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Abstract. A growing body of evidence supports a clear association between Alzheimer’s disease and diabetes and several
mechanistic links have been revealed. This paper is mainly devoted to the discussion of the role of diabetes-associated
mitochondrial defects in the pathogenesis of Alzheimer’s disease. The research experience and views of the author on this
subject will be highlighted.
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INTRODUCTION

Mitochondria are fascinating organelles. They are
highly dynamic and plastic organelles and can adapt
to different surroundings and particularities of each
type of cell. Mitochondria are essential for the via-
bility and proper function of cells, being involved
in the generation of energy (ATP), metabolism of
reactive oxygen species (ROS), buffering of cyto-
plasmic calcium (Ca2+) and apoptosis [1], among
other things. Considering neuronal cells, mitochon-
dria are crucial for the maintenance of membrane
ion gradients, and for neurotransmission and synaptic
plasticity [2]. Taking into consideration that neurons
are highly differentiated cells (cell body, dendrites,
axons, and synaptic terminals) with a high metabolic
rate that requires a constant supply of energy sub-
strates (particularly glucose) and oxygen to survive,
it is not surprising that alterations in mitochondria
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will deeply impact the function and viability of
neuronal cells. In fact, a delicate balance between
mitochondrial fission, fusion, biogenesis, turnover,
and transport must exist to ensure a healthy mito-
chondrial pool and, consequently, viable and healthy
cells. This balance is lost in several diseases includ-
ing Alzheimer’s disease (AD) and diabetes [3–7]. AD
is the most common cause of dementia in the elderly
and despite the tremendous research efforts in the
last decades, no cure or effective treatment exists
[3]. Nevertheless, the mechanisms underlying AD
pathophysiology have been successfully unveiled and
accumulating evidence demonstrates the key involve-
ment of mitochondrial anomalies in the development
of the disease. The metabolic defects that character-
ize (sporadic) AD can be triggered or exacerbated by
several risk factors including diabetes [6, 8].

Diabetes is a major public health problem that
is reaching epidemic proportions around the world.
It is a complex metabolic disorder mainly char-
acterized by chronic hyperglycemia and associated
with progressive end-organ damage. Besides the
commonly associated chronic complications such as
nephropathy, angiopathy, retinopathy, and peripheral
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neuropathy [9], it was also observed that people
with diabetes perform poorly on cognitive tasks
examining memory, attention, and verbal learning
[10, 11]. The long-term effects of diabetes on the
brain are manifested at structural, neurophysiolog-
ical, and neuropsychological level [12]. Although
both type 1 diabetes (T1D) [13, 14] and type 2 dia-
betes (T2D) [15, 16] are associated with alterations
in brain structure and function and increased risk of
dementia [17], the association between AD and T2D
is stronger than that with T1D. In fact, several lines
of evidence demonstrate that T2D is associated not
only with AD [15, 18, 19], but also with vascular
dementia [19], Parkinson’s disease [20], and Hunt-
ington’s disease [21]. At the mechanistic level, it has
been shown that mitochondrial defects play an impor-
tant role in diabetes-associated brain alterations [8,
22, 23] contributing to neurodegenerative events.

In this paper, I will present evidence from epi-
demiological and clinical studies that support a clear
association between AD and diabetes. Then, the role
of diabetes-induced mitochondrial defects as triggers
and/or accelerators of AD (like) pathology will be
discussed. The research experience and views of the
author will be emphasized.

EPIDEMIOLOGICAL AND CLINICAL
STUDIES HAVE BOOSTED THE STUDY
OF THE MECHANISTIC
INTERRELATION BETWEEN DIABETES
AND AD

The effects of diabetes on the central nervous sys-
tem (CNS) were described for the first time almost
100 years ago. In 1922, Miles and Root [24], reported
that diabetic individuals perform poorly on cognitive
tasks examining memory and attention. And, in 1950,
Dejong named the diabetes-related CNS complica-
tions as diabetic encephalopathy [25]. Subsequent
longitudinal and cross-sectional studies confirmed
the negative impact of T1D [26–28] and T2D [29–32]
on cognitive function. T2D has also been associated
with 50% increased risk of dementia [33]. Whether
such an association is true for people T1D is not yet
clear.

Over the past three decades, many epidemiologi-
cal and clinical studies have shown a clear association
between diabetes and an increased risk of developing
AD. Our interest on the interrelation between diabetes
and AD started shortly after the publication of the
results of the Rotterdam Study [34, 35] showing that

patients with T2D are at an increased risk to develop
dementia and AD. Further evidence showed that indi-
viduals with T2D have nearly a twofold higher risk
of AD than nondiabetic individuals [36–42]. Further-
more, the risk of AD associated with the APOE �4
allele has been suggested to be exacerbated by dia-
betes, as patients with diabetes who are �4 allele
carriers are twofold more prone to develop AD than
nondiabetic individuals who harbor the �4 allele [43].
Notably, a study of the Mayo Clinic Alzheimer Dis-
ease Patient Registry reported that greater than 80%
of AD patients exhibit T2D or abnormal blood glu-
cose levels [44], suggesting that AD patients are more
vulnerable to T2D and the possibility of a linkage
between the processes responsible for loss of brain
and pancreatic �-cells in these disorders. However,
it must be said that other studies did not find a clear
link between AD and diabetes [45–47].

Considering the resemblances found between AD
and T2D, and due to the lack of effective treatments
for AD, it has been hypothesized that anti-diabetic
drugs can help treat AD patients. Promising effects of
intranasally administered insulin or insulin analogues
have been observed in AD and subjects suffering from
amnestic mild cognitive impairment (MCI) [48–50],
although insulin administration in APOE �4 carriers
seems to exacerbate cognitive deficits [51]. Studies
have also shown that the chronic treatment of dia-
betics with the antidiabetic agent metformin reduces
the risk of cognitive decline [52]. However, con-
flicting effects of metformin treatment have been
reported [53].

Thiazolidinediones (TZDs) are peroxisome
proliferator-activated receptor-� (PPAR-�) agonists
and potent insulin sensitizers. Pioglitazone and
rosiglitazone are the best characterized PPAR-�
agonists. Rosiglitazone was associated with an early
improvement of whole brain glucose metabolism,
but not with any biological or clinical evidence
for slowing progression over a 1-year follow up
in the symptomatic stages of AD [54]. Mild and
moderate AD patients who are APOE �4 non-
carriers treated with rosiglitazone during 6 months
improved cognitive function, an effect not observed
in APOE�4 carriers [55]. Also, a systemic review
and meta-analysis concluded that pioglitazone may
be useful in treating AD patients with comorbid
diabetes [56]. A recent longitudinal study show that
pioglitazone might provide a protective effect on
dementia risk among individuals with T2D [57].

A recent prospective and observational study
aimed at evaluating the effect of sitagliptin, a
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dipeptidyl peptidase-4 inhibitor (DPP-4I), on cog-
nitive function of elderly diabetic patients with and
without cognitive impairment revealed that elderly
diabetic patients with and without AD treated with
sitagliptin during 6 months show improved of cogni-
tive function [58].

Concerning the effects of glucagon-like peptide-1
(GLP-1) analogues, a recent randomized, placebo-
controlled, double-blind clinical trial involving 18
AD patients treated with the GLP-1 analogue liraglu-
tide and 20 AD patients treated with placebo revealed
that treatment with liraglutide during 6 months pre-
vented the decline of brain glucose metabolism [59].
More clinical trials are ongoing, namely a pilot clinic
trial of exendin-4 in MCI and early stage AD subjects
(NCT01255163) and a phase II clinical trial assess-
ing the safety and efficacy of liraglutide in mild AD
(NCT01843075).

The above evidence demonstrates that AD and
diabetes are connected and instigated the research
community to investigate the mechanisms linking
both disorders.

THE QUEST FOR THE MECHANISTIC
LINKS BETWEEN AD AND DIABETES:
A FOCUS ON DIABETES-RELATED
MITOCHONDRIAL DEFECTS

Based on a strong body of evidence demonstrat-
ing a clear connection between diabetes and AD,
several pre-clinical studies have been carried out in
order to uncover the mechanistic basis of this connec-
tion. Several mechanisms shared by diabetes and AD
have been identified, namely impaired insulin sig-
naling, inflammation, the accumulation of advanced
glycation end-products, oxidative stress, and mito-
chondrial dysfunction [7, 16, 22, 23, 60]. Here, I
will discuss how diabetes-related brain mitochondrial
anomalies contribute to cognitive defects and pre-
dispose to or exacerbate neurodegenerative events,
particularly AD (like) pathology.

Type 1 diabetes and AD (like) pathology

Previous studies from our laboratory revealed
that brain mitochondria isolated from streptozotocin
(STZ)-induced diabetic rats present defects in the
antioxidant system defenses, ATPase activity and
ability to accumulate Ca2+ [61]. In accordance with
our observations, others reported that brain mitochon-
dria isolated from STZ-induced diabetic rats have a
deficient respiratory chain [62, 63] that may con-

tribute to oxidative and nitrosative injury of brain
cells [64–66], tau hyperphosphorylation [65, 67, 68],
amyloidogenesis [69, 70], and cognitive defects [63,
66, 71, 72]. More recently, we observed that insulin
treatment modulates mitochondrial dynamics and
biogenesis, autophagy, and tau protein phosphoryla-
tion in the brain of STZ-induced diabetic rats [73].

Besides hyperglycemia, hypoglycemia, the most
serious side effect associated to insulin therapy in
T1D, also causes cognitive dysfunction [74, 75] in
part by affecting mitochondria [76]. McGowan and
collaborators [77] demonstrated that a mitochon-
drial substrate limitation following hypoglycemia
increases mitochondrial free radical production in
brain cortical mitochondria from newborn pigs. It
was also shown that hypoglycemia in STZ-induced
diabetic rats decreases mitochondrial respiratory
chain efficiency [78]. Accordingly, we observed
that insulin-induced acute hypoglycemia affects the
antioxidant defenses of brain cortical mitochondria
isolated from STZ-induced diabetic rats causing
oxidative damage [79] and increasing the capacity
of cortical synaptosomes to release excitatory amino
acids [80]. Taking into consideration that mitochon-
dria function is associated with neurotransmitters
synthesis and release, our observations support the
idea that mitochondrial dysfunction, oxidative stress,
and excitatory neurotransmitters release are inter-
connected factors that may underlie the cognitive
impairment observed in T1D patients under insulin
therapy. Subsequent studies from our laboratory
showed that recurrent hypoglycemia and long-term
hyperglycemia affect the antioxidant defenses of
brain cortical and hippocampal mitochondria con-
tributing to oxidative stress [81]. Nevertheless, only
hippocampal mitochondria showed altered efficiency
of the respiratory chain and phosphorylation sys-
tem affecting ATP production [81]. Similarly, Dave
and collaborators [82] reported that recurrent hypo-
glycemia exacerbates cerebral ischemic damage in
T1D rats through the increased generation of mito-
chondrial ROS.

Besides their effective antioxidant defense sys-
tem, mitochondria have specific proteins that regulate
the rate of ROS production named uncoupling
proteins (UCPs). The dissociation of ATP pro-
duction from ROS generation mediated by UCPs
has been pointed as a key defensive mechanism
against brain damage [83, 84]. In this line, we
observed that recurrent episodes of hypoglycemia
render brain cortical mitochondria more suscep-
tible to UCPs-mediated uncoupling as compared
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with hyperglycemia [85] and the pharmacological
inhibition of UCP2 exacerbates glucose fluctuations-
mediated neuronal damage, namely mitochondria
dysfunction and oxidative stress [86]. Interestingly,
UCP2 gene variants have been associated with a
reduced risk for diabetic neuropathy in T1D patients
[87], suggesting that the increased expression of
UCPs related to specific gene polymorphisms can
limit neuronal death.

Type 2 diabetes and AD (like) pathology

An increased oxidative stress and mitochondrial
dysfunction was observed in the Zucker diabetic
fatty rat, a genetic model of T2D [88]. Accord-
ingly, we found that brain vessels and synaptosomes
from Goto-Kakizaki rats, a spontaneous model of
non-obese T2D, present an age-dependent redox
imbalance [89], which increases the vulnerability
of brain structures to degenerative events. We also
observed that T2D-like mice and triple transgenic AD
mice (3xTg-AD) present a similar profile of brain
mitochondrial anomalies (defects in function, bio-
genesis, and turnover), redox imbalance, increased
amyloid-� (A�) and phosphorylated tau levels, cen-
tral and peripheral vascular alterations, and loss of
synaptic integrity [90–93]. Accordingly, 3xTg-AD
and T2D-like mice show similar behavioral and cog-
nitive anomalies characterized by increased fear and
anxiety and decreased learning and memory abili-
ties [91]. Such findings prompted us to suggest that
the metabolic alterations associated with diabetes
contribute to AD-like pathologic features [90–92].
Accordingly, it was recently suggested that the higher
hippocampal susceptibility to synaptic injury and
cognitive dysfunction is linked to mitochondrial
defects [94]. These authors observed that db/db mice,
a model of obese T2D, present altered brain mito-
chondrial morphology, reduced ATP production, and
impaired mitochondrial complex I activity. These
mitochondrial abnormalities seem to result from an
imbalanced mitochondrial fusion and fission via a
glycogen synthase kinase 3� (GSK3�)/dynamin-
related protein-1 (Drp1)-dependent mechanism [94].
It was also reported that high glucose and A�
oligomers cause aberrant S-nitrosylation of insulin-
degrading enzyme and Drp1 inhibiting insulin
and A� catabolism as well as hyperactivating
mitochondrial fission machinery, which results
in dysfunctional synaptic plasticity and synapse
loss [95]. A recent study from Petrov and collabo-
rators [96] also showed that T2D induced by high fat

diet affects brain mitochondrial function contribut-
ing to cognitive decline and AD pathology, which
are ameliorated by the anti-diabetic drugs dipeptidyl-
peptidase-4 inhibitors [97] and metformin [98]. Also,
the use of GLP-1 analogues (e.g., liraglutide and
exendin-4) increase brain insulin, insulin-like growth
factor 1, and GLP-1 signaling and decrease phospho-
rylated tau levels and apoptosis [99–102].

Using a rat model of sporadic AD induced by the
intracerebroventricular (icv) administration of a sub-
diabetogenic dose of STZ (icvSTZ), a model firstly
described by Hoyer’s team [103–105], we found
that the insulin-resistant brain state that characterizes
the pathological course of the disease is accom-
panied by mitochondrial abnormalities [106]. We
observed that icvSTZ promotes a significant decline
in both brain cortical and hippocampal mitochondrial
bioenergetics as reflected by impaired mitochondrial
respiration and phosphorylation system, increased
susceptibility to Ca2+-induced mitochondrial perme-
ability transition pore opening, and oxidative stress.
Importantly, increased levels of A� and phosphory-
lated tau and cognitive defects accompanied those
mitochondrial defects [106]. Similarly, Paidi and col-
leagues [107] observed that the cognitive defects
observed in icvSTZ rats were associated with an
increased mitochondrial fragmentation. In monkeys,
icvSTZ caused a pronounced ventricular enlargement
and parenchymal atrophy, A� deposition, hippocam-
pal cell loss, tauopathy, astrogliosis, and microglial
activation [108]. The Chinese herbal medicine geni-
poside ameliorates learning and memory deficits,
reduces tau phosphorylation, and decreases apopto-
sis via GSK3� pathway in icvSTZ rats [109]. Also,
the GLP-1 analogue exenatide [110] and intranasal
insulin [111] improve cognitive function, attenuate
the levels of hyperphosphorylated tau and inflamma-
tion, and enhance neurogenesis in icvSTZ rats.

Diabetes/hyperglycemia exacerbate(s) AD (like)
pathology

All the above studies demonstrate that diabetes
induces AD-like changes supporting the notion that
diabetes increases the risk of developing AD. How-
ever, there is also evidence that diabetes exacerbates
AD progression.

Early studies from our laboratory [112] showed
that brain mitochondria isolated from Goto-Kakizaki
rats present an age-related decline of the respira-
tory chain and oxidative phosphorylation system
efficiency and a higher susceptibility to oxidative
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damage; those age-dependent effects being highly
exacerbated by the neurotoxic peptides A�25-35 and
A�40 [112] and ameliorated by coenzyme Q10 treat-
ment [113]. Also, brain mitochondria isolated from
STZ diabetic rats are highly susceptible to A�40,
which cause an impairment of the respiratory chain
and phosphorylation system and an increased pro-
duction of ROS [61]. Interestingly, A�40-mediated
mitochondrial defects were attenuated by insulin
treatment [61]. Consistently, brain endothelial cells
under chronic hyperglycemia are more susceptible to
A�40 toxicity, an effect mediated by mitochondrial
ROS [114]. In this line, Gou and colleagues [115]
observed that chronic hyperglycemia induced via the
heterozygous knockout of Pdx1 worsens AD-like
neuropathology in mice. Similarly, Hayashi-Park and
colleagues [116] reported that diabetes exacerbates
neuropathology, but not cognitive dysfunction, of
middle-aged 3xTg-AD mice. It was also reported that
hyperglycemia exacerbates mitochondrial defects,
synaptic injury, and cognitive dysfunction in the
brains of transgenic AD mice [63], which sug-
gest that the synergistic interaction between diabetes
(hyperglycemia) and AD on mitochondria may be
responsible for brain alterations characteristic of both
disorders.

AUTHOR VIEWS AND CONCLUSIONS

Mitochondria are crucial organelles for life and
death of cells. Recent discoveries show that mito-
chondria have a key role in regulating synaptic
transmission, brain function, and cognition in aging
[117] and, most probably, age-related disorders such
as diabetes (namely T2D) and AD. Although mito-
chondrial dysfunction affects all organs, the brain
appears most vulnerable to mitochondrial defects
suggesting that mitochondria regulate fundamental
aspects of brain function. With glucose oxidation the
most relevant source of energy in the brain, neurons
rely almost exclusively on the mitochondrial oxida-
tive phosphorylation system to obtain ATP to fulfill
their high energy needs. Since diabetes and AD are
characterized by defective brain glucose metabolism,
it is not surprising that mitochondrial anomalies are
a defect shared by both disorders and that mitochon-
drial alterations caused by diabetes can contribute to
neurodegenerative events such as AD.

As discussed above, a strong body of evidence
from our laboratory and others support a mechanis-
tic role for mitochondria in the connection between

diabetes and AD (Fig. 1). However, it remains
uncertain whether defective mitochondria are the
initiating defect or secondary to altered insulin sig-
naling. As stated above, altered insulin signaling is
another mechanistic link between AD and diabetes.
The existing literature shows that both insulin signal-
ing and mitochondria defects can affect each other
(Fig. 1). Peng and colleagues [118] observed that neu-
rons exposed to high glucose develop mitochondrial
defects, which affect 5’ AMP-activated protein kinase
(AMPK)/AKT signaling contributing to insulin resis-
tance. It was also shown that resveratrol, which
activates peroxisome proliferator-activated receptor
� coactivator 1� (PGC-1�) that stimulates mito-
chondrial function [119, 120], improves AMPK/AKT
signaling increasing insulin sensitivity [118]. In
skeletal muscle and liver mitochondrial dysfunction
and ROS overproduction activate c-Jun N-terminal
kinase (JNK) leading to insulin resistance [121]. A
similar process can occur in the brain since JNK
activation has been observed in AD [62, 122, 123].

However, insulin resistance can also affect mito-
chondrial function. Previous studies showed that
pancreatic �-cells from �-cell specific insulin recep-
tor knockout (�IRKO) mice [124] and the deletion
of insulin receptors in mice cardiomyocytes (CIRKO
mice) cause mitochondrial dysfunction [125]. Fur-
thermore, prolonged exposure to insulin affects
mitochondrial DNA (mtDNA), biogenesis and mass,
and ATP content in hepatocytes due to a decrease in
the levels of both nuclear respiratory factor (NRF)
and mitochondrial transcription factor A (Tfam)
[126]. Insulin also modulates mitochondrial biogen-
esis through the mammalian target of rapamycin
(mTOR)-dependent regulation of PGC1-�, a master
regulator of mitochondrial biogenesis responsible for
the co-activation of several metabolically significant
nuclear and non-nuclear receptor transcription factors
such as NRF 1 and 2 [127, 128]. In addition, thia-
zolidinediones, clinically used to ameliorate insulin
resistance in T2D, increase mitochondrial biogenesis
in human subcutaneous adipose tissue, human neu-
ronal NT2 cells, and mouse brain [129–131], which
suggest that insulin modulates mitochondria.

In conclusion, although mitochondrial defects, par-
ticularly those associated with diabetes, seem to play
an important and early role in AD development, fur-
ther studies are needed to clarify if those defects
can be the triggers or secondary events. This is
of utmost importance since diabetes and AD have
become global epidemics and no effective treatments
exist for AD. Importantly, we must keep in mind that
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Fig. 1. The brain is highly vulnerable to mitochondrial defects since neurons rely almost exclusively in the mitochondrial oxidative
phosphorylation system to obtain ATP to fulfill their high energy needs. Accumulating evidence shows that mitochondrial alterations caused
by diabetes can contribute to neurodegenerative events such as Alzheimer’s disease (AD). However, it remains uncertain whether defective
mitochondria are the initiating defect or secondary to altered insulin signaling. In fact, both insulin signaling and mitochondria defects can
affect each other. It is also important to note that sporadic AD is a multifactorial condition that depends on the complex interplay between
environmental, genetic and epigenetic factors. IR, insulin receptor.

(sporadic) AD is a multifactorial condition and that
depending on the complex interplay between environ-
mental, genetic, and epigenetic factors, it may have
distinct or even multiple triggers (Fig. 1).
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