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Genotype–phenotype correlations are the basis of precision medicine of human genetic diseases.
However, it remains a challenge for clinicians and researchers to conveniently access detailed
individual-level clinical phenotypic features of patients with various genetic variants. To address this
urgent need, we manually searched for genetic studies in PubMed and catalogued 8,309 genetic variants
in 1,288 genes from 17,738 patients with detailed clinical phenotypic features from 1,855 publications.
Based on genotype–phenotype correlations in this dataset, we developed an user-friendly online data-
base called GPCards (http://genemed.tech/gpcards/), which not only provided the association between
genetic diseases and disease genes, but also the prevalence of various clinical phenotypes related to dis-
ease genes and the patient-level mapping between these clinical phenotypes and genetic variants. To
accelerate the interpretation of genetic variants, we integrated 62 well-known variant-level and gene-
level genomic data sources, including functional predictions, allele frequencies in different populations,
and disease-related information. Furthermore, GPCards enables automatic analyses of users’ own genetic
data, comprehensive annotation, prioritization of candidate functional variants, and identification of
genotype–phenotype correlations using custom parameters. In conclusion, GPCards is expected to accel-
erate the interpretation of genotype–phenotype correlations, subtype classification, and candidate gene
prioritisation in human genetic diseases.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Extraordinary advances in sequencing technology have resulted
in major scientific breakthroughs in human genetics [1,2]. In par-
ticular, next-generation sequencing (NGS) technologies, especially
whole-exome sequencing and whole-genome sequencing, have
accelerated the identification of pathogenic variants and disease-
causing genes in human genetic diseases [3]. NGS technologies
have been effectively applied to biomedical genetics and clinical
genetics [1,3], and revolutionised the way researchers and clini-
cians prioritise disease-causing genes in Mendelian disorders and
other human complex diseases [4]. Moreover, medical genetics still
play a huge role in the diagnosis of rare diseases and promote per-
sonalised diagnosis and treatment. Experienced clinicians now
combine clinical phenotypic features with molecular genetics in
disease diagnosis and treatment [5].

Since the correlation between genotype and phenotype in
genetic diseases was first reported decades ago [6], increasing evi-
dence has demonstrated that patients carrying pathogenetic vari-
ants in some disease-causing genes presented clinically
recognisable phenotypes and accompanying syndromes [7]. Mean-
while, researchers and clinicians turned their attentions to the
molecular subtypes classification of the disease based on the
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genotypes of patients [7]. Although amounts of variants have been
discovered, the speed of interpretation lags far behind, scientists
are not yet able to decipher the correlations between most variants
and diseases. Many phenotypic features caused by genetic variants
cannot be used for accurate clinical diagnosis and treatment. A bet-
ter understanding of correlations between genotypes and pheno-
types will revolutionise clinical diagnosis and treatment in
patients with genetic diseases [8]. Nevertheless, data for geno-
type–phenotype correlations are distributed across a massive
number of published studies and are therefore difficult to access
and utilize. To address this problem, the appropriate integration
of these distributed data is necessary, and the development of a
database with aggregated information of genotype–phenotype cor-
relations and detailed individual-level clinical phenotype with
genetic variants is a key goal [9].

Several databases, such as Online Mendelian Inheritance in Man
(OMIM) [10], Human Phenotype Ontology (HPO) [11], ClinVar [12],
MalaCards[13], DisGeNET{Pinero, 2020 #98}, Monarch{Shefchek,
2020 #99}, and CentoMD [4], have been developed to catalogue
disease-associated genes. However, there is no open-access data-
base with detailed individual-level clinical phenotypic features
related to genetic variants. Accordingly, we developed a compre-
hensive, global, open-access database of genotype–phenotype cor-
relations, named GPCards (http://www.genemed.tech/gpcards). In
GPCards, detailed information about genotype–phenotype correla-
tions for individual patients with genetic variants is presented with
a user-friendly interface and does not require registration. More-
over, the most well-known annotated information at the gene
and variant levels is provided by easily operated links. GPCards
provides an important resource for genetic counselling and disease
diagnosis and treatment.
2. Material and methods

2.1. Data collection and quality control

Genotype–phenotype correlations were retrieved by manual
searches of each human gene against PubMed using the search
strategy ‘‘gene symbol [Title/Abstract] AND (mutation [Title/Abstract]
OR variant [Title/Abstract])” (Fig. 1). Though all human genes were
searched, only effective genetic studies were obtained according
to the following inclusion criteria: (i) no fewer than three patients
with detailed data for genotype–phenotype correlations and (ii)
within the top five studies with respect to level of detail for geno-
type–phenotype correlations, if there are more than five eligible
studies for a human gene. Exclusion criteria were as follows: (i)
studies that focused on molecular mechanisms, rather than genetic
studies; (ii) studies reporting fewer than three patients; and (iii)
studies without original data for genotype–phenotype correlations,
or without original phenotypic details of patients, which may cite
from other published studies. We get rid of unsuitable studies by
reading abstracts of the searched publications which were
retrieved from PubMed according with the exclusion criteria. After
that, we screened out effective genetic studies from the rest liter-
ature according with the inclusion criteria. The data collectors col-
lected genotype and phenotype information in the literature. At
last, a geneticist was assigned to reviewed and curate the genetic
and phenotypic data and to confirm the accuracy of the collected
data. All data collectors, who were rigorously trained to ensure
the consistency of collected data, were researchers or PhD students
with a strong background in clinical genetics.

For each genetic study meeting the quality control criteria
described above, two types of information were collected. First,
we catalogued the phenotypes associated with each disease-
causing gene, including the PubMed ID, gene symbol, diagnostic
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diseases, total number of patients with genetic variants in a given
gene, and number of patients with each clinical phenotype or
symptom (Fig. 1). Second, we catalogued the detailed phenotypic
features and genotypes of each patient, including the PubMed ID,
sample ID, Mendelian inheritance (recessive or dominant), geno-
mic position of each variant, nucleotide change, amino acid change,
origin of variants (de novo or inherited), types of variants (homozy-
gous or heterozygous), gender, and status of each phenotypic fea-
tures or symptoms (Fig. 1). LiftOver was employed to convert the
genomic position from one genome assembly (hg18 or hg38) to
the genome assembly hg19. If the genomic positions of genetic
variants were not available in the original studies, VarCards [14]
was used to match the genomic positions based on definitions of
transcripts from RefSeq.

2.2. Variant annotation and integration

ANNOVAR was used for the comprehensive annotation of
genetic variants in each study (Fig. 1). The allele frequencies in dif-
ferent populations were extracted from various human genetic
variation databases, such as gnomAD (release 2.1.1) [15,16], ExAC
(release 1.0) [15,17], ESP6500 (release ESP6500SI-V2) [18]; 1000
Genomes Project (final phase of the project) [19]; Kaviar genomic
variant database (version 160204-Public) [20], and Haplotype Ref-
erence Consortium (HRC) (15). The predicted pathogenicity of mis-
sense variants was also evaluated using 24 widely accepted
algorithms, including ReVe [21], REVEL [22], SIFT [23,24], Poly-
Phen2 HDIV [25], PolyPhen2 HVAR [25], LRT [26], MutationTaster
[27], MutationAssessor [28], FATHMM [29], PROVEAN [30], VEST
3.0 [31], MetaSVM [32], MetaLR [32], M-CAP [33], CADD [34],
DANN [35], FATHMM MKL [36], Eigen [37], GenoCanyon [37], fit-
Cons [38], GERP++ [39], PhyloP [40], PhastCons [41], and SiPhy
[42]. Some disease-related information for variants was also anno-
tated, including InterVar [43] (103), COSMIC [44], ICGC [45], nci60,
InterPro [46], dbSNP v150 [47], and ClinVar [12].

Comprehensive annotations were also performed at the gene
level, as described in our previous studies [14,48], including six
data types: basic information, gene function, phenotype and dis-
ease, gene expression, variants in different populations, and
drug–gene interactions (Fig. 1). In the panel of basic information,
core gene-level information was extracted from NCBI Gene [49],
Gene Ontology (GO; V1.4) [50] (113), and InBio Map (release
20160912) ) [51]. Data were obtained for the intolerance score
(RVIS) [52], novel gene intolerance ranking system LoFtool [53],
heptanucleotide context intolerance score [54], gene damage index
(GDI) [55], Episcore [56], and the probability of loss of function
intolerance score [15]. In the gene function panel, core information
from UniProt (release 201902) [57], InterPro [46], InBio Map (re-
lease 20160912) [51], and NCBI BioSystems (release 20170421)
[58] was integrated. In the phenotype and disease-related informa-
tion panel, the gene-level information from OMIM [10], ClinVar
[12], Gene4Denovo [48], MGI [59], and HPO [51] was catalogued.
In the gene expression panel, data were sourced from BrainSpan
[60], GTEx [61], and the Human Protein Atlas [62]. The final panel
included drug–gene interaction data and gene druggability in the
drug–gene interaction from DGIdb [63].

2.3. Database construction and interfaces

Integrating all of the information for genotype–phenotype cor-
relations and comprehensive annotations described above,
GPCards (http://genemed.tech/gpcards/) was developed by com-
bining Vue with a PHP-based web framework lavarel to construct
a user-friendly web interface (Fig. 1). The front and back models
were separated for construction. The UI Toolkit Element, support-
ing most modern browsers across platforms, such as Microsoft

http://www.genemed.tech/gpcards
http://genemed.tech/gpcards/


Fig. 1. A general workflow of GPCards. Data collection and quality control information were showed in green box; Variants annotation and integration flow chart was listed in
yellow box; and database construction and interface were exhibited in red box. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

B. Li, Z. Wang, Q. Chen et al. Computational and Structural Biotechnology Journal 19 (2021) 1603–1611
Edge, Google Chrome, and Safari, was used. The back-end was
developed using Laravel, a common PHP web framework. GPCards
could run smoothly and is compatible with multiple operating sys-
tems, including Windows, Mac, and Linux. Finally, all genotype–
phenotype data and annotation data were stored in the MySQL
database.
2.4. Database update

The data in GPCards will be updated semi-annually, by manu-
ally searching the genotype–phenotype correlations in PubMed
with search strategy ‘‘(phenotype [Title/Abstract] or clinical fea-
ture [Title/Abstract]) AND (mutation [Title/Abstract] OR variant
[Title/Abstract])” accompany with published data limited from
the latest update time. We also encourage users upload original
phenotype-genotype data, which have been anonymized in Upload
section of GPCards.
3. Results and web interface

3.1. Summary of catalogued data for genotype–phenotype correlations

We reviewed more than 20,000 studies from PubMed and 1,855
genetic studies with detailed phenotype information satisfying the
quality control requirements were finally integrated. In total, 8,309
nonredundant genetic variants in 1,288 genes from 17,738 patients
with formatted and detailed clinical phenotypic features were inte-
grated into the GPCards database. For these 1,288 disease-
associated genes with individual-level detailed phenotypic fea-
tures, 119 (10.9%), 92 (8.4%), 59 (5.4%), and 436 (39.9%) were
reported to carry three, four, five and no fewer than six genetic
variants, respectively (Fig. 2A). Among the 1,855 studies, 129
(7.9%), 175 (10.8%), 131 (8.1%), and 1,070 (65.9%) described two,
three, four, and no fewer than five phenotypic features for each
patient, respectively (Fig. 2B). Moreover, 220 (13.4%), 185
(11.3%), 190 (11.6%) and 1,049 (63.8%) studies described three,
four, five and no fewer than six patients, respectively (Fig. 2C). Fur-
thermore, for 17,738 patients with clinical information, we found
that 1,200 (8.0%), 1,795 (12.0%), 1,253 (8.4%), and 9,619 (64.3%)
patients had two, three, four, and no fewer than five clinical pheno-
typic features, respectively (Fig. 2D).
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3.2. Search modules of GPCards

To facilitate the mining and application of genotype–phenotype
correlation data, the GPCards database was developed with a user-
friendly query interface. It provides an overview of the individual-
level genotype–phenotype correlation with comprehensive anno-
tation information. A quick search bar was set up with various
types of searches as prompts in a prominent position on the home
page of GPCards (Fig. 3). This quick search panel could automati-
cally recognise a variety of key terms related to phenotype or phe-
notypic features information, including gene symbols, genomic
regions, cytoband, genetic variants, gene transcripts, genomic coor-
dinates, disease symbols, phenotype keywords, and identifiers of
GPCards (GP_ID). In addition, GPCards provided an advanced
search function, by which users can conveniently search for the
catalogued genotype–phenotype correlation data in batches
(http://www.genemed.tech/gpcards/search) (Fig. 3). Examples of
different types of search items are presented in this panel. Another
key feature of the advanced search of GPCards is that it allows
users to assign annotation information presented in the search
results, including pathogenicity information based on 24 predictive
tools, population-specific allele frequencies, and data from estab-
lished disease- and phenotype-related databases (Fig. 3). To avoid
excessive data, users can select any of these data sources, as
needed, in the advanced search panel. For example, users could
select gnomAD datasets [15,16] only in the allele frequency sec-
tion, which is considered the most comprehensive and ethnically
diverse allele frequency database, as shown on the search results
page.
3.3. Genotype–phenotype correlations in GPCards

The results of the quick search and advanced search are pre-
sented as tables that summarise the basic information for
disease-associated genes, including the PubMed ID, gene symbol,
disorder name, number of variants, patients, and phenotypes in
each study (Fig. 4). Notably, the genotype-phenotype correlations
of GPCards were specific to each original study and not aggregated
across different studies which reported phenotypic features with
different manners and vocabularies. When users click ‘‘phenotype
summary and genotype–phenotype correlation”, a new and clear

http://www.genemed.tech/gpcards/search


Fig. 2. Summary of catalogued genotype–phenotype correlation data. (A) The distribution of disease-associated genes with different number of genetic variants. (B) The
distribution of studies with different number of clinical phenotypes. (C) The distribution of studies with different number of patients. (D) The distribution of patients with
different number of clinical phenotypes.
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interface is presented with two sections: phenotype summary and
genotype–phenotype correlation. The phenotype summary section
shows the frequencies of various clinical phenotypic features or
symptoms of disease-causing genes in a given study (Fig. 4). For
each clinical phenotypic feature, users would obtain the total num-
ber of patients examined, the number of patients that presented
this phenotypic feature and the prevalence of this phenotypic fea-
tures in the study. For example, by searching JAG1, users could con-
veniently learn that one study reported Alagille syndrome
associated with JAG1 in 70 patients. Furthermore, 17 patients
(24.29%) show an interlobular bile duct paucity, 64 (91.43%) have
a cardiac murmur, and 57 (81.43%) have characteristic facial fea-
tures, in addition to other summarised phenotypes.

In the section on genotype–phenotype correlations, users can
conveniently browse the detailed clinical phenotypic feature and
genotype information as well as comprehensive annotations for
genetic variants (Fig. 4). For the genotype information, users could
obtain the genomic position, reference allele, alternative allele,
Mendelian inheritance (recessive or dominant), origin of variants
(de novo or inherited), variant type (homozygous or heterozygous),
functional effects (stop-gain, frameshift, nonsynonymous, or splic-
ing), and functional consequences predicted by several tools. For
phenotype information, users could learn whether a patient with
a specific genotype presents specific phenotypic features. For the
annotation information, users could evaluate pathogenicity based
on 24 predictive tools, allele frequencies in different populations,
and whether the variant has been catalogued in other well-
known disease- and phenotype-related databases. For example, a
patient with Alagille syndrome carries a heterozygous de novo non-
synonymous variant (c.550C > T, p.R184C) in JAG1 [64], with clinical
phenotypic features of interlobular bile duct paucity, cholestasis,
cardiac murmur, skeletal abnormalities, characteristic facial fea-
tures, and posterior embryotoxon and without interlobular bile
duct paucity and kidney abnormalities which phenotypic features
may be presented in other patients with different genetic variants
of JAG1. By clicking ‘‘Detailed Annotation”, users can learn that this
variant was predicted to be deleterious or conserved by all 24 pre-
dictive tools, has not been reported in any population in gnomAD,
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ExAC, and other population databases, is catalogued as likely
pathogenic variant in InterVar, and is reported as pathogenic in
the ClinVar database (Fig. 4). Notably, by clicking the JAG1 gene
symbol, users could also obtain comprehensive gene-level informa-
tion (http://genemed.tech/gpcards/geneDetail/main?gene_sym-
bol=JAG1), as mentioned in the Material and Methods section,
similar to the Gene4denovo database (48) previously developed
by our group.

3.4. Other functions in GPCards

GPCards support an analysis service that is freely available to all
users on the Analysis page (http://www.genemed.tech/gp-
cards/analysis). Users are able to analyse genetic data by uploading
the anonymized patient data files in VCF4 format and inputting
their E-mail address. If users choose the ‘‘Trio” option for uploading
a VCF file, they should select the sample IDs of the proband, unaf-
fected father, and mother, and GPCards would automatically iden-
tify de novo mutations, homozygous variants, compound
heterozygous variants, and the inherited hemizygous. If users
choose the ‘‘Non-Trio” option and set the genotype (heterozygous,
homozygous, or wild) of each sample, GPCards would automati-
cally identify the co-segregated genetic variants that meet users’
requirements. With informed patient consent, GPCards would link
the anonymized genetic variants to genotype–phenotype correla-
tions. If GPCards identified a variant that has been catalogued, it
would provide the detailed phenotypes of patients carrying the
same variants. If GPCards prioritised a gene that has been cata-
logued, it would provide gene-level summary information for
genotype–phenotype correlations. In addition, GPCards provides
several parameters for quality control and detection of co-
segregating rare damaging variants.

There are also some additional useful sections in GPCards. In the
download section, users are allowed to freely download all of the
genotype–phenotype correlation data compiled by about 20 pro-
fessionals over several months (http://genemed.tech/gp-
cards/download). In the upload section, users could upload
anonymized genotype–phenotype data, which would be helpful

http://genemed.tech/gpcards/geneDetail/main%3fgene_symbol%3dJAG1
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Fig. 3. Snapshot of search modules in GPCards. The quick search bar is set with 11 types of searches prompts as the example of JAG1. The advanced search could be used to
conveniently search in batches with nine type of search prompts. The searching results would show PubMed ID, gene symbol, disorder name, number of variants, patients,
and phenotypes. ‘‘Specify annotation datasets” is a selectable panel with 24 predictive tools, population-specific allele frequencies, and data from established disease- and
phenotype-related databases, allowing users to assign annotation information presented in the panel of searching results.

B. Li, Z. Wang, Q. Chen et al. Computational and Structural Biotechnology Journal 19 (2021) 1603–1611
for enriching the database (http://genemed.tech/gpcards/upload).
After receiving the data uploaded by users, we will connect users
to inform the consent, and perform de-identification before public
release in GPCards database. Users could also access information
for genotype–phenotype correlations by the browse function,
which lists all catalogued genes and the total number variants,
patients, and phenotypes in each study (http://genemed.tech/gp-
cards/browse). Moreover, in the browse section, users can effi-
ciently access phenotypic data by choosing the first letter of the
gene symbol. In the data source section, all integrated databases
or algorithms are listed with summary information (http://gen-
emed.tech/gpcards/source). We also supply an instruction manual
on the Tutorial page, with detailed information about how to get
started (http://genemed.tech/gpcards/tutorial).
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4. Discussion

With the exponential growth of genetic data, especially in view
of the extensive application of NGS technologies in the past decade,
increasing disease-associated genetic variants have been discov-
ered and implemented in diagnostic settings in medical genetics
[1,2,5]. However, the overall diagnostic yield still lags behind the
discovery of disease-associated genes [1,5]. Owing to the amount
of data, it is increasingly difficult for clinical investigators and
geneticists to extract relevant genotype–phenotype information
from various literatures. To resolve this issue, we developed the
GPCards database, which enables users to conveniently access
information about genotype–phenotype correlations without
requiring registration or payment. By using the GPCards database,
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Fig. 4. Snapshot of genotype-phenotype correlations in GPCards. In ‘‘Phenotype Summary and Genotype-Phenotype Correlation” panel, the basic information of the searched
genes was presented. The frequencies of various clinical phenotypes or symptoms of disease-causing genes is exhibited in the ‘‘Phenotype Summary” panel. The detailed
individual-level phenotypes and genotypes were present in ‘‘Genotype-Phenotype Correlation” panel. Moreover, comprehensive variant-level annotations of each genetic
variant were also present in this panel.
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clinicians could classify complex diseases and syndromes into
‘‘molecular subtypes”, which would improve diagnostic accuracy
and therapeutic efficacy. Clinicians could also conveniently iden-
tify genes or variants related to a phenotype using the disease
name or phenotypic feature as a search term. This database is
expected to substantially improve the application of genetic data
to clinical diagnosis and treatment.

It is a complex, laborious, and expensive task to archive geno-
type–phenotype data from a large number of published studies
to construct a useful database [4,65]. Owing to the substantial
input of expertise, resources, and time, the newly developed
GPCards database is practical and highly integrative. This database
includes patients from a wide range of ethnic groups and geo-
graphical locations worldwide. All data were screened by profes-
sionals following a strict quality control system. Furthermore, we
annotated all variants and genes using 62 well-established genetic
or clinical data sources, providing a convenient one-stop database
for the interpretation of pathogenicity of genetic variants. A quick
search model and advanced search model provide easy operation
interfaces with simple and easy-to-understand tips for users with
a wide range of expertise, from beginners to scientists. GPCards
is the first freely available database combining detailed
individual-level information for genotype–phenotype correlations
in human genetic diseases. Users can effectively simplify geno-
type–phenotype correlation data by utilising different functions
of GPCards with personal needs, such as quick search, advanced
search, browse, analysis, download and upload.

GPCards is a practical and highly integrative database aimed at
aiding geneticists and clinicians. It can be used to prioritise novel
candidate genes, for example. Different categories of human dis-
eases may share extensive phenotypic features and therefore
may be caused by mutations in the same genes, such as de novo
mutations (DNMs) in SCN2A were reported to be associated differ-
ent neuropsychiatric disorders we previously reported [66]. There-
fore, a single gene may be associated with two correlated diseases.
If the phenotype information indicated this gene is associated to a
given disease, we can infer that this gene may be associated with
another disease which share the similar clinical features, based
on the genotype-phenotype association. For example, previous
studies demonstrated that DNMs in CHD8 were associated with
autism spectrum disorder [67], a disease usually accompanied
with intellectual disability, suggesting that CHD8 is a candidate
gene for intellectual disability.

In the past decades, many disease-related databases have been
developed, such as OMIM [10], CentoMD [4], HGMD [68], HPO [11],
ClinVar [12], DECIPHER [69], and MalaCards [13], as well as Pheno-
Tips [70], Phenopolis [71], RD-Connect [72] and Patient Archive
[73]. Both OMIM and HPO were database of descripting human
genes and associated diseases/phenotypes without enough
variant-level information. In addition, CentoMD, PhenoTips, and
HGMD were all pay-per-use databases with genetic and clinical
information from HPO and OMIM, users have to pay for the query
services. Meanwhile, ClinVar database was well known for the
variant-level information and associated disease, but lacks the
detailed individual-level phenotypic information, as well as other
listed databases above. DECIPHER was used by the clinical commu-
nity to share and compare phenotypic and genotypic data. Mala-
Cards listed the known aliases, as well as inter-disease
connections, consolidated from 74 sources. There are also some
workflows, which can be adapted to any set of patients for which
phenomic and genomic data is available, such as PhenCo {Diaz-
Santiago, 2020 #97}, were reported recently. Furthermore,
GWASkb [74], GWAS Central [75], GWAS Catalogue [76,77],
PhenoScanner [78] and GRASP [79] focused on the relationship
between different human traits and common SNPs instead of
pathogenic variants. Compared to these databases, GPCards was
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an open accessed database which integrated peer-reviewed
patient-level genotype–phenotype associations of genetic diseases
and provided one-stop service for researchers and clinicals to
interpret the pathogenicity of genetic variants.

Furthermore, most of the existing genotype and phenotype
databases do not supply analysis service, especially the free analy-
sis function. However, GPCards features a free analysis service that
allows users to easily complete a preliminary analysis of genotype
data, annotated and prioritised genes with valuable information in
gene level associated with phenotypes. This free analysis service
will be groundbreaking in providing convenience to users and
advancing the development of genotype and phenotype data anal-
ysis. Meanwhile, the download section and upload section are
other highlights of GPCards. Based on the concept of maximum
openness, users can upload anonymous genotype-phenotype infor-
mation, which is necessary for patients’ data protection, and can
also download the data collected by GPCards for re-analysis and
re-mining. Thus, GPCards provides a platform for researchers to
jointly promote the development of genotypic and phenotypic cor-
relation research. GPCards will provide more accurate and compre-
hensive information regarding to genotype-phenotype correlations
in more patients with the development of medical genetics. The
current version of GPCards is the beginning and attempt to deci-
pher the genotype and phenotype correlation and will be widely
concerned by researchers and clinicians. However, there are some
limitations in the present study. First, a large number of genotype–
phenotype correlation data have been reported in thousands of lit-
eratures, but the format and standards of these information were
differed widely. We try our best to search genetics studies of each
human gene and found that the clinical phenotypic features were
not available for most studies, leading to some genetic variants
were missed in GPCards. We suggested that phenotypic data and
corresponding variant data should be recorded in as much detail
as possible in future publications. Meanwhile, although the contin-
uous updating of the database is costly in terms of both in terms of
money and time, we firmly believe in the potential utility of the
database, so we will keep to update it semi-annually. Furthermore,
we also encourage users to upload anonymized genotype–pheno-
type data to GPCards. Second, genotype–phenotype correlations
in GPCards could be used to assist in diagnosis but not as diagnos-
tic criteria, due to the following three points: (i) pathogenic vari-
ants may later be identified as non-pathogenic, as previous
reported [80]; (ii) some of the reported pathogenic have not been
functionally validated in cell and animal experiments; (iii) many
genes and variants may present incomplete penetrance.

In conclusion, GPCards offers extensive information about
patient-level genotype–phenotype correlations in a user-friendly
open-access interface, without requiring registration. GPCards also
provides comprehensive gene- and variant-level annotations to
facilitate the interpretation of the pathogenesis of genetic variants.
We expect GPCards to be helpful for the prioritisation of novel can-
didate genes, genetic counselling and diagnosis, and development
of appropriate treatment strategies.
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