
secretions. Pili assembly and production of biofilm-associated
protein (BAP) both contribute to the initiation of biofilm
production and maturation after A. baumannii attach to particular

surfaces.33 When pili attach to abiotic surfaces, they initiate the
formation of microcolonies, followed by the full development of
biofilm structures. BAP are present on the surface of bacterial cells
and they contribute to biofilm development and maturation by
stabilizing the mature biofilm on abiotic or biotic surfaces.
Environmental signals, such as metal cations, also play a role in
controlling the formation of biofilms, increasing the ability of
A. baumannii to adhere to particular surfaces.33

Other key proteins that have been shown to contribute to
A. baumannii virulence include phospholipase D and C. While
phospholipase D is important for resistance to human serum,
epithelial cell evasion and pathogenesis,35 phospholipase C
enhances toxicity to epithelial cells.36 Along with OmpA, fimbria,
also expressed on the surface of the bacterial cell, contribute to the
adhesion of the pathogen to host epithelia.

Antibiotic Resistance

The rapid emergence of multi- and pandrug-resistant strains of
Acinetobacter highlights the organism’s ability to quickly
acclimatize to selective changes in environmental pressures. The
upregulation of the organism’s innate resistance mechanisms
coupled with the acquisition of foreign determinants have played
a crucial role in the express route the organism has taken to
becoming a multidrug-resistant pathogen.5

A 2006 study undertaken by Fournier et al.8 compared the
genome of AYE and SDF Acinetobacter using whole shotgun
genome sequences. In France, the epidemic AYE strain had a 26%
mortality rate in infected patients,37 while the SDF strain came
from the same geographical region, but was associated with
human body lice, and was fully susceptible to antimicrobial
agents. The genomic comparisons revealed that the genome of the
virulent AYE strain contained an 86 kb region called a resistance
“island” that contained a cluster of 45 resistance genes. The
homologous location in the susceptible strain exhibited a 20 kb
genomic island that is devoid of these resistance markers. This
ability to “switch” its genomic structure goes some way to
explaining the speed with which Acinetobacter captures resistance
markers when under antibacterial pressure, such as may occur in a
high risk environment, such as in hospital intensive care units5

(where broad spectrum antimicrobials are commonly used).
Sequence similarity and phylogenetic analyses confirmed that
most of the resistance genes found in the Acinetobacter strain
AYE had been recently acquired from bacteria of the genera
Pseudomonas, Salmonella or Escherichia.8

All genomic variants of A. baumannii contain a non-inducible
chromosomal AmpC cephalosporinase, also known as
Acinetobacter-derived cephalosporinases (ADCs).38 The presence
of an upstream IS element known as ISAba1 determines the
regulation of the AmpC gene. Overexpression of AmpC cephalo-
sporinase and resistance to extended spectrum cephalosporin is
intrinsically linked to the presence of ISAba1.39 Cefepime and
carbapenems, however, appear to be stable in response to these
enzymes.38

A. baumannii also possess an intrinsic class D oxacillinase
belonging to the OXA-51-like group of enzymes that constitutes
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over 40 sequence variants.40 The ubiquitous nature of OXA-51-
like genes in A. baumannii has led to this gene becoming an
important genetic marker in identification of the organism to the
species level.2 OXA-51-like enzymes are able to hydrolyze penicillins
(benzylpenicillin, ampicillin, ticarcillin and piperacillin) and
carbapenems (imipenem and meropenem) but do so only very
weakly.5 A significant contribution to lactam resistance by OXA-51-
like enzymes therefore requires the presence of an insertion element
ISAba1 upstream of the gene, which acts as a strong transcriptional
promoter.2 The most common enzymatic mode of carbapenem
resistance is the production of oxacillinases encoded by genes of the
blaOXA-23, blaOXA-40 and blaOXA-58-like lineage.

In Europe, the spread of multidrug-resistant Acinetobacter is
not confined to hospitals within a city but also occurs on a
national scale, mostly through inter-hospital patient transfers, for
example the spread of the so-called Southeast clone and the
Oxa-23 clones 1 and 2 in southeast England.41 International
transfer of colonized patients has led to the introduction and
subsequent epidemic spread of multidrug-resistant A. baumannii
strains from southern into northern European countries, such as
Belgium and Germany.42

In an industry-supported surveillance report (MYSTIC) from
48 European hospitals for the period 2002–2004, just 73.1% of
A. baumannii isolates were susceptible to meropenem and 69.8%
were susceptible to imipenem. Susceptibility to other antibiotics
was also very low, with 32.4%, 34.0% and 47.6% being suscep-
tible to ceftazidime, ciprofloxacin and gentamicin, respectively.43

There is a long history of multidrug-resistant A. baumannii
infections occurring in the United States. In 1991 and 1992, out-
breaks of carbapenem-resistant A. baumannii were observed in a
hospital in New York City.44 This followed an outbreak of infec-
tions due to ESBL-producing Klebsiella pneumoniae during which use
of imipenem increased substantially.45 In a more recent industry-
supported surveillance study including isolates of Acinetobacter
collected between 2004 and 2005 from 76 centers throughout
the United States, only 60.2% were susceptible to imipenem.46

Numerous outbreaks of pandrug-resistant A. baumannii have
been documented in Asian and Middle Eastern hospitals. Rates of
non-susceptibility in SENTRY (Anti-microbial Surveillance
Program) isolates (2001–2004) exceeded 25% for imipenem
and meropenem, 40% for cefepime and ceftazidime, 40% for
ampicillin-sulbactam, 35% for amikacin, and 45% for cipro-
floxacin.47 It is worth noting that resistance to tigecycline and
polymyxin B (drugs relied on heavily to treat infection with
A. baumannii) both already exist in this region.48

Clinical Symptoms

A. baumannii infections are implicated across a wide range of
anatomical regions and with varying severity and patient
outcomes.49 There is considerable debate relating to the actual
clinical impact of infection and its relationship to patient
mortality. While a number of studies have concluded that
infection with Acinetobacter has a detrimental effect on patient
outcome,50,51 other similar studies implied little or no effect on
patient outcome as a result of infection.52,53

The lack of consensus is most likely due to the difference in the
approaches of the various studies; some being prospective while
others have been of retrospective samples.49 The results generated
by some studies have also only identified the organism to genus
level but not to species level, with many referring to infection with
Acinetobacter calcoaceticus-baumannii complex which could con-
ceivably indicate colonization with the environmental species
Acinetobacter calcoaceticus coupled with a polymicrobial infec-
tion, rather than a monomicrobial infection with a virulent
Acinetobacter species such as MDR Acinetobacter.54

Hospital-acquired pneumonia. Ventilator associated pneumo-
nia (VAP) is commonly linked to infection.55 Longer periods of
hospitalization, longer time on mechanical ventilation and prior
use of antibiotics are the recognized factors increasing the risk of
VAP due to Acinetobacter. Nosocomial outbreaks have also
been described due to health care professionals with colonized
hands and poor personal hygiene;5 such individuals may act as
opportunist carriers of an epidemic stain. Contaminated ventilators
or respiratory care equipment as well as intra-hospital transmission
may also contribute to the beginning of an outbreak.56

Community-acquired pneumonia. Pneumonia acquired out-
side of the hospital setting and caused by Acinetobacter has been
noted in Australia and Asia.57 The source of infection may be
throat carriage, which occurs in up to 10% of community
residents with excessive alcohol consumption.57 It is characterized
by a severe and sudden onset coupled with secondary bloodstream
infection and has a mortality rate of between 40% and 60%.58

Bloodstream infections. In a seven year review (1995–2002) of
nosocomial bloodstream infections in the United States,
Acinetobacter accounted for 1.3% of all monomicrobial blood-
stream infections.59 Acinetobacter was a more common cause of
ICU-acquired bloodstream infection than of non-ICU-ward
infection (1.6% vs. 0.9% of bloodstream infections, respectively,
in those locations). Crude mortality figures overall from
Acinetobacter bloodstream infection was 34.0% to 43.4% in
the ICU and 16.3% outside the ICU.59 Acinetobacter blood-
stream infection had the third highest crude mortality rate in
the ICU, exceeded only by P. aeruginosa and Candida spp
infections.59 It is notable that 102 patients had bloodstream
infections at sites treating US military personnel injured in Iraq
or Afghanistan from January 1, 2002 and August 31, 2004.9

Battlefield trauma and other wounds. Acinetobacter is a well-
documented pathogen of burns units and is difficult to treat in
patients with severe burns.60 However, infection of the skin and
soft tissue outside of a military environment is uncommon.61 A
retrospective review of 57 patients with SSTI revealed that eight
cases were infected with Acinetobacter.3 In this instance all
patients were male, ranging in age from 13 to 55 and of both
American and Iraqi nationality. The median time from trauma to
diagnosis with Acinetobacter infection was 15 d. All eight patients
had a similar clinical presentation of SSTI; characteristic cellulitis
with “peau d’orange” appearance, severe infection resulted in
formation of bullae on the skin surface. The mortality rate in this
instance was 12.5% (i.e., one of the eight died; however given
that the patient was admitted with a gunshot wound to the groin,
mortality cannot be solely assigned to infection).

246 Virulence Volume 3 Issue 3



©
20

12
 L

an
de

s 
B

io
sc

ie
nc

e.
 D

o 
no

t d
is

tri
bu

te
.

Meningitis. Nosocomial, post-neurosurgical Acinetobacter
meningitis is becoming increasingly more common with many
other Gram-negative bacteria also becoming problematic in post-
operative care.62 Installation of an external ventricular drain
becomes a site for opportunistic infection. The mortality rate may
be as high as 70%; however it is not possible to discern the
definitive cause of mortality.63

Therapeutic Strategies

Existing antimicrobials. As mentioned previously, one of the
distinguishing features of A. baumannii is its impressive array of
acquired antibiotic resistance mechanisms, which although
beyond the scope of this review, includes degradation enzymes
against β-lactams, modification enzymes against aminoglycosides,
altered binding sites for quinolones, and a variety of efflux
mechanisms and changes in outer membrane proteins (see Peleg
et al.5 for a detailed overview). Any and all of these elements can
be combined to result in a highly drug-resistant pathogen; making
selection of an appropriate empirical antimicrobial agent extremely
difficult. Indeed, given the probability that A. baumannii would be
most likely resistant to one of the common first line antibiotics,
treatment of the infection should be performed following sound
consideration of antimicrobial susceptibility testing. Nevertheless, as
a delay in accessing correct treatment may have adverse con-
sequences for a patient’s health, carbapenems such as Imipenem are
often given as a drug of preference for serious and suspected
Acinetobacter infections.64 However, despite its utility short-term,
this prescription method jeopardizes future efficacy of such drugs as
effective antimicrobial agents.

Future therapies. Given the rapid and extensive development
of antibiotic resistance, several attempts have been made to
develop alternative control strategies for dealing with A. baumannii
including, but not limited to the following:

Bacteriophage. Recently renewed interest in the area of
antibacterial phage therapy has gained some traction.67 Due to
the high specificity of phage and their ability to work quickly,
bacteriophage therapy is being re-examined as an alternative
treatment to help counteract the phenomenon of antibiotic
resistance.68 Indeed, a recent study by Yang et al.69 has resulted
in the isolation and characterization of the virulent AB1
bacteriophage which has been shown to be effective against
A. baumannii and as such represents a novel therapeutic of
some potential.

Bactericidal gene transfer therapy. The design and delivery of
vectors containing bactericidal genes that can be introduced into
recipient pathogenic organisms by conjugation using attenuated
donor cells is referred to as bactericidal gene transfer therapy.
While the therapeutic potential of this approach is limited by the
requirement for donor cells to be in contact with the pathogen (to
facilitate vector transfer), positive effects have nonetheless been
observed using murine burn infection models. Using this
approach, Shankar et al.65 have shown that mice treated with a
single dose of 1010 CFU of donor cells containing bactericidal
genes had lower levels of A. baumannii in burn wounds compared
with untreated mice.

Cathelicidins. Marsupials give birth to immunologically naïve,
altricial young that reside in the maternal pouch for 9–10 mo
while being supported by a sophisticated lactation system. In the
pouch, cathelicidins interact with and destroy Gram-positive and
Gram-negative bacteria, protozoa and fungi via electrostatic
interactions between their positively charged peptides and the
negatively charged molecules found in the cell membranes of their
targets.70 The best studied cathelicidin is human LL-37; the only
human cathelicidin, it exhibits both anti-tumor and anti-HIV
activity.71 The Tammar Wallaby cathelicidin WAM1 has been
shown to be effective against Acinetobacter, and is 3–80 times
more potent than LL-37 against a host of bacterial pathogens.
WAM1 was not hemolytic against human red blood cells indicat-
ing potential for parenteral use in humans.70 Indeed, WAM1’s
anti-microbial activity and tolerance to salt concentrations similar
to those found in the human body make it seem a likely candidate
for further in vivo studies.72

Radioimmunotherapy. Although not yet not exploited as a
therapeutic antimicrobial strategy in the clinic, radioimmuno-
therapy can target microorganisms as quickly and efficiently as
cancer cells.66 This approach takes advantage of the specificity of
antigen-antibody interactions to deliver radionuclides that
emanate lethal doses of cytotoxic radiation directly to the target
cell. Producing only transient hematological toxicity in experi-
mental animals, radioimmunotherapy has been successfully
adapted for the treatment of bacterial,73 fungal74 and viral75

infections. Given that previous studies have already described
the development of antibodies against A. baumannii,76,77 the
application of radioimmunotherapy as a novel therapeutic strategy
for A. baumannii is a definite possibility.

Photodynamic therapy. Involves the combination of nontoxic
photosensitizers (PSs) with oxygen and visible to produce reactive
oxygen species that oxidize biomolecules thereby killing cells.78

The use of photodynamic therapy (PDT) to treat localized
bacterial infections generally involves the topical application of a
PS into the infected tissue, followed by illumination with red (or
near-infrared) which is capable of penetrating the infected tissue.79

Using a murine burn wound model, this technique has previously
been shown to be effective against A. baumannii while having no
obvious effects on wound healing.80 Recently, Tsai et al.81

investigated the effect of chitosan, a polycationic biopolymer,
on increasing the efficacy of PDT against a number of pathogens
including A. baumannii. Under conditions in which hemato-
porphyrin-PDT exhibited a bacteriocidal effect on a 2- to 4-log
scale, subsequent treatment with chitosan (0.025%) for a further
30 min completely eradicated the bacteria (at a starting inoculum
of 108 CFU/ml). Chitosan alone did not exert significant
antimicrobial activity, without prior PDT, suggesting that the
potentiated effect of chitosan worked only after the bacterial
damage induced by PDT. Furthermore, the potentiated PDT
effect of chitosan appears to be related to the level of PDT damage
and the deacetylation level of the chitosan.

Nanoparticle technology. Nitric oxide (NO) has been shown to
exhibit potent antimicrobial activity as well as playing an
important role in modulating immunity82 and regulating wound
healing.83 Using nanotechnology based on a silane hydrogel,
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Friedman et al.84 have designed a stable nitric oxide (NO)-
releasing nanoparticle (NO-np) platform. With the potential to
serve as a novel, inexpensive and easily applied topical class of
antimicrobials, this technology has been shown to be effective for
the treatment of complex cutaneous infections such as those
caused by A. baumannii. Indeed, Mihu et al.85 recently
demonstrated the effect of NO-np against A. baumannii using
murine wound and soft tissue models. Compared with control
animals, NO-np-treated mice exhibited significant reductions in
bacterial burden, enhanced wound healing rates and less collagen
degradation by bacterial collagenases.

Conclusions

In conclusion, A. baumannii is an important opportunistic and
emerging pathogen that can lead to serious nosocomial infections.
Its pathogenic potential includes the ability to adhere to surfaces,
form biofilms, display antimicrobial resistance and acquire genetic

material from unrelated genera, making it a versatile and difficult
adversary to control and eliminate.57 The optimal treatment for
A. baumannii, especially nosocomial infections resulting from
multiple resistant strains, remains to be established. It is thus a
clinical imperative that well-designed procedures are put in place
to help guide clinicians on decisions regarding the current best
therapeutic practice.86 Furthermore, new experimental approaches
are warranted to develop and evaluate novel therapeutic strategies
for dealing with A. baumannii infections.
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