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Manual lifting is one of the common practices used in the industries to transport or move objects to a desired place. Nowadays,
even though mechanized equipment is widely available, manual lifting is still considered as an essential way to perform material
handling task. Improper lifting strategies may contribute to musculoskeletal disorders (MSDs), where overexertion contributes as
the highest factor. To overcome this problem, electromyography (EMG) signal is used to monitor the workers’ muscle condition
and to find maximum lifting load, lifting height and number of repetitions that the workers are able to handle before experiencing
fatigue to avoid overexertion. Past researchers have introduced several EMG processing techniques and different EMG features that
represent fatigue indices in time, frequency, and time-frequency domain. The impact of EMG processing based measures in fatigue
assessment during manual lifting are reviewed in this paper. It is believed that this paper will greatly benefit researchers who need
a bird’s eye view of the biosignal processing which are currently available, thus determining the best possible techniques for lifting

applications.

1. Introduction

Musculoskeletal disorders (MSDs) caused by manual lifting
tasks have been perceived for quite some time as one of the
primary work-related injuries which influences the personal
satisfaction of industrial workers around the world [1, 2].
Common reasons of MSDs in manual lifting are due to
improper lifting and muscle fatigue. National Institute of
Occupational Safety and Health (NIOSH) has published a
technical report entitled Work Practices Guide for Manual
Lifting as a reference to perform correct lifting [3]. However,
in terms of muscle fatigue monitoring, researchers are still in
search of finding the best processing technique to assess the
human muscle condition.

2. Manual Lifting

Despite the wide utilization of robots in modern industries,
there are still numerous assignments in the industry that are

performed physically by humans, such as carrying, lifting,
pushing, or pulling. These physical movements of the body
often cause MSDs that can be subdivided into more particular
and perceived regions, such as back disorders (BDs), upper
limb disorders (ULDs), and lower limb disorders (LLDs) [4].
ULDs cover distinctive work-related musculoskeletal dissen-
sions in the arm, wrist, hand, elbow, neck, and shoulder, while
LLDs are associated with the lower areas of the body such as
feet, legs, and hips. The anatomical zones of the body mostly
influenced by these MSDs issues due to manual handling are
in the spine and lumbar (back area), and the arm, and wrist
(upper limb area). These are further supported by various
researches done in previous years on muscle areas investi-
gated during manual lifting and are summarized in Table 1.
Manual errands that are performed improperly by work-
ers in the industries may most of the time bring pain in the
lumbar spinae [5]. This situation happens when one individ-
ual performs forward flexion; the weight of abdominal area
and the load affects the lumbar spinae, which is adjusted by
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TaBLE 1: Common muscles investigated during manual lifting.

Reference Muscle areas

Kamarudin et al. [7] Biceps brachii and triceps brachii

Biceps, middeltoid, midtrapezius,

Voge and Dingwell [8] and postdeltoid

Zawawi et al. [9] Biceps brachii

Biceps brachii, erector spinae,

Al-Ashaik et al. [1
shaik etal. [10] anterior deltoid, and trapezius

Erector spinae, external abdominal
obliques, internal abdominal
obliques, rectus abdominis, and
latissimus dorsi

Granata and Marras [11]

Longissimus thoracis, iliocostalis

L. [12
Roy et al. [12] lumborum, and multifidus

Seroussi and Pope [13] Erector spinae and external oblique

Lumbar erector spinae, thoracic
erector spinae, and rectus
abdominis

Graham et al. [14]

Thoracic erector spinae, lumbar
erector spinae, internal oblique,
external oblique, rectus abdominis,
and latissimus dorsi

Gagnon et al. [15]

Dolan and Adams [16] Erector spinae

Iliocostalis lumborum, longissimus

Bonato et al. [17
17} thoracis, and multifidus

Potvin [18] Thoracic erector spigae and lumbar
erector spinae
External oblique, internal oblique,
rectus abdominis, iliocostalis
lumborum, longissimus thoracis,

and pars thoracis

Kingma and Van Dieén [19]

Erector spinae, rectus abdominis,
latissimus dorsi, internal oblique,
and external oblique

Shin and Kim [20]

Lumbar erector spinae, thoracic
erector spinae, latissimus dorsi,
internal oblique, external oblique,
and rectus abdominis

Cholewicki et al. [21]

trunk muscles (predominately by erector spinae muscles)
[6]. This movement causes the erector spinae muscles to
make incredible expansive strengths for adjusting the body.
Even though there are numerous assistive gadgets such as lift
trucks, trolleys, and derricks that can help reduce loads on the
lumbar spinae, however in many cases, these instruments are
costly and inconvenient.

Lifting strategies are an important measure during lifting
and because physically correct lifting is significant, their
impact on musculoskeletal well-being is broadly talked about
[22]. The impact of lifting techniques including position
width (characterized as the separation between the feet in
the average sidelong heading with the sagittal symmetry of
position) has been considered, recommending the utilization
of a wide position to lessening the burden on the spine [23].
Lifting procedures (stoop or squat and semisquat) can also
have a significant effect on spine stacking and steadiness
during lifting. Past studies have researched lifting methods in
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biomechanical terms to give some mediation methodologies
and recognize the correct lifting procedures [24, 25]. Squat
lifting seems to have less lumbar shear stretch and place less
weight on noncontractile connective tissues. Stoop lifting has
all the earmarks of being more regular and less exhausting.
Semisquat lifting might be a decent trade-off lift, despite
the fact that early confirmation recommends perhaps higher
lumbar minutes [22].

3. Muscle Fatigue Assessment

Muscle fatigue is characterized as the long lasting deterio-
ration of the performance of the human operator to create
force [24, 25]. A person’s muscle capabilities may differ from
one another, but the characteristics should have some resem-
blance. Past researchers have outlined several features of
muscle fatigue such as an increment in amplitude and the
transition from high frequency range to low frequency [26].

To assess this muscle fatigue characteristics, various tech-
niques are available, depending on the usage. At this moment,
even though the measurement of muscle fatigue by use of
invasive means such as blood test (blood lactate level and
blood oxygen level) and muscle biopsies (pH of muscle) offers
higher accuracy compared to noninvasive techniques, it is
unsuitable for some applications such as sports, ergonomics,
and occupational therapy [27]. The use of noninvasive
approach to acquire muscle signals such as electromyog-
raphy (EMG), sonomyography (SMG), mechanomyography
(MMG), and near infrared spectroscopy (NIRS) for research
purposes is considered to be more convenient and easy to use
[28]. Every technique has its own advantages and disadvan-
tages based on its applications. For the purpose of assessing
muscle physiology during manual lifting, EMG is the most
commonly used tool and has been well reported by many
researchers [29].

4. Electromyography Signal

EMG is the measure of electrical potential present on the
skin in consequence to a muscle contraction that represents
the neuromuscular activities [26]. It can be measured by two
methods: (1) applying electrodes to the skin surface (non-
invasive) or (2) intramuscular (invasive) within the muscle.
Even though intramuscular EMG (imEMG) provides addi-
tional benefits to overcome the drawbacks of surface EMG
(sEMG) such as maintaining robust electrode contact with
the skin and the capacity to record from profound muscles
with little EMG crosstalk [27], sSEMG and imEMG have
been proven to have equal classification performance for data
of comparative nature (unmodulated). However the perfor-
mance of imEMG diminished, compared to surface, when
tested on modulated data [28, 29].

The greater selectivity of imnEMG with respect to SEMG
is due to wires exposed only at the tip but then again may be
a hindrance, since the signal may provide local, rather than
global information where imEMG recordings depend on the
recruitment of motor units; it may be the case that insufficient
information was captured at low amplitude/frequency [27].
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5. Electromyography Preprocessing

When dealing with EMG signal, noise removal is a very
important factor to be taken into consideration. This is due
to the sensitive nature of EMG signal itself that different types
of noises or artifacts unavoidably contaminate it. These noises
are caused by various sources originates from either the skin-
electrode interface, hardware that intensifies the signal, or
other external sources. Therefore, before proceeding with the
analysis and classification of EMG signal, a preprocessing is
usually introduced to remove these noises. Some of the noises
that may affect the signals are inherent noise in electronics
equipment, ambient noise, motion artifact, ECG artifacts,
inherent instability of signal, and crosstalk. However, this
review only covers three types of noises: motion artifact, ECG
noise, and device noise.

5.1. Motion Artifact. Cutting edge technology is considerably
invulnerable to some of the EMG noises, but not to the
motion artifact as it has frequency spectra that are affecting
the low frequency part of EMG signal. This motion artifact
originates at the electrode-skin interface, where there exist
muscle movements underneath the skin, and force impulse
that goes through the muscle and the skin underlying the
electrodes causing movements [30]. These movements will
result in a time-varying voltage across the two electrodes.

To remove the low frequency noise caused by the motion
artifact, a study has been conducted to ascertain a reasonable
value for the high-pass corner frequency filter. The result of
the study recommends the use of a Butterworth filter with a
20 Hz corner frequency and a 12 dB/oct slope [31].

5.2. ECG Noise. When EMG signal is measure close to the
heart, ECG bursts may pollute the EMG recording, which
can affect the analysis and result in misinterpretations [32].
This is a natural relic that is often unavoidable. It can be
diminished by proper skin preparation and adjusted position
of the ground electrode. To date, other than the conventional
ECG removal procedures such as the use of high past filtering,
several ECG noise removal techniques have been introduced
that can clean these ECG bursts but still maintaining the
regular EMG characteristics.

In 2009, Lu et al. came out with a study to evaluate the
performance of recursive-least-square adaptive filter in the
removal of ECG interference from EMG signal [33]. The
result of the study shows that due to fast convergence of
the recursive-least-square algorithm, the filter is reliable to
effectively remove ECG noise.

Later in 2012, independent component analysis (ICA) was
proposed to remove the ECG contamination. The filtering
effects are measured in terms of root mean square relative
errors and linear envelopes correlation of uncontaminated
and contaminated EMG. This technique excellently produces
good results when EMG and ECG are statistically indepen-
dent [34].

5.3. Device Noise. Another type of noise that usually affects
EMG signal is the noise generated inside the EMG device

itself that is commonly referred to as inherent noise in
electronics equipment [35]. This noise cannot be completely
eliminated as all electronic equipment generates noise [36].
However, the severity of the noise can be reduced using high-
quality electronic components.

6. Electromyography Processing

Biosignal processing is a critical part in biomedical engineer-
ing in order to classify the frequency content of a signal. These
signals include EMG, electrocardiography (ECG), and elec-
troencephalography (EEG). Most of these biosignals are non-
stationary signals due to its time-varying characteristics [37-
39]. The problem of this nonstationary signal is the process
of assuming it to be stationary over short-time intervals,
where stationary analysis techniques are used. However, this
assumption is not always suitable, and further methods for
nonstationary processes are needed.

Past researchers have developed several techniques to
process the nonstationary signal specifically the EMG signal
and these include parametric and nonparametric approaches
[40, 41]. The differences between these two approaches are
mainly due to the parameters involved. Since most of the sig-
nals encounters are unknown signals without known param-
eters, the development of nonparametric approach, which
involves a variety of transforms, is actively researched com-
pared to the parametric approach that requires the modeling
of the nonstationary process. Figure 1 provides an overview
of the EMG signal processing methods that are reviewed in
the manuscript.

6.1. Parametric Approach. In the field of EMG processing,
one type of parametric approach that has been explored is
based on the time-varying linear predictive models. This
includes time-varying autoregressive (TVAR) model where
its parameters vary with time. The time-varying spectrum in
TVAR is estimated from the time-varying model parameters
and the nonstationary signal’s instantaneous frequency (IF)
can be extracted [42]. IF represents the spectral peak location
of the EMG signal as it varies with time [43]. Even though
the poles and zeros of the estimated model can be estimated
directly from the EMG signal, it is not guaranteed that the
time-varying poles remain inside the unit circle on the z-
plane, thus making TVAR model temporarily unstable [44].
The constraints can be easily imposed by factorizing the
denominator of TVAR in direct form and formulating it in
cascaded form [45]. Computation of the mean frequency
(MNF) is taken as the time average of the IF estimation based
on the cascaded model in each interval [46].

Research conducted by Al Zaman et al. has compared
TVAR with short-time Fourier transform (STFT) and con-
cludes that even though both TVAR and STFT have produced
similar decreasing muscle fatigue patterns from the MNEF,
TVAR has achieved a better performance with the slope and
interception of the linear regression line is closer [47].

Another parametric approach that has been used is the
time-varying autoregressive moving average (TVARMA).
Studies have been made to compare the performance of
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F1GURE I: Overall view of the electromyography signal processing methods that are reviewed in this manuscript.

TVAR and TVARMA in analyzing EMG signals, and it is
concluded that AR models are more favorable than ARMA
because of the following reasons: (a) estimation of AR models
is moderately basic since they are represented by an arrange-
ment of direct mathematical statements; (b) AR models
are predominant in displaying the low recurrence sEMG
segment; and (c) fluctuation of the AR model estimation on
shorter fragments is lower than for ARMA models [40].

6.2. Nonparametric Approach. Another EMG processing
method is the nonparametric approaches, which include
STFT, spectrogram, and wavelet transform. These approaches
appear to be more favorable to researchers since the fatigues
indices can be obtained directly from the EMG signal without
knowing its parameters. The analysis of the EMG signal based
on the nonparametric approaches can be further divided
into three types of distribution techniques: time domain,
frequency domain, and time-frequency domain [48-50].

6.2.1. Time Distribution (TD). Extraction of time domain
fatigue indices is very simple and easy and involves low
computational complexity compared to the other two tech-
niques since it does not involve any transformation [51]. It
can be directly obtained from the time representation of the
raw EMG signal just by doing some simple mathematical
statistics. The idea of fatigue is approximately connected with
the amount and rate of change of some variables that reflect
muscle alterations amid sustained contractions [52].

Listed in Table 2 are several fatigue indices in the time
domain that have been explored by previous researchers.

Even though the analysis based on time domain is already
established and are widely used since the last decade, however
itis considered less accurate since their calculations are based
on EMG signal amplitude values, where there are much inter-
ference acquired through the recording, especially for fea-
tures that are extracted from energy property [53]. Another
major disadvantage of this time domain features that affects
the accuracy comes from the nonstationary property of the
EMG signal where the statistical properties changes over
time, but time domain features assume the data as stationary
signal [54].

Nowadays, researches involving time distribution only
focus on finding new fatigue indices with higher robustness,
while most of other researchers nowadays opt for time-
frequency analysis, which is considered to be more accurate.

6.2.2. Frequency Distribution (FD). In many studies of fatigue
muscle, frequency domain features are usually used to extract
information from a signal. To date, there are more than
20 fatigue indices in the frequency domain, where two of
the widely used parameters are the mean frequency (MNF)
and median frequency (MDF) [75]. Other fatigue indices are
listed in Table 3. Several techniques have been used to extract
information from EMG signals such as fast Fourier transform
(FFT), power spectral density (PSD), and parametric meth-
ods (i.e., AR model).

The EMG signal should undergo Fourier transform in
order to represent the signal in frequency domain. The
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TABLE 2: Fatigue indices in time domain.

TABLE 3: Fatigue indices in frequency domain.

Reference Fatigue indices Reference Fatigue indices
Malinzak et al. [55] Integrated EMG (IEMG) Merletti and Lo Conte [76] Mean frequency (MNF)
Arabadzhiev et al. [56] Root mean square (RMS) De Luca [77] Median frequency (MDF)
Suetta et al. [57] Mean absolute value (MAV) Khanam and Ahmad [78] Peak frequency (PKF)
Oskoei and Hu [58] Modified mean absolute value type 1 Khanam and Ahmad [78] Mean power (MNP)
(MAVI) Khanam and Ahmad [78] Total power (TTP)
. . Modified mean absolute value type
Villarejo et al. [59] Yp Altaf et al. [79 The 1st, 2nd, and 3rd spectral
_ 2 (MAV2) afetal [79] moments (SM1, SM2, and SM3)
Phinyomark et al. [60] Simple integral square (SSI) Phinyomark et al. [80] Power spectrum ratio (PSR)
Zardoshti-Kermani et al. [61] Variance of EMG (VAR) Gonzdlez-Tzal et al. [81] Instantaneous frequency variance
Tkach et al. [62] v-order (V) (Frar)
Zardoshti-Kermani et al. [61] Log detector (LOG) Georgakis et al. [75] Averaged instantaneous frequency
Kiguchi et al. [63] Waveform length (WL) (AIF) -
Al Omari et al. [64] Average amplitude change (AAC) Dimitrov et al. [82] Dimitrov's spg;itral )fatlgue index
nsm5>

Difference absolute standard
deviation value (DASDV)

Zero crossing (ZC)

Siddiqi et al. [65]

Kilbom et al. [66]
AlOmari and Liu [67]
Phinyomark et al. [68]
Rogers et al. [69]

Myopulse percentage rate (MYOP)
Willison amplitude (WAMP)
Slope sign change (SSC)

Buchenrieder [70] Mean absolute value slope

(MAVSLP)
Venugopal et al. [71] Multiple h(e;r/{n;ln\i/\rfl)g windows
Du and Vuskovic [51] Multiple tr;(allz/f;(\)/i\;i)al windows
Phinyomark et al. [72] Histogram of EMG (HIST)

Al-Quraishi et al. [73]
Chang et al. [74]

Autoregressive coefficient (AR)
Cepstral coefficient (CC)

definition of Fourier transform in the form of power spec-
trum is shown in

XOEHIN

—00

2
x @) e at| €]

where x(t) is the signal in time domain.

However, the fluctuations of the EMG frequency compo-
nent due to the adjustments in the muscle force, length and
contraction speed throughout time, have caused challenges in
the usage of FFT and other traditional processing methods.
The fundamental confinement of a FFT is that it cannot give
simultaneous time and frequency localization [83]. Therefore,
investigation of the EMG signal in dynamic contraction
(i.e., repetitive lifting) utilizing these methods may not be
successful since it requires the signal to be stationary.

6.2.3. Time-Frequency Distribution (TFD). Time-frequency
representation (TFR) of a signal maps a one-dimensional
signal of time into a two-dimensional of time and frequency.
In analyzing, modifying, and synthesizing nonstationary
signals, TFR are widely used since both representation of time
and frequency are taken into account, thus leading to higher
accuracy [84].

In general, TFDs consist of linear TFDs and bilinear
(quadratic) TFDs. The most basic form of TFD technique is
the short-time Fourier transform (STFT). STFT is one of the
linear TFDs that have been used to analyze EMG signals along
with spectrogram, wavelet transform, S-transform, and so
forth. Examples of the bilinear TFDs include the Wigner-Ville
distribution (WVD) and Choi-William distribution (CWD).

Linear TFD

Short-Time Fourier Transform (STFT). To overcome the
disadvantages of time distribution and frequency distribution
and satisfy the stationary condition, it is common to separate
long haul signals into blocks of narrow fragments [85]. This
ought to be sufficiently narrow to be viewed as stationary and
take the FT of every segment. Every FT gives the spectral
information of a different time-slice of the signal, giving
simultaneous time and frequency estimation.

This was proposed by Gabor who had developed the
STFT, the extended version of FT [86].

(o]

STFT, (t,w) = J x(Dw(r-t)e ™ dr, (2)

—00

where x(7) is the EMG signal, w(r — t) is the observation
window, and t is the variable that slides the window over the
signal, x(7).

The choice of the window function in STFT is critical
in order to get accurate results. The shape of the window
can be either rectangular, Gaussian, or elliptic, depending on
the shape of the signal. For sampled STFT using a Gaussian
window, it is often called Gabor transform. Even though the
window should be narrow enough to ensure that the portion
of the signal that falls within the window is stationary, it must
not be too narrow since it will lead to bad localization in the
frequency domain. For infinitely long window, w(t) = 1 will
eventually cause STFT to turn into FT, providing excellent
frequency localization, but no time localization. In contrast
to infinitely short window, w(t) = & will result in the time



signal (with a phase factor), which will provide excellent time
localization but no frequency localization.

Research by MacIsaac et al. uses MNF as fatigue index and
has drawn three important conclusions. First, the nonstation-
arities in EMG do not seem to affect the MNF values obtained
from Fourier transform. Secondly, the STFT method to
measure MNF has successfully midpoints out the impacts of
nonstationarities in dynamic compressions. Third, the STFT
is capable of identifying a descending pattern with fatigue in
dynamic contraction, as long as the range of motion remains
consistent across sequential time interval [87].

Since the STFT is basic in idea and execution and is
equipped for distinguishing a pattern in muscle fatigue, it
is an undeniable choice for applications that require simple
analysis with acceptable results.

Spectrogram. The squared magnitude of the STFT is called
spectrogram. It can be expressed as

00 2

S, (tf)= IJ x(Dw(r-t)e | dr, (3)
—00

where x(7) is the EMG signal, w(r — t) is the observation

window, and t is the variable that slides the window over the

signal, x(7).

Spectrogram can be used to obtain the power distribution
and energy distribution of the signal along the frequency
direction at a given time. In EMG processing, the instan-
taneous energy is useful to separate muscle activation from
the baseline, which is called the segmentation process. Seg-
mentation is important in reducing the high computational
complexity of TFDs. The muscle activation segmentation
process by using spectrogram has been proposed by Shair et
al. and resulted in a mean absolute percentage error (MAPE)
of just 1.404% [88].

For both STFT and spectrogram, there is a compromise
between the time-based and frequency-based perspective of
a signal. Both time and frequency are represented in limited
precision, where precision is controlled by the span of the
window, and the size of the window chosen will be the same
for all frequencies.

In 2010, Jankovi¢ and Popovi¢ have presented in their
paper the use of spectrogram in the analysis of muscle fatigue.
They highlighted that even though the traditional MDF
technique provides good sensitivity for fatigue indication,
however, there is a significant slope error particularly for low
activity of coinitiated muscles. They proposed a hybrid of
alternative methods (spectrogram and scalogram) that can
successfully provide complete information but at the same
time produce less error prediction for low-level coinitiated
muscles [89]. As a recommendation for improvement, they
also proposed further investigation on the robustness of this
method in dynamic exercise contractions.

Later in 2016, Zawawi et al. came out with a detailed
analysis of EMG signals by using spectrogram for manual
lifting application. By taking the average instantaneous RMS
voltage (V. (t)) as fatigue index, she concludes that, as
the lifting height is increased, the average V, . (t) is also
increased. However, as the average V.. (t) decreased, the
number of lifting repetitions is increased [90].
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Wavelet Transform (WT). A wavelet is a waveform of effec-
tively limited duration that has an average value of zero. Some
of its properties are short-time localized waves with zero
integral value, the possibility of time shifting, and flexibility.
Wavelet analysis produces a time-scale view of the signal. The
result of a continuous wavelet transform (CWT) is wavelet
coeflicients. Multiplying each coefficient with the appropri-
ately scaled and shifted wavelet yields the constituent wavelet
of the original signal. Equation (4) shows the formula for
CWT.

(00

CWT, = J x (1) L‘{’ <T—t> dr, (4)
-0 |al a

where t is the translation, a is the scale parameter, and ¥ is

the mother wavelet.

Yochum et al. have proposed a new fatigue index based
on the continuous wavelet transform (CWT), named Iy,
and have compared it to other fatigue indices from literature
in terms of their sensitivity to noise. The results show that this
new fatigue index quantifies the EMG signal elongation dur-
ing a contraction and thus makes it a suitable fatigue index.
I is less subjected to noise and less truncation dependent
compared to other fatigue indices based on the frequency like
MNF and MDF [91].

A comparison has been made by Dantas et al. between
STFT and CWT in evaluating muscle fatigue in isometric
and dynamic contractions. The after effects of this study
exhibit that CWT and STFT analysis give comparable fatigue
estimates (slope of MDF) in isometric and dynamic contrac-
tions. However, the aftereffects of CWT for both contractions
indicate less variability (higher accuracy) in EMG signal
analysis contrasted with STFT [92].

S-Transform. Another TFD technique exists is the S-
transform. This technique has been widely used in diverse
areas of telecommunication, power quality, geophysics, and
biomedicine, due to its obvious advantages in processing
nonstationary signals [93]. In the area of EEG and ECG,
despite the use of S-transform in the time-frequency analysis,
this technique is also a good alternative for denoising and
removal of artifacts that exist in ECG and EEG signals [94].
Even though it has been explored in the areas of EEG and
ECG, there are no available researches conducted in utilizing
this technique for EMG signal.

S-transform was introduced in 1996 by Stockwell,
Mansinha, and Lowe. It is a hybrid of two advanced signal
processing techniques which are STFT and WT [95]. Due
to this, it inherits the good qualities from both techniques.
It provides good resolution in both time and frequency and
allows users to assess any frequency component in the time-
frequency domain without the need of using any digital filter.
Even though S-transform uses a variable window length to
maintain a good time-frequency resolutions for all frequen-
cies, it still retains the phase information using a Fourier
kernel.

Expression for S-transform is shown in

* lfl —(t=t)*7* /2 _—jenfr 5
ST, (¢, f) J_Oox(‘r) me e dr, (5)
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where 7 and f denote the time of the spectral localization and
Fourier frequency, respectively.

The development of the S-transform is led by the urge to
overcome the low resolution of STFT and the absence of the
phase information in CWT. Since the features had existed in
the S-transform, it is sometimes viewed as a variable sliding
window STFT or a phase-corrected CWT [96].

Although S-transform has better time-frequency resolu-
tion than STFT, the resolution is still far from perfect and
needs improvement. To date, there are several improved S-
transform introduced by researchers such as the modified S-
transform [96] and discrete orthonormal S-transform [94].

Bilinear TFD

Wigner-Ville Distribution (WVD). Wigner first introduced
WVD in the area of quantum mechanics in the year 1932,
and later in 1948, Ville developed and applied the same
transformation to signal processing and spectral analysis
[97].

Compared to STFT and WT, WVD does not contain a
windowing function and thus frees WVD from the smearing
effect due to the windowing function. As a result, it provides
best possible temporal and frequency resolution in the time-
frequency plane. It possesses several interesting properties,
such as energy conservation, real-valued, marginal prop-
erties, translation covariance, dilation covariance, instanta-
neous frequency, and group delay.

However, because of its quadratic nature, when dealing
with signals with several frequency components, WVD suf-
fers from the so-called cross components (inference terms),
which represent significant defects in this method.

These interference terms are troublesome since they may
overlap with autoterms (signal terms) and in this manner, it
is hard to visually interpret the WVD image. It creates the
impression that these terms must be available or the good
properties of WVD (localization, group delay, instantaneous
frequency, marginal properties, etc.) cannot be fulfilled.
There is also a trade-off between the amount of interferences
and the number of good properties. These are known issues
with the WVD spectrum, and there are several ways to com-
pensate these cross terms that has been discussed by previous
researchers [98-100]. Equation (6) shows the formula for
WVD.

W, (t f) = J-_o;x<t + g) x" (T - g)(zjnﬁd‘r, (6)

where x(¢t + 7/2)x* (t — 7/2) is the instantaneous autocorre-
lation function and * shows conjugate operation.

In the occasion that time smoothing window g(t) and
a frequency smoothing window h(t) are connected to
WYVD, WVD will then transform into the smoothed-pseudo-
Wigner-Ville distribution (SPWVD), as composed in

SPWVD, (¢, f)

7)
= ”h(t—r)g(f—s)Wx(T,s)des,

where W is the WVD.

A research by Subasi and Kiymik in 2010 has compared
the performance between STFT, SPWVD, and CWT in terms
of accuracy, specificity, and sensitivity. The results suggested
that all three methods provide almost similar performance
and are found to be satisfactory, despite the fact that there are
little differences between the results [99].

Choi-William Distribution (CWD). CWD is a member of
Cohenss class distribution function and was proposed in the
year 1989 by [101]. It is able to avoid one of the main problems
of WVD, which is the presence of interference in regions
where one would expect zero power values. Adoption of the
exponential kernel in the distribution helps to suppress the
effect of cross term [102]. CWD is given by

CWDx (t’ f)

B J J A, (1,7) @ (7, 7) ey dr,

-0 J—=00

where
A, ()= J x <t + g) x" (t - g) e ML (9)
and the kernel function is given by

O (,7) = &0, (10)

By studying the influence of muscle contraction towards
the frequency content of EMG signal using WVD and CWD,
Alemu et al. observed that cross terms existing in WVD are
greatly reduced by CWD, thus resulting in easier interpreta-
tion with no loss of definition due to cross terms [103]. The
reduction of the cross terms is due to the smoothing param-
eters introduced in CWD. However, this still depends on the
smoothing parameter value selected. As observed from the
result itself, when the smoothing parameter decreased, the
reduction of the cross terms is better. This, however, affects
the time and frequency resolutions by reducing it and leads
to more signal loss. As the smoothing parameter approaches
00, it resembles WVD more [103].

B-Distribution. Karthick et al. introduced B-distribution in
2015 to attenuate the cross terms exist in WVD and CWD.
This is realized by introducing a smoothing function referred
to as quadratic time-frequency distribution (QTFD) [104].
Expression of the QTFD is given as follows [105]:

plnk]=2 Z Gnm]l*z[n+mlz
|ml<M/2 (1)

% [1’! _ m] e*jZﬂkm/M,
where G[n,m] is the smoothing kernel and operator =
represents convolution.

Kernel of the B-distribution is given by

B
Gn,m] = <cl>2sr}:12|n> * (sincm), (12)

where f3 is a smoothing parameter.



Three fatigue indices, namely, instantaneous median fre-
quency (IMDF), instantaneous mean frequency (IMNF), and
instantaneous spectral entropy (ISPEn), were used alongside
the B-distribution and it is found that all three features are
distinct in both fatigue and nonfatigue conditions. The study
concludes that B-distribution may be useful in EMG analysis
under various clinical and normal conditions.

Modified B-Distribution. A year later, the same author came
out with a study using modified B-distribution to monitor
the progression of muscle fatigue. Since the performance of
time-frequency distribution is assessed based on its ability
to reduce cross term and provide closely spaced frequency
components representation, this modified version success-
fully removes cross term interference, while maintaining
high time-frequency resolution [106]. It is demonstrated
that modified B-distribution based time-frequency distribu-
tion performs better in suppressing cross terms with good
time and frequency resolution for multicomponent signals
compared with other above-mentioned techniques [107].
Recently, this technique has been widely used to analyze
nonstationarities related to EEG signals, heart rate signals,
and accelerometer data based on fetal movements [108, 109].

7. Discussion and Conclusion

The use of EMG processing to assess muscle fatigue during
manual lifting was reviewed and several fatigue indices were
introduced. Research in the area of EMG signal currently
evolves around the sensitivity, variability, and repeatability of
the fatigue indices, as well as the best processing techniques
with high efficiency and less computational complexity.
Despite the use of traditional methods such as time distribu-
tion and frequency distribution, time-frequency distribution
is found to be more superior in terms of monitoring since it
enables the user to observe the progress of the signal in time
and frequency. This is very important as at the point when
muscle fatigue sets in, frequency compression can happen.
Unlike the conventional frequency distribution technique,
time-frequency analysis demonstrates the time when any
changes in frequencies occur.

In recent years, researchers had identified that the bilinear
TFD could perform better than the linear TFD such as
STFT, spectrogram, and WT due to the fact that it does
not suffer from the smearing effects cause by windowing
function. Nonetheless, on account of its quadratic nature,
bilinear TFD suffers the cross term effects. With the existence
of high resolution Cohen class TFD such as the modified B-
distribution introduced in 2016, the cross term effects can
be removed and at the same time maintain the high time-
frequency resolution.

Other than the processing techniques listed in this paper,
there are still several techniques such as Hilbert-Huang
transform, which have been used to analyze the EMG signals.
There are also already well established techniques in other
research areas and are proven to be effective and have yet
to be implemented in analyzing EMG signals such as the S-
transform. This technique may be suitable for nonstationary
signals like EMG itself, due to its good nature, including

BioMed Research International

linearity, lossless reversibility, multiple resolution, good time-
frequency resolution, and simple algorithm. In conclusion, it
can be seen that there are many gaps to be filled in this area
in either finding new and better fatigue indices or constantly
developing new and improved processing techniques.
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