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ABSTRACT

Background: Serum levels of microRNA-371a-3p represent a specific tumor marker 
of testicular germ cell tumors (GCTs) but the origin of circulating miR-371a-3p is not 
finally resolved. The correlation between miR-levels in tissue and serum is unclear.

Results: MiR-levels in GCT tissue are 399-fold higher than in contralateral 
testicular tissue and 5843-fold higher than in non-testicular tissue. MiR tissue levels 
correlate with corresponding serum levels (r2 = 0.181). ISH detected miR-371a-3p 
intracellularly in GCT cells except teratoma. A low expression was also detected in 
normal testicular germ cells.

Conclusions: Circulating miR-371a-3p is specifically derived from GCT tissue. 
The miR is present in GCT cells except teratoma. A low expression is also found in 
normal testicular tissue but not in non-testicular tissue. MiR-371a-3p levels in tissue 
and serum correlate significantly. This study underscores the usefulness of serum 
miR-371a-3p as tumor marker of GCT.

Patients and methods: Expression levels of miR-371a-3p were concurrently 
measured in tissues of GCT, contralateral testes (n = 38), and in serum (n = 36) with 
real time PCR. For control, 5 healthy testicles and 4 non-testicular tissue samples 
were examined. MiR-levels were compared using descriptive statistical methods. We 
also performed in situ hybridization (ISH) of GCT tissue with a probe specific for 
miR-371a-3p.
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INTRODUCTION

Serum levels of microRNAs (miRs) of the clusters 
miR-371-373 and miR-302/367 have been suggested 
as novel biomarkers of testicular germ cell tumors 
(GCTs) [1–3]. Of the candidate miRs, miR-371a-3p 
appears to be the most promising serum marker of 
GCT with a sensitivity of 90.1% and specificity of 
94.1% [4, 5] outperforming the classical markers (alpha 
fetoprotein, beta human chorionic gonadotropin, lactate 

dehydrogenase) with their sensitivities of less than 50% 
[6]. Apparently, miR-371a-3p features almost all of the 
qualities a valuable tumor marker is supposed to have [7] 
since it correlates with clinical stages, and tumor sizes, 
it highlights response (or non-response) to therapy, and 
it is present in cases with relapsing GCT suggesting a 
prominent role of this miR upon follow-up examinations 
[8–15]. Preliminary data also suggest a possible role 
of the test upon evaluation of residual masses after 
chemotherapy [13, 16, 17].
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While lots of clinical data suggest a strong 
correlation between tumor burden and miR-371a-3p serum 
expression, only limited evidence is available to show that 
serum-based miRs do primarily originate from GCT cells 
and do not represent any unspecific side reaction of the 
testis to invasive GCT.

Testicular vein blood sampling had demonstrated 
that the tumor-bearing testis is most likely the source of 
circulating miR-371a-3p [18].

Early experiments had provided evidence for the 
presence of miRs 372-373 in GCT tissue [19]. Later, high-
throughput screening and microarray expression profiling 
documented miRs 371-373 to be present in tissue of GCTs 
[20–24]. A study using RNA extraction from formalin-
fixed paraffin embedded GCT tissue again demonstrated 
the presence of miR-371a-3p in tumor tissue with different 
expression levels in the various histological subtypes of 
GCT [25]. All of these studies did not directly compare the 
miR-expression levels in tumor tissue with corresponding 
serum levels in the individual patients. The only study 
to date that evaluated both tissue expression levels and 
corresponding serum levels did not find a clear correlation 
between these levels [26].

The aim of the present study was to further clarify 
the origin of circulating miR-371a-3p by measuring this 
miR in serum of patients with GCT and concurrently 
in tissues of the tumor and of the contralateral testes 
in the same patients. The second goal was to explore if 
increasing levels of miR371 in GCT tissue would translate 
into higher serum levels of the miR.

RESULTS

Results of microRNA expression investigations in 
tissues

The median miR-371a-3p expressions in tumor, 
corresponding contralateral testicular tissue, testicular 
tissue of healthy controls, and non-testicular tissue of 
testis-surrounding tunica vaginalis were RQ = 7,040,480.1 
(IQR 4,713,672.2–13,518,390.0), RQ = 40,974.1  
(IQR 30,119.7–50,549.9), RQ = 37,081.7 (IQR 31,617.2–
53,543.4), and RQ = 1,204.9 (IQR = 237.5–7,809.9) 
respectively. Thus, the individual miR-371a-3p levels 
found in tumor tissue are on average 399-fold higher than 
those of the corresponding contralateral testicular tissue 
(p < 0.001) (Figures 1, 2). Likewise, expression levels are 
significantly higher in GCT tissue than in healthy testicular 
tissue (p < 0.001). MiR-371a-3p expression in healthy 
testicular tissue is not significantly different from that in 
contralateral testicular tissue (p = 0.985). The miR-371a-
3p expression in non-testicular tissue (tunica vaginalis) 
showed 30.8-times lower values than testicular tissue of 
healthy controls (p < 0.05) (Figure 2). In addition, one 
sample of epididymis was analyzed with the lowest miR-
371a-3p expression of all tissue samples (RQ = 42.03) 
(Table 1). There is no difference detectable between the 
miR-371a-3p expression of seminomas and nonseminomas 
(p = 0.941). Likewise, there is no difference between miR-
371a-3p expressions in tissues of CS1 and CS 2/3 cases  
(p = 0.262) (Supplementary Figures 1 and 2).

Figure 1: Individual results of measuring miR-371a-3p expressions in GCT tumor tissue samples (dark grey) and the 
corresponding contralateral testicle (light grey). n = 38. The patient ID is identical with data sets in Table 1. The y-axis is displayed 
in a logarithmic scale.
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The ROC analysis based on miR measurements of 
GCT tissue and the corresponding contralateral tissue in 
38 patients revealed an area under the curve of 0.997. GCT 
tissue can thus be discriminated from the corresponding 
contralateral tissue with a diagnostic sensitivity of 100% 
and a specificity of 94.7% (Supplementary Figure 3).

Comparison of miR-371a-3p expression in tissue 
with serum levels

MiR-371a-3p expression levels in GCT tissue are 
significantly higher than corresponding serum levels 
(p < 0.001) (Figure 3). There is a significant positive 
correlation between tissue levels and those found in 
serum (p < 0.05) (r2 = 0.181) (Figure 4A). The correlation 
is stronger in the sub cohort of CS1 patients (p < 0.05) 
(r2 = 0.257) (Figure 4B) than in cases with CS2 and CS3 
where it is not significant (p > 0.05) (r2 = 9.5 × 10–5) 
(Figure 4C).

Results of in situ hybridization

Figures 5 and 6 show the ISH results in the various 
GCT subtypes. The blue stain highlights cells expressing 
miR-371a-3p intracellularly (Figures 5A, 5B, 6A and 6B). 
An expression of miR-371a-3p was found in all subtypes 
of GCT except teratoma (Supplementary Figure 4). 
Identification of the different subtypes was achieved 
by additional staining with OCT4 for EC (Figure 5C), 
PLAP for seminoma (Figure 6C) and Glypican 3 for YST 

(Supplementary Figure 4). In contralateral tissue only 
isolated germ cells showed blue ISH signals.

DISCUSSION

There are five main results of this study: (1) The 
miR-371a-3p expression levels are markedly higher in 
GCT tissue than in the tissue of the contralateral testis and 
in normal testes, while non-testicular tissue from testis-
surrounding layers (tunica vaginalis) has even much lower 
expression. (2) There is clear evidence from ISH studies 
that miR-371a-3p is localized within GCT tumor cells. 
(3) The miR expression level in GCT tissue is much  higher 
than in serum. (4) In patients with localized disease (CS1), 
the GCT tissue miR-levels significantly correlate with the 
corresponding serum levels. (5) There is a baseline miR-
371a-3p expression in tissues of contralateral testes of 
GCT patients and also in normal testes.

MiR-371a-3p levels in the tissues of tumor and 
contralateral testis

A pair-wise comparison of the expression of miR-
371a-3p in GCT tissue with corresponding contralateral 
testicular tissue is a unique opportunity to look for the 
cellular origin of circulating miR-371a-3p molecules. 
The miR-level in GCT tissue is 399-fold higher than in 
contralateral testis tissue and the difference between GCT 
tissue and testicular tissue of control patients is almost the 
same. This result clearly points to the GCT tissue as the 

Figure 2: Relative miR-371a-3p expression in GCT tissue (n = 38) and corresponding contralateral testicular tissue  
(n = 38) of the same patients, healthy controls (n = 5) and non-testicular tissue samples of the tunica vaginalis (n = 4). 
The y-axis is plotted in a logarithmic scale. ***p < 0.001.
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Table 1: Clinical data of analyzed patients

Patient ID Age [yrs] Diameter 
[mm] Histology Clinical 

Stage site RQ miR-371a-3p

1 38 46 Seminoma CS2
Contralateral tissue 30,119.70

GCT tissue 13,518,389.95
Serum 2,881.17

2 34 36 Seminoma CS1
Contralateral tissue 226,385.18

GCT tissue 15,854,840.19
Serum 5,509.17

3 38 19 Seminoma CS1
Contralateral tissue 6,555.18

GCT tissue 4,490,423.24
Serum 669.09

4 28 31 Non-Seminoma CS2
Contralateral tissue 40,019.62

GCT tissue 3,547,619.87
Serum 6,537.03

5 29 24 Non-Seminoma CS1
Contralateral tissue 27,715.78

GCT tissue 4,713,672.19
Serum 3,287.19

6 36 54 Seminoma CS1
Contralateral tissue 43,490.72

GCT tissue 19,655,367.47
Serum 39,571.18

7 32 42 Seminoma CS1
Contralateral tissue 39,196.03

GCT tissue 22,113,437.94
Serum 41,500.32

8 51 18 Seminoma CS1
Contralateral tissue 44,404.55

GCT tissue 3,088,382.47
Serum 1,096.01

9 45 67 Seminoma CS1
Contralateral tissue 31,181.87

GCT tissue 3,109,863.87
Serum 7,068.64

10 41 45 Seminoma CS1
Contralateral tissue 28,494.98

GCT tissue 3,109,863.87
Serum 6,313.85

11 25 26 Seminoma CS1 Contralateral tissue 2,245,211.62
GCT tissue 6,439,065.97

12 36 31 Seminoma CS1
Contralateral tissue 49,612.64

GCT tissue 1,544,191.24
Serum 2,131.85

13 40 37 Seminoma CS1
Contralateral tissue 47,922.65

GCT tissue 1,749,389.37
Serum 10,019.87

14 27 41 Non-Seminoma CS1
Contralateral tissue 66,839.81

GCT tissue 19,929,746.17
Serum 120,356.55

15 36 33 Non-Seminoma CS1
Contralateral tissue 28,693.18

GCT tissue 18,466,664.88
Serum 4,629.83

16 37 52 Non-Seminoma CS1
Contralateral tissue 26,586.75

GCT tissue 6,620,092.75
Serum 40,760.69

17 30 22 Seminoma CS2
Contralateral tissue 43,793.22

GCT tissue 26,480,371.01
Serum 2,652.53

18 34 73 Seminoma CS3
Contralateral tissue 46,290.23

GCT tissue 10,103,977.53
Serum 56,414.42

19 31 68 Seminoma CS1
Contralateral tissue 44,036.74

GCT tissue 8,110,840.54
Serum 4,772.14

20 49 18 Seminoma CS1
Contralateral tissue 62,623.65

GCT tissue 9,930,397.24
Serum 288.5

21 47 30 Seminoma CS1
Contralateral tissue 46,002.35

GCT tissue 841,392.83
Serum 100.78

22 34 34 Seminoma CS1
Contralateral tissue 85,902.95

GCT tissue 34,412,276.52
Serum 16,913.42

23 34 33 Seminoma CS1
Contralateral tissue 34,646.45

GCT tissue 5,083,603.22
Serum 469.32
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source of circulating miR-371a-3p. Previous reports had 
already pointed to the presence of the miR-371-373 cluster 
in GCT tissue, without quantitative measurements [20], 
[21]. Our result is consistent with data from measuring 
the miR in testicular vein blood where a 195-fold higher 
level was found than in systemic circulation [18]. The 
present finding of a base-line expression of miR-371a-3p 
in contralateral testis tissue and in healthy testicular tissue 
mirrors the finding of a 4-fold higher miR-expression 
in testicular vein blood compared to peripheral blood in 
healthy males [18]. These data suggest the presence of 

this particular miR even in normal testicular tissue though 
in low quantity and not exclusively in GCT tissue. This 
assumption is supported by the findings of Boellaard et al. 
who recently documented the presence of miR-371a-3p in 
normal testicular tissue and its absence in other parts of 
the urogenital tract [27]. As miR-371 has been shown to be 
specifically associated with human stem cells [28–30] and 
as it is found in seminal plasma, too [31, 32], it is rational 
to assume that this miR is specifically generated by normal 
testicular germ cells and most probably even more by the 
cells of GCT.

24 38 50 Non-Seminoma CS3
Contralateral tissue 1,167,847.12

GCT tissue 7,899,993.31
Serum 4,434.08

25 34 11 Seminoma CS1
Contralateral tissue 37,210.44

GCT tissue 5,859,800.02
Serum 290.67

26 35 75 Seminoma CS2
Contralateral tissue 50,549.88

GCT tissue 10,076,002.16
Serum 3,402.60

27 31 n. a. Non-Seminoma CS2
Contralateral tissue 25,931.54

GCT tissue 6,601,763.38
Serum 32,461

28 41 6 Seminoma CS1
Contralateral tissue 32,214.44

GCT tissue 2,191,397.85
Serum 445.85

29 66 29 Seminoma CS2
Contralateral tissue 51,647.83

GCT tissue 6,891,659.54
Serum 2,007.83

30 53 42 Seminoma CS1 Contralateral tissue 40,860.52
GCT tissue 7,189,300.62

31 47 37 Seminoma CS2
Contralateral tissue 40,550.16

GCT tissue 8,585,198.14
Serum 231.91

32 52 48 Seminoma CS1
Contralateral tissue 166,068.62

GCT tissue 6,777,961.45
Serum 840.1

33 40 56 Seminoma CS1
Contralateral tissue 53,692.02

GCT tissue 13,792,876.25
Serum 4,638.43

34 30 45 Non-Seminoma CS2
Contralateral tissue 41,087.73

GCT tissue 5,743,186.58
Serum 11,405.33

35 47 14 Non-Seminoma CS1
Contralateral tissue 32,709.45

GCT tissue 13,499,662.47
Serum 516.07

36 34 47 Seminoma CS1
Contralateral tissue 25,468.39

GCT tissue 5,799,190.10
Serum 9,597.35

37 51 22 Seminoma CS1
Contralateral tissue 28,593.90

GCT tissue 10,547,662.66
Serum 3,634.19

38 47 16 Seminoma CS2
Contralateral tissue 4,060.44

GCT tissue 27,376,221.46
Serum 18,247.61

39 47 0 Control normal Control 31,617.16
40 63 0 Control normal Control 53,543.36
41 19 0 Control normal Control 37,081.71
42 60 0 Control normal Control 28,298.15
43 54 0 Control normal Control 81,156.55
44 78 0 Control normal Tunica vaginalis 138.88
45 20 0 Control normal Tunica vaginalis 336.12
46 52 0 Control normal Tunica vaginalis 42.03
47 33 0 Control normal Tunica vaginalis 13,546.11
48 46 0 Control normal Epididymis 2,073.66

Abbreviations: CS: Clinical stage, GCT: Germ cell tumor, mm: millimeter, RQ: Relative quantity, yrs: Years.
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Figure 3: Relative miR-371a-3p expression in GCT tissue (n = 38) and corresponding preoperative serum samples of 
the same patients (n = 36). The y-axis is plotted in a logarithmic scale. ***p < 0.001.

Figure 4: Scatterplot of the relative miR-371a-3p expression in GCT tissue and corresponding serum levels. The axes in 
all parts are depicted in a logarithmic scale. (A) Entire GCT cohort (n = 36) (p ≤ 0.05) (r2 = 0.181). (B) Only CS1 patients (n = 25; p ≤ 0.05) 
(r2 = 0.257). (C) Only CS2/3 patients (n = 11; p ≥ 0.05) (r2 = 9.5 × 10−5).
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Figure 5: Detection of miR-371a-3p in GCT tumor (EC) via in situ hybridization. (A) In situ hybridization with a probe 
against miR-371a-3p causes blue staining in cells. (B) Section from A. (C) Immunohistochemical staining of the same area with an OCT4 
antibody for identification of EC cells. (D) H&E staining of the same area.

Figure 6: Detection of miR-371a-3p in GCT mixed tumor including SE and YST via in situ hybridization. (A) In situ 
hybridization with a probe against miR-371a-3p causes blue staining in cells. (B) Section from A. (C) Immunohistochemical staining of the 
same area with PLAP antibody for identification of SE cells. (D) H&E staining of the same area.
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In serum, patients with nonseminomas showed 
significantly higher miR-371a-3p expression, and CS2/3 
patients had higher levels than those with CS1 [5]. In 
tissue no difference was detectable between the miR-
371a-3p expression of seminomas and nonseminomas nor 
between tissues of CS1 and CS 2/3 cases. Yet, these results 
should be interpreted with caution as only a small patient 
collective was examined.

Intracellular localization of miR-371a-3p by ISH

In situ hybridization clearly demonstrated 
microRNA-371-3p to be localized intracellularly in the 
cells of GCT. Thus, the ISH experiments morphologically 
supplement the data obtained by measuring the miR in 
homogenized GCT tissue.

In conjunction with previous reports on the presence 
of the miR-371-373 cluster in GCT tissue [20, 21, 25, 33] 
there is now ample evidence for the origin of circulating 
miR-371a-3p from testicular tumor cells.

Of note, all subtypes of GCT except teratoma 
stained positive for the miR-371a-3p probe. The absence 
of miR-371a-p staining in teratoma cells is consistent 
with the non-expression of this miR in serum of GCT 
patients [4, 5, 16]. Likewise, in an evaluation of miR-
371a-3p expression levels in GCT subtypes by RNA 
extraction from formalin fixed paraffin embedded 
orchiectomy specimens, Vilela-Salgueiro et al. revealed 
a strong expression in all GCT subtypes except teratoma 
[25]. The reason for the non-expression of the miR 
by teratoma is probably related to the analogies of 
GCT biology and the human embryonal development 
[34, 35]. While most of the GCT subtypes mimic early 
developmental stages of embryonal development and 
accordingly retain their biochemical characteristics 
including the microRNA profile of stem cells, the 
teratoma subtype represents a more advanced and more 
mature histological subtype that has lost all of the 
biochemical characteristics of stem cells particularly the 
typical expression of miR-371a-3p [36].

Correlation of miR-expression levels in tissue 
with serum levels

Systematic paired measurements of miR-expression 
levels in GCT tissue and corresponding serum levels 
had not been reported so far. One early pilot study had 
indicated that miR-expression levels of tissue and serum 
do not correlate [24]. However, the present systematic 
analysis of 36 patients revealed a significant correlation 
of the expression levels of the two compartments. It is 
of note that this correlation was not significant in cases 
with clinical stages CS2 and 3. As in advanced clinical 
stages the marker substance is released from both the 
primary tumor and metastatic seeds it is rational that the 
correlation of tissue expression with serum levels is only 
significant in cases confined to the testis. The serum level 

of circulating miR-371a-3p is obviously a product of the 
number of miR-producing tumor cells (tumor bulk) as 
shown previously [5] and of the specific secreting capacity 
of the individual GCT as shown herein. Most probably, 
additional biological determinants e. g. direct vascular 
invasion of the tumor and other hitherto unknown factors 
do also affect the serum level of miR-371a-3p.

In all, the present evaluation confirms the 
understanding that circulating miR-371a-3p-are specifically 
derived from cells of testicular germ cell neoplasms.

This miR, thus represents a specific tumor marker 
for GCTs, which is not expressed in other diseases. By 
contrast, the specificity of the classical tumor marker AFP 
is considerably hampered by its association with non-GCT 
related conditions, such as liver diseases [37].

MATERIALS AND METHODS

Patients for tissue and serum investigations

Preoperative serum samples and corresponding 
tissue specimens were collected from patients (median 
age 36.5) undergoing surgery for testicular tumor. GCT 
tissue was taken from 38 orchiectomy specimens, and 
contralateral testis tissue was taken from corresponding 
contralateral biopsy specimens. This surgical procedure 
was routinely performed on all patients with suspected 
testis tumor to look for Germ cell neoplasia in situ 
(GCNis) according to institutional guide-lines. None of the 
patients enrolled in this study had contralateral GCNis. All 
tissue specimens were kept frozen at –80° C under further 
processing. Histologically, the GCT tissue specimens 
consisted of 29 seminomas and nine nonseminomas. 
Clinically, 27 patients had clinical stage 1 (CS1) and 
eleven CS 2 and 3 (CS2/3). Preoperative serum samples 
were obtained from 36 of the 38 patients. For control, 
testicular tissue was obtained from five men without GCT 
undergoing orchiectomy for epididymitis. Furthermore, 
four samples of testis surrounding tunica vaginalis and one 
specimen of the epididymis were analyzed. All patients 
had given informed consent prior to surgery. Ethical 
approval of the study was provided by Ärztekammer 
Bremen (reference No 301, 2011). All study activities had 
been conducted according to the Declaration of Helsinki 
of the World Medical Association (as amended by the 64th 
General Assembly, 2013). Individual data of the patients 
and controls are listed in Table 1.

Patients for histological investigation of presence 
of microRNAs in GCT cells

Formalin-fixed paraffin-embedded (FFPE) samples 
of six patients with testicular GCTs were analyzed by 
immunohistochemistry and in situ hybridization (ISH) 
to look for the presence of miR-371a-3p in tumor tissue. 
Histologically, the GCTs comprised of three mixed 
nonseminomatous tumors (embryonal carcinoma, yolk sac 
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tumor, and chorio carcinoma), one pure seminoma, one 
pure embryonal carcinoma and one teratoma. In addition, 
one tissue specimen of a contralateral testis was analyzed.

Extraction and measurement of miRNAs

Tumor and contralateral testis tissue (10–50 mg) 
was homogenized in 1000 µL TRIzol® Reagent following 
the manufacturer’s instructions (Fisher Scientific, 
Schwerte, Germany) using a TissueLyser (Qiagen, Hilden, 
Germany) with 5 mm steel beads for 10 min at 30 Hz. The 
extracted RNA was resuspended in 50 µl nuclease-free 
water.

For the measurement of miR-371a-3p levels, RNA 
was isolated from 200 µL Serum using the miRNeasy 
mini Kit (Qiagen, Hilden, Germany) according to the 
manufacturer’s description. Reverse transcription (RT) 
was performed with 10–20 ng/µL RNA isolated from 
tissue and 6 µL RNA isolated from Serum, using the 
TaqMan MicroRNA Reverse Transcription Kit (Applied 
Biosystems, Darmstadt, Germany). Standard PCR 
was carried out for preamplification of the cDNA with 
TaqMan Assays for miR-371a-3p (assay ID 002124) and 
the endogenous control miR-93-5p (assay ID 000432) in 
a 1:100 dilution. Measurement of the miRNA expression 
was performed with quantitative real-time PCR (RT-
qPCR) on a 7500 Fast Real-Time PCR System (Applied 
Biosystems, Darmstadt, Germany) using FAST Start 
Universal Probe Master (Roche Diagnostics, Mannheim, 
Germany) and the undiluted TaqMan Assays. The relative 
quantity (RQ) was calculated using the 2-∆∆CT-method [38].

Immunohistochemistry

For morphological identification of the histological 
type of GCTs sections of 5 µm of FFPE-blocks were 
analyzed with hematoxylin and eosin stain (H&E stain), 
OCT4, PLAP and glypican 3. Staining with hematoxylin 
and eosin with standard histological techniques were used 
to distinguish between tumor-free areas and tumor tissue. 
OCT4 staining for identification of embryonal carcinomas 
(EC), PLAP staining for seminomas (SE) and glypican 
3 for yolk-sac tumors (YST) (Diagnostic BioSystems, 
Pleasanton, CA, USA) were then conducted according to 
institutional standard operating procedures [39, 40].

MicroRNA in situ hybridization

After immunohistochemical identification of 
the particular GCT-subtypes, the corresponding tumor 
sections were subsequently processed for in situ 
hybridization (ISH) with a miRCURY LNA probe 
(Exiqon, Vedbaek, Denmark; probe ID 38555-15) specific 
for miR-371a-3p. The protocol was performed according 
to the manufacturer’s instructions using a proteinase-K 
concentration of 15 µg/ml, a hybridization temperature of 
51° C and a probe concentration of 80 nM. Microscopic 

evaluations were performed on an Axioskop 2 plus 
microscope (Zeiss, Göttingen, Germany). Histological 
findings were documented using the AxioCam HRc digital 
camera (Zeiss, Göttingen, Germany) and then edited with 
AxioVision Software v.4.8 (Zeiss, Göttingen, Germany). 
Presence of miR-371a-3p within GCTs was defined 
by distinct blue staining of the cells, and accordingly, 
only these cells were considered miR-371a-3p positive. 
Only the presence or absence of the miR-371a-3p in the 
specimen was evaluated, no quantification was attempted.

Statistical methods

The Wilcoxon signed rank test was used for 
comparison of dependent subgroups. The Mann-Whitney 
U test was used to compare median miRNA expressions 
among the various subgroups. Receiver Operating 
characteristics (ROC) curves were calculated to analyze the 
sensitivity and specificity of tissue miR-levels to distinguish 
GCT tissue from non-tumorous tissue. Spearman’s 
rank correlation coefficient was calculated to determine 
correlations. All tests were two-sided and significance was 
assumed at p < 0.05. Statistical analysis was performed 
using SPSS version 24 (IBM, Armonk, NY, USA).

LIMITATIONS

The results of the present study rest on 36 patients 
only, thus the statistical power is still limited. With respect 
to sample processing, the time for transfer of the tissue 
specimens from operation site to the laboratory i. e. the 
time-interval until conservation in the freezer (–80° C) 
varied from 12 hours to 36 hours depending on the 
conditions of surface mail. Thus, deterioration of some 
samples during transfer cannot entirely be excluded. 
We could not correlate the miR-measurements in 
contralateral testicular tissue specimens with the quality 
of spermatogenesis because these data were not available.

CONCLUSIONS

The present study provides much of evidence 
for the understanding that circulating miR-371a-3p 
molecules are specifically derived from testicular GCT 
cells. The inability of teratoma cells to produce miR-
371a-3p is confirmed on the tissue level. There is a 
significant correlation of the miR-expression levels in 
GCT tissue with corresponding serum levels. Normal 
testicular tissue displays a low baseline expression of 
miR-371a-3p pointing to the role of the miR in human 
stem cells.
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