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Abstract

Background: The refractory nature of many cancers remains the main health challenge over the past century. The
epigenetic drug, decitabine (DAC), represents one of the most promising therapeutic agents in cancers particularly
in acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS). However, its ambiguous anti-tumor mecha-
nism and the unpredictable drug-resistant nature in some population compromise its application in cancer therapy.
In crosstalk with DNA methylation, histone post-translational modifications (PTMs) are the key players in modulating
the downstream epigenetic status of tumor suppressor genes. This study targets the role of decitabine in epigenetic
regulation in leukemia therapy and searches responsive predictors and therapeutic targets for pretreatment evalua-
tion and drug development.

Results: A simple, fast, and robust proteomic strategy identified 15 novel PTMs and 60 PTM combinations in two
leukemia cell lines (MDS-L and TF-1). Histone modification profiles have been generated and compared between
DAC sensitive and resistant groups (n = 3) in response to DAC treatment. Among these histone PTMs, five of which
were found differentially upon DAC treatment in drug sensitive and resistant cells: H3.3K36me3, H4K8acK12acK16ac
in MDS-L cells; and H3.1K27me1, H3.1K36me1, H3.1K27me1K36me1 in TF-1 cells. They may serve as biomarkers in
predicting leukemia and drug responsiveness. In addition, we also explored PTM differences in two cell lines which
were developed from early and advanced stages of AML. Three PTMs (H3.1K27me3, H3.1K27me2K36me2 and
H3.3K27me2K36me2) are highly abundant in TF-1 cells (advanced AML cell line), suggesting their relevance to leuke-
mogenesis. Our method allowed deep analysis of histone proteins and elucidation of a large number of histone PTMs
with high precision and sensitivity.

Conclusion: DAC-induced DNA hypomethylation has wide impact on chromatin modifications. This study represents
first effort to investigate the undefined epigenetic mechanism of decitabine in leukemia therapy. The identification of
15 novel PTMs and the discovery of several marks have relevance to epigenetic directed therapies.

Keywords: Leukemia, Acute myeloid leukemia (AML), Myelodysplastic syndromes (MDS), Decitabine (DAC), Histone

modifications, Mass spectrometry

Background

Epigenetics is an active field of cancer research. DNA
methylation and histone modifications are two major
contributors to epigenetics. As a crucial epigenetic mark
on the genome, DNA methylation modulates many
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important cellular processes including embryonic devel-
opment, transcription, mammalian X chromosome inac-
tivation, genomic imprinting and chromosome stability
[1, 2]. About 60-80 % of CpGs in the human genome
undergo DNA methylation [3]. There are two classes
of DNA methyltransferases (DNMTs) that catalyze the
transfer of the methyl group onto DNA: (1) DNMT1
maintains the global methylation pattern; and (2)
DNMT3A and DNMT3B perform de novo methylation
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during embryonic development [3-7]. DNA meth-
ylation is generally considered a repressive mark and
is often associated with gene silencing [1, 8]. The bal-
ance between DNA methylation and demethylation is
required to be precisely maintained and dysregulation of
the balance may lead to human diseases notably cancer
[3, 9, 10]. Global DNA hypomethylation as well as DNA
hypermethylation in the promoter regions of tumor
suppressor genes are common hallmarks of cancer cells
[10-12].

Histone modifications, on the other hand, provide
another layer in modulating DNA replication and gene
transcription. Histones are relatively small proteins with
high content of basic residues, lysine and arginine, mak-
ing these proteins strongly positively charged which con-
tributes to their tight interactions with the negatively
charged DNA backbone [13]. There are two types of his-
tones: (1) Linker histone H1; and (2) Core histones (H2A,
H2B, H3, and H4) [14, 15]. A protein octamer formed
by two of each copy of core histones constitutes the
basic unit of eukaryotic chromatin [13, 14]. Both linker
histones and core histones undergo a large number of
chemical modifications including methylation, acetyla-
tion, phosphorylation, biotinylation, citrullination, ADP-
ribosylation, and ubiquitination [16]. Histone modifying
enzymes are responsible for addition or removal of these
different types of chemical modifications [13, 17, 18].
A wide range of dynamic histone marks (histone code),
their modifying enzymes (code writers or erasers), and
their downstream effector molecules (code readers) are
key players in regulating eukaryotic chromatin structure
and functions [19-22]. Multiple regulatory layers can be
achieved by changing the levels, types, and positions of
PTMs on these proteins. As with DNA methylation, a
wrong histone code (i.e. an aberrant histone modification
pattern) written or erased by histone modifying enzymes
may result in disease [23-26].

As DNA and histones are physically intertwined,
changes in chromatin states often require synergistic
actions affecting both DNA methylation and histone
modifications involving proteins including DNMTs,
histone modifying enzymes, and chromatin binding
proteins [27-29]. Little is known, however, about the
crosstalk between these two types of modifications in
many diseases. Some preliminary studies have pointed
to a connection between these two types of modifica-
tions and their relevance to human cancers [8, 11, 28].
DNA methylation may affect histone modification pat-
terns and altered histone modifications also impact the
DNA methylome and vice versa [30—37]. Therefore, all
of these marks and proteins mentioned above provide a
rich source to mine for cancer biomarkers and therapeu-
tic targets.
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The recent advancements in cancer epigenetics has
led to the development of new epigenetic drugs, most of
which are DNA methyltransferase inhibitors (DMNTi)
or histone modifying enzyme inhibitors (e.g. HATI,
HDACIi, HMTi, and HDMi) [38-42]. Decitabine (DAC),
a DNA methylation inhibitor, has potential as a therapy
for myelodysplastic syndromes (MDS) and certain types
of leukemia [43-48]. DAC depletes DNMT1 and reverses
aberrant epigenetic repression of tumor suppressor genes
via an unknown mechanism. Low-dose administra-
tion of DAC is less toxic and improves efficacy in MDS
and other cancers [49-52]. On the other hand, ~50 % of
patients are non-responders and most of patients even-
tually develop resistance to the drug [45]. Patients who
are resistant to DAC have limited alternative options and
have high mortality. The ambiguous anti-tumor mecha-
nism and unpredictable basis for drug-resistance repre-
sent a current challenge. Therefore, knowledge of DAC
anti-tumor effects and mechanisms of resistance has
essential relevance to cancer therapy.

Liquid chromatography tandem mass spectrometry
(LC-MS/MS) technique has become the most popular
and powerful tool for large-scale protein identification,
PTM analysis, protein—protein interactions, and etc.
[53, 54]. The quantitative feature gives it extra credit in
comparing thousands of components across multiple
samples in different cell states [55-57]. However, analy-
sis of histones and their posttranslational modifications
are challenging owing the high complexity and combina-
tory manners of the numerous chemical modifications,
which often involves the multi-step histone purifica-
tions such as HPLC and gel electrophoresis [58—60]. As
a result a large number of cells or tissues are required to
obtain enough histones for mass spectrometry analysis,
complicating analysis of clinical samples available in lim-
ited quantities. Since histone proteins have excess basic
amino acid residues (lysine and arginine), trypsin diges-
tion will generate undersized, hydrophilic peptides which
are unfavorable when conventional proteomics strat-
egy is adopted. Chemical derivation of histones, such as
propionylation [61], is a popular protocol which greatly
facilitates LC—MS/MS analysis by introducing an artifi-
cial modification (propionyl group) onto lysine residues
generating longer, more hydrophobic tryptic peptides.
However, operational variations during sample prepara-
tion are introduced since propionylation of histones is
usually incomplete and varies from batch to batch [62].
For comparison of histone PTMs in different biological
states, chemical or metabolic labeling techniques often
provide more accurate quantification than label-free
methods which require more measurements and repeats
to achieve the power of statistical tests [63—65]. Although
middle-down analysis of large-size peptides (3—9 kDa)
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or top-down analysis of intact histones gives more com-
prehensive assessment of the histone code, the use of
these approaches is largely limited since they require
more separation steps and large amounts of histones
[66]. Targeted proteomics allows absolute quantifica-
tion of histone PTMs by spiking samples with synthetic,
isotope labeled peptides [67]. Nonetheless, this strategy
is designed upon biomarker validation not for discovery
purpose. To dissect the role of DAC in epigenetic regula-
tion in leukemia therapy, we have implemented a simple,
fast, highly sensitive proteomic method for mapping and
quantifying histone modifications and their combination
patterns in leukemia cells based on high-resolution mass
spectrometry. Prior to enzyme digestion and LC-MS/MS
analysis, this method relies on a simple histone enrich-
ment step without HPLC or gel separation, thus greatly
simplifying the overall workflow. Propionylation in com-
bination with stable isotope labeled histones as internal
standard further improves the PTM identification and
quantification. Using this strategy, we have identified 61
individual histone marks and quantified the relative lev-
els of 60 PTM combinations in two leukemia cell lines.
We also investigated effects of treatment with thus link-
ing DNA methylation and chromatin modifications.

Methods

Cell culture and experimental design

Two cell lines, TF-1 (derived from human erythroleuke-
mia, purchased from ATCC) and MDS-L (derived from
patient MDS) were chosen for this study. TE-1 cells were
maintained in RPMI-1640 containing 10 % fetal bovine
serum and 10 ng/mL interleukin 3. MDS-L cells were
maintained in RPMI-1640 containing 20 % fetal bovine
serum and 10 ng/mL interleukin 3. An additional cell line
U937 was maintained in RPMI-1640 medium containing
10 % fetal bovine serum. To develop resistance to DAC,
parental (DAC-sensitive) TF-1 and MDS-L cell lines were
challenged with decitabine over a year. Both DAC-sen-
sitive and DAC-resistant cell lines were then cultured in
DAC-free medium and analyzed with or without treat-
ment with DAC (1-3 uM) for 72 h in the same medium.
To obtain the global internal standard, the three parental
cell lines (MDS-L, TF-1, U937) were cultured in SILAC
medium (R1780 SIGMA, RPMI-1640 Medium) sup-
plemented with heavy amino acids-L-ARGININE: HCL
(13C6, 99 %, CLM-2265-H-0.5) and L-LYSINE: 2HCL
(U-13C6, 99 %; CLM-2247-H-0.5) purchased from Cam-
bridge Isotope Laboratories. After SILAC labeling, they
were mixed in equal numbers prior to nuclear isolation
and histone acid extraction. Meanwhile, regularly cul-
tured (unlabeled) cell lines also underwent nuclear isola-
tion and acid extraction separately (Fig. 1).
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Nuclear isolation and bulk histone acid extraction

About 1 x 10° cells were collected by centrifugation and
washed twice with 10 mL ice-cold PBS (Phosphate-buff-
ered saline) supplemented with 5 mM Sodium Butyrate
(Sigma-Aldrich). Cell pellets were suspended in 1 mL ice-
cold TEB Buffer (Triton Extraction Buffer: PBS contain-
ing 0.5 % Triton X 100 (v/v), 2 mM PMSF) supplemented
with 5 mM Sodium Butyrate, 1x Protease inhibitor
(Roche), 1x PhoStop (Roche), and incubated in a rotator
at 4 °C for 10 min. Intact nuclei released from cells were
collected by spinning at 3000g for 10 min at 4 °C. Nuclei
were washed with 1 mL TEB buffer and spun down again.
For histone acid extraction, nuclear pellets were resus-
pended in 1 mL of 0.4 N H,SO, with gentle spin in a
rotator overnight at 4 °C. Nuclear debris was removed by
centrifugation at 16,000¢ for 10 min at 4 °C in a cooled
table-top centrifuge. The supernatant containing bulk
histones was transferred into a new Eppendorf tube for
precipitation by addition of TCA (Trichloroacetic acid,
Sigma-Aldrich) drop by drop to the histone supernatant
(final concentration of TCA = 33 %). Histones were col-
lected by spinning at 16,000g, for 10 min at 4 °C. Pellets
containing histones were washed with ice-cold acetone
twice. Once acetone was removed, pellets were air dried
for 20 min at room temperature, dissolved in 400 uL H,O,
and stored at —20 °C. Both linker histone and core his-
tones could be effectively enriched after this simple step.
Typically, more than 100 pg proteins can be extracted
from 1 x 10° cells and up to 80 % of the proteins are his-
tones. Purity of crude histones after acid extraction was
checked by means of SDS-PAGE (Sodium dodecyl sulfate
polyacrylamide gel electrophoresis) and gel staining with
Coomassie Brilliant Blue.

Chemical derivatization, trypsinization, and LC-MS/MS

Unlabeled bulk histones extracted from TF-1 or MDS-L
(sensitive or resistant cells treated with or without DAC)
were equally mixed with SILAC labeled crude histones
extracted from a three cell line mixture which serves as
internal standard for comparison across samples col-
lected under different conditions (Fig. 1). The light and
heavy protein mixture was chemically propionylated
twice before and after trypsin digestion as previously
described [61, 68]. Propionylation significantly increases
the hydrophobicity and retention times of tryptic pep-
tides on a reversed-phase column, which improves the
number of PTMs identified and quantified by LC-MS/
MS. Samples were then mixed in 100 mM ammonium
bicarbonate buffer and digested with sequencing-
grade trypsin (Promega, Madison, WI) at a ratio of 1:20
(enzyme:substrate) at 37 °C for 6 h. The digested mixture
was vacuum-dried, reconstituted in 0.1 % formic acid
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Fig. 1 Experimental design. To reveal DAC-resistant mechanism, parental TF-1 and MDS-L cell lines were selected and their drug-resistant cell
lines were developed. Parental and DAC-resistant cells were cultured in RPMI-1640 medium with or without drug treatment. The internal standard
is composed of three cell lines (parental MDS-L, TF-1, U937) which were cultured in SILAC medium ("*C¢-Lys, '°C,-Arg) and equally mixed before
nuclear isolation and acid extraction. Cells were collected and underwent nuclear isolation and acid extraction to achieve crude histone mixture.
The light and heavy extracts were mixed equally followed by propionylation, trypsinization, LC-MS/MS and data analysis

and filtered by 10 kDa cut-off centrifugal filter unit (Mil-
lipore Ultracel YM-10). About ~1 pg of protein digest
was loaded onto a C18 trap column (Waters, 180 pm
ID x 20 mL) and resolved on a 25 cm long, capillary col-
umn (75 pm ID x 360 pum OD, New Objective) packed
with 5 pum, 200 A C18 silica-bonded material (Magic C18
AQ, New Objective). Peptides were eluted using a linear
gradient as follows: run 100 % solvent A (0.1 % formic
acid) over 5 min; run a 0-40 % gradient against solvent B
(0.1 % formic acid in acetonitrile) over 90 min; and finally
run 10 min, 95 % solvent B at a flow rate of 300 nL/min.
The eluted peptides were analyzed using a Thermo Fisher

Q Exactive Hybrid Quadrupole-Orbitrap Mass Spec-
trometer under data dependent acquisition mode. After a
full scan (m/z 300-1800), tandem spectra were collected
by selecting the 10 most intensive peaks with normalized
collision energy of 35 %. Resolution on MS1 and MS2
was 70,000 and 17,500 respectively. A dynamic exclusion
of 35 s and internal mass lock (445.12002 m/z) were also
executed to obtain best performance.

Data analysis
A quantitative proteomics software package MaxQuant
(version 1.5.2.8) was used for raw data processing,
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peptide identification, and quantification [69]. Collected
spectra were searched against Uniprot Human proteome
FASTA database (released in April 2015) containing
90,411 sequences. Mass tolerance for precursor ion was
10 and 20 ppm for the fragment ions. N-terminal propio-
nylation was considered as fixed modification while lysine
acetylation, lysine and arginine methylation, and lysine
propionylation were searched as variable modifications.
Up to five missed cleavages were allowed during diges-
tion as trypsin doesn’t cleave propionylated lysine. Data
were normalized so that the median of the logarithms
of all peptide ratios in each LC—MS run is zero [69]. We
accepted 1 % false discovery rate at both peptide and pro-
tein level estimated from decoyed sequences. All spectra
identified with PTMs were manually checked and vali-
dated. The peptide ratios of light/heavy were evaluated in
biological triplicates. The true ratios of peptides and pro-
teins in any two different conditions can be directly con-
verted from their light/heavy ratios. Unpaired, two-tailed
Student’s ¢ test was analyzed in Microsoft Excel.

Results and discussion

Research strategy and method development

Owing to the challenges and difficulties in analyzing his-
tone PTMs (discussed in “Background” section), we have
developed a simple, fast, and robust quantitative LC—
MS/MS proteomic method. Compared to the existing
methods, our entire experimental platform has several
advantageous features for confident PTM identification
and quantification in human cells: (1) The simple enrich-
ment procedure with acid extraction effectively isolated
bulk histones containing both linker histone and core his-
tones with some minor non-histone contaminants, which
greatly reduces the workload, and improves sensitivity,
throughput and reproducibility. The whole enrichment
procedure took less than 1 day before trypsin digestion
and LC-MS/MS analysis. (2) In comparison to label-free
quantification, the use of internal standard derived from
three SILAC-labeled cell lines reduces sample sizes and
gives a better PTM coverage owing to PTM pattern var-
ies from cell line to cell line. In comparison to multiplex
SILAC labeling, our protocol is more cost-effective and
also allows longitudinal study of histone modifications
in clinical samples. (3) The chemical derivatization took
advantage of the fact that propionylation blocks trypsin
cleavage at lysine and neutralizes positive charges on
lysine residues [61], thus generates adequately sized,
more hydrophobic peptides suitable for reverse-phase
mass spectrometry analysis. The variations caused by
incomplete propionylation during sample preparation are
greatly minimized by using the internal standard which
enables reliable and consistent comparison of protein and
PTM abundance in different samples [62]. (4) The use of
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Q Exactive mass spectrometers that offer high-resolution
option on both MS1 and MS2, allows for high confidence
identification of peptides and PTMs. All together, these
efforts greatly improve the number of PTMs identified
and quantified by LC-MS/MS [63, 68, 70, 71]. Our opti-
mized method allowed profiling of histones and their
PTM:s from as few as 10° leukemia cells.

In total, 22 histones or histone variants were identi-
fied with at least one unique peptide (Additional file 1:
Table S1) and 108 modified peptide species (Additional
file 2: Table S3) consisting of 61 distinct histone marks
at 39 sites in both linker and core histones (Additional
file 3: Figure S1, Additional file 4: Figure S2). Impor-
tantly, conserved histone PTMs were detected and quan-
tified in this study. Among these marks, 15 are novel
PTMs (Additional file 3: Figure S1) according to the
UniProt Knowledgebase. They are: H1.0 Lys-40 mono-
methylation, H1.2 Lys-52 (or H1.3 Lys-53, H1.4 Lys-52)
mono-methylation, H1.5 Lys-55 mono-methylation, H1.5
Lys-78 mono-methylation, H1.4 Lys-119 (or H1.5 Lys-
122) mono-methylation, H1.4 Lys-121 (or H1.5 Lys-124)
mono-methylation, H1.2/H1.5 Lys-172 mono-methyl-
ation, H2A type 1-D Lys-43 mono-methylation, H2A.1/
H2A type 1-C/H2A type 1-D Lys-126 mono-methylation,
H2B type 2-F Lys-21 mono-methylation, H2B type F-S
Lys-25 mono-methylation, H2B type F-S Lys-29 mono-
methylation, H4 Lys-9 mono-methylation, H4 Arg-56
mono-methylation, and H4 Lys-78 mono-methylation. In
addition, 40 individual PTMs or 60 PTM combinations
were quantified in leukemia sensitive and resistant cell
lines (Additional file 5: Table S2). After normalization,
most proteins and PTMs quantified had Light/Heavy
ratios close to one with small statistical variations (Fig. 3;
Additional file 1: Table S1, Additional file 5: Table S2)
suggesting reliability of the method.

PTMs related to decitabine resistance

As our primary effort, we first targeted the DAC resist-
ance in MDS-L and TF-1 cells which represent early and
late stage of the disease respectively. To identify PTMs
that are related to DAC resistance, we investigated his-
tone modification profiles in DAC-sensitive and DAC-
resistant cells upon drug treatment.

In MDS-L cells, two peptide species (Additional file 5:
Table S2, Figs. 2, 3b) showed significantly difference
among sensitive and resistant groups in response to DAC
treatment (p < 0.05): 27-KSAPSTGGVKme3KPHR-40
(H3.3K36me3, Additional file 6: Figure S3. Note: N-termi-
nal methionine is not counted in the following text) and
4-GKGGKacGLGKacGGAKacR-17 (H4K8acK12acKl6ac,
Additional file 6: Figure S3). H3.3K36me3 was moderately
induced in MDS-L resistant cells after DAC treatment (final
ratio = 1.39, p < 0.01) as compared to sensitive cells (final
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Fig. 2 Differentially expressed PTMs in different groups. a 3 PTMs as signature in the TF-1 cells. H3.1K27me3 and H3.3K27me2K36me?2 are only
detectable in the TF-1 groups while H3.1K27me2K36me2 presents at a much lower level in MDS-L cells (0.07 vs 1.06, p < 0.01); b Induction of
H3.3K36me3 and reduction of H4K8acK12acK16ac in MDS-L cells after DAC treatment; € Reduction of mono-methylation states on H3 Lys-27 and
Lys-36 in the DAC-resistant TF-1 cells after drug stimulus. H3.1K27me1 is significantly lower in the resistant cells after DAC treatment (0.51 vs 1.08,
p < 0.05). H3.1K36me1 and H3.1K27me1K36me1 are moderately decreased in the resistant cells after drug exposure. No significant changes found
in the sensitive cells in response to the drug stimulus

ratio = 1.09). Whereas tri-acetylation on the H4 N-termi-
nal tail (H4K8acK12acK16ac) was reduced after DAC treat-
ment in MDS-L sensitive cells (final ratio: 0.68, p < 0.05)
but this modification remained mostly unchanged in resist-
ant cells upon drug exposure (final ratio: 0.93). Alteration
of histone lysine methylation and their enzymes are often
associated with leukemogenesis or tumor progression and
drugs targeting disordered patterns of histone methylation
are being developed [72]. On the other hand, deregulation
of histone acetylation and their modifying enzymes (HATs
and HDACs) are common observations in AML and MDS
[73]. H4K8acK12acK16ac may be relevant to the devel-
opment of inhibitors of HAT and HDAC as in the case of
Vorinostat and Romidepsin [38].

In TF-1 cells, three mono-methylation states on H3
Lys-27, Lys-36, and Lys-37 changed differently among
sensitive and resistant groups in response to DAC

treatment (Figs. 2, 3b). 27-KmelSAPATGGVKKPHR-40
(H3.1K27mel, Additional file 6: Figure S3) was reduced
by about 50 % (final ratio = 0.51, p < 0.05) in resist-
ant cells while this modification maintained stable in
TF-1 sensitive cells (final ratio = 1.08). The other two
modification states: 27-KSAPATGGVKmelKPHR-40
(H3.1K36mel, Additional file 6: Figure S3) and 27-Kme-
1SAPATGGVKmelKPHR-40 (H3.1K27melK36mel,
Additional file 6: Figure S3) were moderately decreased
in resistant cells after drug treatment. These methyla-
tion states were also stable in sensitive cells in response
to the drug treatment. EZH2, one of the H3K27 methyl-
transferases and the principal component of Polycomb
Repressive Complex 2 (PRC2), is a key player (code
writer) in regulating the methylation states of Lys-27 in
histone H3 [74]. EZH2 also controls DNA methylation
by interacting with DNMTs [75]. Given its key function
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in maintaining gene transcription, mutation or deregula-
tion of EZH2 is associated with cancer development [74].
Development of inhibitors of EZH2 represents a thera-
peutic strategy for cancer [76]. Our study has provided
additional evidence that H3K27 methylation may play a
role in DAC treatment effect. However, no common indi-
vidual marks related to drug resistance were found in
both cell lines. This may be explained by cell line differ-
ence or disease stages.

Highly abundant PTMs in TF-1 cells

As our secondary effort, we investigated and compared
the PTM patterns in these two cell lines since alterations
of epigenetic marks may be related to disease stages. The
TF-1 cell line was first established from a patient with
erythroleukemia, a rare form of acute myeloid leukemia
(AML) [77]. The MDS-L cell line was derived from mye-
lodysplastic cells [78]. MDS could transform into AML
thus is generally regarded as a pre-cancer stage of AML
[78]. Therefore, studying these clinically closely related
cell lines could provide information about leukemia
development and progression.

By comparing steady-state level of histone PTMs
in the sensitive cell lines, we found that di- and tri-
methylation states of H3K27 were significantly more
abundant in TF-1 cells compared to MDS-L cells
(Fig. 2). Three species were identified in total con-
sisting of 27-Kme3SAPATGGVK-36 (H3.1K27me3,
Additional file 6: Figure S3), 27-Kme2SAPATGGVK-
me2KPHR-40 (H3.1K27me2K36me2, Additional file 6:
Figure S3), and 27-Kme2SAPSTGGVKme2KPHR-40
(H3.3K27me2K36me2, Additional file 6: Figure S3) that
were substantially more abundant in TF-1 or missing in
MDS-L (Additional file 5: Table S2). H3.1K27me3 and
H3.3K27me2K36me2 were identified in all samples from
the TE-1 cell line but were not detectable in all MDS-L
cell line samples. H3.1K27me2K36me2 were found in all
TE-1 samples but were only detected in two MDS-L sam-
ples with very low Light/Heavy ratios (0.068 on average).
Of note the dimethylation state of H3K27 (27-Kme2SA-
PATGGVK-36) was also significantly reduced in MDS-L
cells compared to TF1 cells (Light/Heavy ratio: 0.23 vs
1.61, p < 0.01).

The role of H3K27 methylation has been extensively
studied and a precise balance of this modification is a
key to maintaining normal cell growth [79]. There are
several histone methyltransferases that impact H3K27
methylation including EZH1, EZH2, and WHSCI1LI [80].
Moreover, there are also three histone demethylases that
reverse the methylation status of H3K27 [81]. Mutations
of these chromatin modifiers are often linked to cancer
[82]. H3K27 methylation is generally considered as a
repressive mark and alteration of H3K27 methylation has
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been found in several cancer types including leukemia
[83]. Histone modifications are currently being explored
as potential biomarkers for disease progression and
prognosis [84]. The induction of H3K27me2/me3 and
H3K36me2 in TF-1 cells suggests a potential for these
epigenetic marks to serve as biomarkers that differentiate
the early (MDS) and late stage (AML) of leukemia. How-
ever, if the alteration of H3K27 methylation contributes
to myeloid leukemogenesis remains to be fully elucidated.

Interplay between DNA methylation and histone
modifications

Prior studies have pointed to the relatedness of DNA
methylation and histone modifications in impact-
ing tumor pathogenesis [8, 11, 28, 30—35]. Three major
DNMTs (DNMTI1, DNMT3A, and DNMT3B) are
involved in DNA methylation in cells. All three DNMTs
are post-translationally modified with a variety of PTMs
including acetylation, methylation, phosphorylation,
SUMOylation, and ubiquitination [85]. Reversible cova-
lent modifications of DNMTs may affect their stability,
enzyme activity, DNA binding, and interactions with
other partners [85-87]. For example, SUMOylation of
DNMTS3A affects protein binding to HDACs and changes
DNA methylation profiles [88, 89]. DNMT1 is the pri-
mary target trapped and depleted by DAC. Among its
listed known interacting proteins are chromatin modi-
fiers including HDAC1/2 (HDACs), KDM1A (HDM),
SUV39H1 (HMT), EHMT2 (HMT), EZH2 (Polycomb
group protein), EED (Polycomb group protein), SETD7
(HMT), KAT5 (HAT), and etc. [87].

The role of DNMTs in linking these two types of modi-
fications is of particular interest. In this study, we have
demonstrated that DAC-induced DNA hypomethylation
has significant impact on chromatin modifications. We
have revealed five particular histone marks (H3K27mel,
H3K36mel, H3K27melK36mel, H3.3K36me3, and
H4K8acK12acK16ac) that were differentially expressed in
MDS-L and TF-1 sensitive and resistant cells in response
to DAC treatment, pointing to a potential role for these
modifications in drug resistance mechanisms. These find-
ings suggest a DNMT-dependent pathway through which
DAC inhibits DNMTs and re-activates downstream
tumor suppressor genes via histone modifying enzymes
or other unknown factors.

Conclusion

We have developed a fast proteomic method for robust
quantitative analysis of histone PTMs. (1) The proteomic
strategy described here enhances data quality and acqui-
sition sensitivity resulting in comprehensive analysis of
histone modifications in relatively small number of cells;
(2) The systematic analysis of epigenetic profiles in drug
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sensitive and resistant cell lines have identified 61 PTMs,
of which 15 are novel histone modifications; (3) The iden-
tification of H3.1K27me3 and H3.1/H3.3K27me2K36me2
as signature in TF-1 cells suggests their potential role in
leukemogenesis; (4) The discovery of five additional his-
tone marks that were differentially impacted by DAC in
the sensitive and resistant cells suggests their potential
relevance to the development of drug resistance. Our
results also suggest a conserved, DNMT-dependent path-
way in DAC-mediated leukemia treatment. More inves-
tigations, however, are needed to elucidate how DAC
exerts its anti-tumor effect and how tumor cells develop
a resistant strategy to escape the DAC-mediated anti-
tumor therapy.
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Additional file 1: Table S1. 22 histone variants and their relative levels in
the different groups.

Additional file 2: Table S3. A list of 107 modified peptide species. Note:
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Additional file 3: Figure S1. Figure representation of all 61 individual
PTMs in linker and core histones.

Additional file 4: Figure S2. Tandem spectra of 108 peptide species
with PTMs.

Additional file 5: Table S2. Relative levels of 60 PTM combinations in
the different groups.

Additional file 6: Figure S3. A list of 107 modified peptide species.
Note: Trypsin cleaves K if propionylation is incomplete.
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