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The therapeutic repertoire for life-threatening inflammatory conditions like sepsis, graft-versus-host reactions, or colitis is very
limited in current clinical practice and, together with chronic ones, like the osteoarthritis, presents growing economic burden in
developed countries. This urges the development of more efficient therapeutic modalities like the mesenchymal stem cell-based
approaches. Despite the encouraging in vivo data, however, clinical trials delivered ambiguous results. Since one of the typical
features of inflamed tissues is decreased oxygenation, the success of cellular therapy in inflammatory pathologies seems to be
affected by the impact of oxygen depletion on transplanted cells. Here, we examine our current knowledge on the effect of
hypoxia on the physiology of bone marrow-derived mesenchymal stromal cells, one of the most popular tools of practical
cellular therapy, in the context of their immune-modulatory capacity.

1. Introduction

Mesenchymal stromal cells (MSCs) are considered to be a
promising tool for cellular therapy in various human
pathologies. These include both chronic and acute inflamma-
tory conditions like, for instance, osteoarthritis, rheumatoid
arthritis, colitis, septic conditions, or graft-versus-host dis-
ease. Despite numerous studies indicating the efficacy of
MSCs in inflammatory animal models, clinical trials reported
controversial outcomes. Behind the diverse pathogenesis
of the distinct inflammatory conditions, local hypoxia is
considered to be a common pathogenic factor. Indeed,
inflammation is often accompanied by metabolic hypoxia in
various inflammatory diseases. Bone marrow-derived MSCs
(BMSCs) naturally reside in a severely oxygen-depleted
microenvironment that supports the concept of their use in
the cellular therapy of inflammatory conditions [1, 2]. Since
differential oxygen levels exert complex effects on cellular
physiology, here, we review our current understanding on
the interplay between the immune-modulatory effects and
hypoxic response of BMSCs and formulate problems to be

addressed in order to develop more efficient BMSC-based
medical applications for inflammatory pathologies.

2. Bone Marrow-Derived Mesenchymal
Stromal Cells

BMSCs, similar to mesenchymal stem cells isolated from
other tissues, are multipotent cells that possess the plasticity
to differentiate into various cell types of mesenchymal origin
[3, 4]. It is noteworthy, however, that some studies on BMSC
plasticity widened the range of tissues BMSCs which could
be potentially differentiated further [5–9]. These data sug-
gest the existence of trans-lineage plasticity in BMSC popu-
lations and raise the question if BMSCs, or at least a subset
of these cells, are rather pluripotent. Independent of this
classification/semantical uncertainty, their plasticity fueled
the idea that they have great medical potential in patholo-
gies affecting tissues with poor regenerative capacity like
the cartilage, myocardium, or tendons [10]. In support of
this concept, intra-articular administration of BMSCs to
patients suffering from knee cartilage damage was reported
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beneficial based on clinical scorings, though the fate of
transplanted cells remained unevaluated [11]. Another study
found that the use of hyaluronic acid augments the effects
of transplanted BMSCs indicating that the importance of
the surrounding microenvironment in the efficacy of the
BMSC-based cellular therapy [12]. In contrast, however, no
statistically significant improvement was reported in osteoar-
thritis patients after cellular therapy with BMSCs differenti-
ated toward chondrogenic lineages prior transplantation
raising the question if efficacy observed in trials was mediated
by direct cartilage repair [13]. Indeed, tissue damage is often
accompanied by inflammation so one can speculate that for
successful tissue regeneration, transplanted cells have to, ide-
ally, modulate the inflammatory milieu. Clinical reports on
the efficient use of hBMSCs in high-risk pediatric acute
leukemia patients to improve platelet and neutrophil recov-
ery, apparently, support this hypothesis. Although data are
not consistent among published clinical trials, BMSCs were
considered to be responsible for the apparent attenuation of
the graft-versus-host reactions, possibly, through their anti-
inflammatory effects posttransplantation [14, 15]. An inde-
pendent phase I/II study, however, reported that the majority
of the patients either showed partial response or did not
respond to BMSC-based cellular therapy at all [16].

Similarly, conflicting results have been published in rela-
tion to other inflammatory conditions as well. In vivo studies
on the potential use of BMSCs in inflammatory conditions of
the respiratory system showed promising results. In rodent
smoke-induced lung damage models, rat BMSCs (rBMSCs),
administered via the trachea, repressed the expression of
proinflammatory cytokines tumour necrosis alpha (TNF-α),
interleukin-1 beta (IL-1β), interleukin-6 (IL-6), and themono-
cyte chemoattractant protein 1 (MCP-1) in the lung paren-
chyma. Parallel, induction of the vascular endothelial growth
factor (VEGF), its type 1 receptor (VEGFR1), and the trans-
forming growth factor beta (TGF-β) was reported in lung tis-
sue homogenate suggesting an overall anti-inflammatory
pulmonary effect of rBMSCs [17]. In a follow-up study,
the same group reported repression of cyclooxygenase-2
(COX-2) and its downstream effector prostaglandin E2
(PGE2) production in alveolar macrophages as a possible
mechanism behind the rBMSC-mediated anti-inflammatory
pulmonary effects [18]. Independent studies in mouse
lipopolysaccharide-induced pneumonia models also suggest
that BMSCs may mediate the anti-inflammatory effects
through the modulation of macrophage functions [19–21].
Despite the promising results in animal models, however, a
multicenter phase II study in over 60 chronic obstructive pul-
monary disease (COPD) patients did not find significant
effects of the use of intravenous infusions of allogenic human
BMSCs (hBMSCs) [22]. In accordance, only weak efficacy of
the intravenous transplantation of hBMSCs was observed in a
recent phase I trial with patients suffering from acute respira-
tory distress syndrome (ARDS) raising the question of both
the mechanisms underlying the controversial responses and
optimized protocols for improved therapeutic efficacy [23].

Despite the likely diverse extracellular milieu present in
distinct inflammatory conditions, one could speculate that
the determining factor of the BMSC-based cellular therapy

outcome is the differential oxygen levels cells are exposed to
before, during, and after transplantation. Indeed, CD4+ T
cells, for instance, adapt successfully to hypoxic conditions
and this adaptation is accompanied by elevated secretion of
a cohort of proinflammatory cytokines including IL-1β, IL-
6, IL-8, IL-10, and MCP-1 [24]. BMSCs are also naturally
resistant to a severely oxygen-depleted environment, but cells
that are transplanted, for instance, into joints have to exert
their immune-modulatory functions in a fundamentally dif-
ferentially oxygenated milieu compared to those trapped in
the lungs after intravenous administration [25]. Thus, under-
standing the adaptation of BMSCs to various oxygen levels
might be one of the keys for establishing better off-shelf
BMSC products and more efficient BMSC-based therapeutic
protocols for inflammatory diseases.

3. Hypoxia

Although hypoxia is typically associated with pathophysio-
logic states, it is, actually, present in physiologic conditions
as well. Indeed, oxygen depletion occurs from the very first
stages of embryogenesis and remains present during the
whole morphogenesis. Local hypoxia not only is responsible
for the proliferation of placental epithelial stem cells, the
cytotrophoblasts, but also serves as an orientation signal for
their invasion into the uterus, a critical factor of placental
development [26]. Hypoxic tissues are present in the growing
embryo elsewhere as well, and their common presence in var-
ious experimental model species including rodents and birds
suggests that the phenomenon is a general property of the
vertebrate embryogenesis [27]. Although its distribution
shows a temporospatial variation, hypoxic regions remain
detectable throughout the whole morphogenesis. In the
14.5E mouse embryo, for instance, extensive oxygen-depleted
regions are present in the midbrain, pituitary gland, spine
cord, vertebrae, and sternum as well as in tissues of the tongue,
heart, lungs, and intestine [28]. In vivo data also showed that
artificial modification of oxygen levels upon embryonic devel-
opment leads to severe placental malformations or abnormal
morphogenesis suggesting that the embryonic hypoxia cannot
be exclusively considered a passive outcome of the massive
expansion of embryonic tissues but rather a tightly regulated
organogenetic signal [29, 30]. This also underlines the impor-
tance of the hypoxic milieu in the physiology of pluripotent
cellular species responsible for tissue organogenesis. Extremely
low oxygen tensions are also present in tissues under physio-
logic condition during the postembryonic life. This “physio-
logic” hypoxia is present even in well-vascularized organs
like the heart, kidneys, or brain (Table 1.). Moreover, recent
findings on the central role of the microbiome-mediated
oxygen-depletion of the intestinal epithelium in the mainte-
nance of the intestinal barrier function suggest that the physi-
ologic role of hypoxia in adult tissues might be more critical
than it has been, previously, anticipated [31].

3.1. The Molecular Machinery of Hypoxic Adaptation.
Independent of the nature of hypoxia, metazoan cells need
to adapt to the oxygen-depleted milieu to ensure the bal-
ance of their oxygen-dependent metabolic homeostasis and
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survival. Adjustment of cellular metabolism in hypoxia is,
primarily, orchestrated by helix-loop-helix type transcrip-
tion factors termed hypoxia-inducible factors (HIF) [32]
(Figure 1). The heterodimer HIFs, besides the shared beta
one, consist of distinct alpha subunits that are steadily
degraded by the 26S proteasome system in oxygenated
cells [33]. This “normoxic” degradation is facilitated by the
hydroxylation of conserved proline residues of the α polypep-
tides mediated by the prolyl-4-hydroxylase-1, prolyl-4-
hydroxylase-2, and prolyl-4-hydroxylase-3 (PHD1, PHD2,
and PHD3) [34]. Hydroxylation renders α subunits bound
to the E3 ubiquitin ligase component von Hippel-Lindau
(pVHL) protein leading to their proteasomal breakdown
and absence of functional heterodimers in “normoxic” cells
[33]. Under hypoxia, in contrast, PHDs become inactive,
HIF-α subunits stabilize and dimerize with their β counter-
parts and transactivate adaptive target genes. These include
not only genes of the glucose and lipid metabolism but also
the ones encoding for regulators of proliferation, survival,
DNA repair, cytoskeletal components, extracellular matrix-
related proteins, cyto-, and chemokines [35]. Since BMSCs
express both HIF-1 and HIF-2α and the HIF-orchestrated
cellular hypoxic response is fully functional in these cells,
one can speculate that differential activation of the underly-
ing molecular system consequently affects the putative
immunomodulatory nature of these cells too [36].

4. The Hypoxic Response of BMSCs

4.1. Metabolic Adaptation. One of the critical aspects of
the HIF-governed hypoxic adaptation is the metabolic
switch from the oxidative phosphorylation to less oxygen-
dependent metabolism. Since in BMSCs both the aerobic
glycolysis and oxidative phosphorylation are active and
the HIF system is also intact and functional, one can specu-
late if the HIF-orchestrated metabolic switch remains active
in the ex vivo expanded BMSC cultures [37]. In vitro, it,
apparently, does since hBMSCs exposed to 2% oxygen show
elevated glucose consumption compared to cells cultured
under atmospheric oxygen conditions [38]. Parallel, the
incorporation of glucose-derived carbons into citrate, which
reflects the rate of the glycolysis-driven TCA cycle, is signifi-
cantly reduced. Despite this reduction, however, citrate car-
bons are still mainly derived via pyruvate dehydrogenase
indicating that basal activity of the TCA cycle remains intact
even under oxygen-depleted conditions [39]. Interestingly,
although this metabolic switch under hypoxia should also

be reflected in lactate production, there are contradicting
results in relation to lactate production of hypoxic BMSC
cultures. While some studies observed decreased extracel-
lular lactate levels in the culture media of oxygen-deprived
BMSCs, others reported elevated lactate production under
hypoxic conditions [37, 38, 40]. Recent systemic analyses of
the hypoxic BMSC metabolome detailed the picture further
showing that elevated extracellular lactate levels are accom-
panied by unchanged intracellular lactate levels suggesting
the existence of a high-capacity lactate export system in
BMSCs [39]. Since lactate export seems to become saturated
upon in vitro osteogenic differentiation, one may wonder if
a differential proportion of undifferentiated species in the
BMSC cultures examined is accounted for the reported con-
flicting results in lactate production.

In glutamate metabolism, which serves as carbon and
nitrogen supplies alike, hypoxic BMSCs display different
kinetics as well. Under hypoxia, they show an increase in
TCA cycle-driven metabolism of glutamate and this, in con-
junction with the elevated glucose consumption, may be
related to the activated malate-aspartate shuttle observed
[39]. Data suggest that this metabolic profile allows hypoxic
BMSCs to maximize their ATP production at reduced glyco-
lytic carbon supply of the TCA cycle. In addition, increased
glutamate metabolism in oxygen-deprived BMSCs is accom-
panied by reduced production of ammonia, the by-product of
glutamate metabolism, suggesting that glutamate conver-
sion is, primarily, mediated by transaminases instead of the
ammonia-producing glutamate dehydrogenase in hypoxic
BMSCs [38, 39]. Since the transaminase pathway of gluta-
mate metabolism facilitates generation of nonessential amino
acids, one can speculate that the increased glutamine con-
sumption of hypoxic BMSCs mainly serves their translational
machinery [41]. This is in accordance with the findings that
oxygen-depleted BMSCs secrete a number of soluble fac-
tors with potential impact on the inflamed microenviron-
ment and the hypoxic glutamine metabolism may serve
the reprogrammed translation of hypoxic BMSCs. It is also
noteworthy that normoxic cultures are reported to produce
ammonia at concentrations that are believed to be inhibitory
in vitro so one can speculate if the hypoxia-adapted gluta-
mine metabolism with reduced ammonia production is
reflected in the proliferative capacity of ex vivo expanded
BMSC cultures [42].

4.2. Proliferation of Hypoxic BMSCs. Indeed, BMSC cultures
expanded at oxygen levels lower than 3% are reported to
show better proliferative capacity and consistently higher
cumulative population doublings compared to cells kept
under atmospheric oxygen conditions [36, 38, 43]. This
may be critical for BMSC-based therapeutic applications
since these modalities require ex vivo expansion of cells to
be transplanted due to the low frequency of BMSCs in source
marrow isolates [4]. Analyses of proliferation kinetics
revealed that hypoxic cells enter the cell cycle faster and start
in vitro cell division earlier than that of the normoxic ones
[38]. Although details of the underlying mechanisms includ-
ing the role of reduced production of ammonia are still not
fully understood, a number of parallel events, which may

Table 1: Oxygen concentrations of various tissues.

Tissue/organ O2 (%) Reference

(i) Lung parenchyma
(ii) Circulation
(iii) Well-irrigated parenchymal organs

4-14 [96–104]

(i) Brain tissue 0.5-7 [105–108]

(i) Retina
(ii) Corpus vitreum

1.0-5 [109, 110]

(i) Bone marrow 0-4 [1, 111]
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potentially orchestrate the hypoxia-driven upregulation of
BMSC proliferation, have already been reported.

One of these mechanisms is mediated by the APELIN-
AKT/PKB axis in hypoxic BMSCs (Figure 2) [43]. APELIN
is the endogenous ligand for the orphan G protein-coupled
receptor APJ, and the APELIN-encoding APLN gene is
induced in a HIF-1α-dependent manner in hypoxic BMSCs
[44, 45]. In vitro studies using rodent BMSCs revealed that
APELIN-mediated activation of APJ leads to the inactivating
phosphorylation of glycogen synthase kinase 3 beta (GSK3β)
via the AKT/PKB in a phosphoinositide 3-kinase- (PI3K-)
dependent manner [43, 46]. One of the known targets of
GSK3β is cyclin D1, the regulatory component of the cyclin
D1/cyclin-dependent kinase 4 (CycD1/CDK4) complex that
governs the G1/S phase transition in the cell cycle [47]. The
GSK3β-mediated phosphorylation of cyclin D1 results in
nuclear export and the cytoplasmic degradation of the latter

one leading to inactivation of the CycD1/CDK4 complex.
Thus, experimental data suggest that, in hypoxic BMSCs,
the HIF-induced APELIN triggers the AKT/PKB axis that
results in the inactivation of GSK3β and, consequently,
upregulation of the CycD1/CDK4 complex and the G1/S
phase transition [46]. Since in, cancer cells, AKT/PKB-medi-
ated inactivating phosphorylation of GSK3β contributes to
the cytoplasmic stabilization of HIF-1α as well, one can spec-
ulate if an APELIN-AKT/PKB-HIF-1α axis forms a feed-
forward regulatory loop in hypoxic bone marrow-derived
mesenchymal stromal cells [48]. Moreover, since the transla-
tional regulator mammalian target of rapamycin (mTOR) is
also a known effector of AKT/PKB in established cellular
models, it would be interesting to see how the hypoxia-
upregulated AKT/PKB contributes to the altered ammonia
production via, for instance, the mammalian target of rapa-
mycin (mTOR) pathway in hypoxic BMSCs.
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Figure 1: Hydroxylation-mediated regulation of the HIF-α subunits. The primary posttranslational regulation of the HIF-α polypeptides is
mediated by the prolyl-4-hydroxlase-1, prolyl-4-hydroxlase-2, and prolyl-4-hydroxlase-3 (PHDs) that catalyze the hydroxylation of
conserved proline residues. This leads to the ubiquitylation and subsequent proteasomal degradation of the HIF-α subunits in the presence
of oxygen. A complimentary hydroxylation catalyzed by the asparagine hydroxylase termed factor inhibiting HIF (FIH) that prevents the
association of HIFs with their transcriptional coactivator p300.
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4.3. Cytokine Production of Hypoxic BMSCs. Hypoxia-
stabilized HIFs target hundreds of genes mostly inducing
their expressions. This leads to complex modification of the
gene expression pattern of BMSCs as it has been shown using
oxygen-depleted rBMSCs [49]. Target genes include those
encoding for proteins with known or predicted secretory
functions that may exert immune-modulatory effects [43,
50]. One of the potential mediators of these effects is the
robustly hypoxia-induced macrophage migration inhibitory
factor (MIF) that, although traditionally has been considered
to be a proinflammatory cytokine, can function as a mediator
of the monocyte/macrophage arrest as well by acting as a
noncognate ligand for the chemokine receptors CXCR2 and
CXCR4 [51]. Another candidate target is PTGES that encodes
for the prostaglandin E synthetase, suggesting elevated PGE2
synthesis in hypoxic BMSCs. PGE2 has been reported to
support monocyte differentiation into type 2 macrophages

(Mϕ2) that are known activators of regulatory T lymphocytes
(Treg) [52]. Since this raises the fact that BMSCs apply their
immune-modulatory effects, at least in part, via the PGE2-
Mϕ2-Treg axis, it would be interesting to see if differential
expression of the transforming growth factor beta (TGFβ),
which also promotes Treg formation, exists in hypoxic BMSCs
and if so, it contributes to the immune-modulatory proper-
ties of hypoxic BMSCs [53]. Apparently, this concept is
underpinned by the findings that hypoxic mBMSCs trigger
both proliferation and viability of the Mϕ2 fraction via a
cell-to-cell contact mechanism that is, at least in part, medi-
ated by M-CSF and ICAM-1 [54].

Whether hypoxia mediates similar alterations in the gene
expression profile of human BMSCs and, if so, how these
differentially regulated genes contribute to the observed
immune-modulatory effects of BMSCs in inflammatory con-
ditions need further investigations. However, not only bona
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fide secretory proteins may have a role in the immune-
modulatory effects observed in relation to BMSCs. Indeed,
hypoxia upregulates EPRS that encodes the glutamyl-prolyl-
tRNA synthetase. Although it is primarily known as a cyto-
plasmic enzyme that catalyzes aminoacylation of glutamate
and proline tRNA species, it also suppresses translation
of diverse inflammatory mRNAs by binding their 3′-UTRs
upon interferon-gamma-mediated phosphorylation [55].
Moreover, since proteolytic fragmentation of the tyrosyl-
tRNA synthetase generates polypeptides that affect neutro-
phil chemotaxis by binding the CXCR1 chemokine receptor,
one can speculate if hypoxic upregulation of the glutamyl-
prolyl-tRNA synthetase in BMSCs has similar immune-
modulatory functions [56].

The complex effects of hypoxia on the translational regu-
lation of BMSCs are further indicated by the hypoxic induc-
tion of the eukaryotic initiation factor 4E-binding protein 1
(EIF4EBP1), a suppressor of 5′-CAP-dependent translation
observed in rBMSCs [50, 57]. In established cell lines, oxygen
depletion activates the AKT/PKB pathway that leads, among
others, to the activation phosphorylation of the mTOR. As
it has been discussed above, in mouse BMSCs (mBMSCs),
the proximal section of the putative AKT/PKB-mTOR-
EIF4EBP1 axis is activated by the hypoxia-inducible APLN
[45]. Since mTOR is a known regulator of EIF4EBP1, one
may wonder if the hypoxia-responsive, translational pattern-
regulating AKT/PKB-mTOR-EIF4EBP1 axis exists in human
BMSCs [50]. The finding that the hypoxia-mediated secretion
of soluble factors like VEGF, FGF2, IGF-1, and HGF is sensi-
tive to PI3K inhibitor 3-methyladenine (3-MA) in mBMSCs,
apparently, supports the concept that a hypoxia-responsive
AKT/PKB-mTOR-EIF4EBP1 pathway participates in the
translation of cytokines/growth factors [58].

Interestingly, recently, it was also reported that siRNA-
mediated knockdown of ATG7 attenuates the increased
secretion of growth factors that suggests an interplay between
the upregulation of growth factor secretion and ATG7-
governed functions like, for instance, vacuole transport or
autophagy [58]. Since autophagy, which is traditionally con-
cerned as an mTOR-governed process, contributes to cell
survival, the role of ATG7 in the cytokine secretion suggests
a potential link between the immune-modulatory effects
and viability of hypoxic BMSCs as well.

4.4. Hypoxia Affects Viability of BMSCs. One of the most
profound effects of hypoxic exposure on BMSCs is shifted
proliferation that raises the question if hypoxic exposure
leads to premature senescence and, thus, exhausted immune-
modulatory capacity of BMSC cultures. Apparently, some
experimental data support this concern as far as the relative
telomere length of hypoxic BMSCs was found shorter than
that of the cells kept under atmospheric oxygen conditions
[38]. In accordance, some studies reported an increased rate
of apoptosis in BMSC cultures kept under hypoxia [59–61].
Still, it is widely believed that viability is preserved in bona
fide hypoxic BMSC cultures as illustrated by the increased
colony-forming unit values observed in hypoxic BMSC
cultures [38, 62]. In accordance, hypoxia-stabilized HIF-
1a has been shown to mediate the survival of rBMSCs in

the presence of exosomes derived from oxidative stress neu-
ronal cells [63]. One possible explanation for this controversy
is that, in studies which reported elevated cell death, hypoxia
was combined with serum deprivation so the observed
apoptotic response may be accounted for the lack of vital
nutrients rather than to low-oxygen levels. This notion is
underpinned by the elevated glucose and glutamine con-
sumption of hypoxic BMSCs discussed above. In terms of
shortened telomeres reported in hypoxic BMSCs, data indi-
cate that compensating prosurvival mechanisms may sustain
viability of hypoxic cells. Indeed, both expression of LC-3,
BECLIN-1, and ATG5, hallmarks of autophagy, and conver-
sion of LC3B-I to LC3B-II, a marker of autophagosome for-
mation, were reported in mBMSCs exposed to hypoxia [64].
The finding that induction of autophagy markers is sensitive
to U0126, the selective inhibitor of the MAP kinases MEK1
and MEK2, indicates that hypoxia-triggered activation of
autophagy is, at least in part, mediated by theMAPK pathway
in mBMSCs [64]. The putative role of the MAPK pathway in
the hypoxic response seems to be evolutionarily conserved as
hypoxic activation of the ERK pathway has been shown in
human BMSCs as well [36].

The potential importance of hypoxia-triggered autoph-
agy may be illustrated by the observation that a short-term
hypoxic exposure of mBMSCs protects cells from subsequent
hypoxia/serum deprivation injury [58]. The protective effect
of hypoxic preconditioning, in accordance with human
models, is accompanied by increased levels of LC3 and
BECLIN-1 further supporting the evolutionarily conserved
aspect of the hypoxia-mediated upregulation of autophagy
markers in BMSCs. Seemingly, induced autophagy makes
mBMSCs more resistant to environmental stress. Indeed,
hypoxia preconditioned mBSMCs are reported to show
better survival after transplantation to infarcted hearts or
when exposed to H2O2 [58, 65]. In support of this con-
cept, HIF-1α overexpression, which may mimic hypoxic
preconditioning, has also been shown to protect rBMSCs
from oxygen-glucose deprivation-induced damage and this
effect was correlating with the expression of autophagy
markers [66]. Experimental data on non-preconditioned
ischemic mBMSCs indicate that autophagy cannot rescue
ischemic cells from apoptosis without mTOR activity and
suggest that hypoxic preconditioning mediates resistance by
upregulation of mTOR, probably, via the HIF-1α-APLN-
AKT/PKB axis in the advancement of ischemic exposure
[59]. Interestingly, shRNA-mediated knockdown of ATG7
increased viability of hypoxic human BMSCs suggesting that,
at least in hypoxic mBMSCs, ATG7 is not necessary to the
hypoxia-responsive autophagy-mediated prosurvival mecha-
nisms [67]. This observation also suggests that the role of
ATG7 in hypoxia-responsive secretion of growth factors is
more closely related to the vesicular transport functions of
ATG7 than to its role in autophagosome formation.

This is in accordance with findings that indicate the
importance of vesicular transport in BMSC-mediated
immune-modulatory functions. Indeed, BMSC-derived exo-
somes have been reported to affect proliferation of cocultured
cells and stem cell-derived exosomes have also been found to
exert immune-modulatory effects [68, 69]. These data also
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question if live BMSCs are actually needed to reach the
desired therapeutic effects in the cellular therapy of inflam-
matory conditions. Indeed, even ischemia-treated annexin
V/propidium iodide-positive mBMSCs were shown to have
immune-modulatory effects on cocultured macrophages
[70]. The observed repression of inflammatory cytokines
TNF-α, IFN-γ, IL-12, and IL-6 and induction of PGE2,
VEGFA, angiopoietin 1 (Ang-1), keratinocyte growth factor
(KGF), insulin-like growth factor 1 (IGF-1), platelet-derived
growth factor B chain homodimers (PDGF-BB), and erythro-
poietin (EPO) in cocultured macrophages indicate that even
damaged BMSCs could reprogram the cytokine/growth
factor profile of surrounding phagocytes. The general per-
ception of controversies between the lasting immune-
modulatory effects and the short half-life of transplanted
BMSCs together with the absence of recipient BMSCs in
heart and lung transplants or the observations that intrave-
nously administered BMSCs are mostly trapped in the lungs
posttransplantation is, apparently, in accordance with the
idea that BMSCs can exert their immune-modulatory effects,
at least in part, indirectly [71–76]. In accordance, coculture
experiments with damaged BMSCs suggest that immune-
modulatory effects are, at least in part, accounted for phago-
cytotic capacity saturated by the cellular debris of trans-
planted BMSCs [69]. Interestingly, despite the fact that it is
widely accepted that ex vivo culturing influences the pheno-
type and surface antigen pattern of BMSC cultures without
making them immunogenic and that exosome-mediated
horizontal transfer of the anti-inflammatory BMSC pheno-
type is an exciting potential mechanism for mediating the
anti-inflammatory effects, little is known on the effects of
the ex vivo expansion of BMSCs on their interplay with resi-
dent phagocytes posttransplantation [77, 78]. Accordingly, it
would also be exciting to see if various ex vivo oxygen levels
have any impact on the anti-inflammatory properties of
BMSCs via, for instance, expression of neoantigen.

5. Conclusions

The discovery of multipotent species in adult tissues paved
the way for the clinically efficient regenerative medicine.
The idea that transplanted stem cells repair damaged tis-
sues via their plasticity, however, has, slowly, been shifted
to the concept that multipotent cells exert their biological
effects indirectly. Apparently, this notion makes them par-
ticularly useful to treat inflammatory conditions, where sol-
uble factors play pivotal roles. Still, clinical trials delivered
perplexing results calling further investigations for under-
standing the mechanism of action of stem cell’s immune-
modulatory effects as well as for conditions that improve the
efficacy of stem cell-based therapeutic modalities in inflamma-
tory pathologies.

Indeed, over the past decades, BMSC-based cellular ther-
apies have drawn great attention in the clinical practice.
Indeed, BMSCs have been tried in a number of human
pathologies that exert immune dysfunction or imbalance of
the regulation of immune response where our current thera-
peutic repertoire is very limited. Still, despite promising pre-
clinical data, clinical trials failed to deliver breakthrough

results. A good example is graft-versus-host disease (GVHD)
where BMSCs were used in a number of, mostly phase I and
II, clinical trials for the treatment of both acute and chronic
forms of GVHD. Unfortunately, while the use of BMSC-
based cellular therapy in acute GVHD was reported advanta-
geous by a number of reports, clinical trials found the
same approach rather ineffective in patients who suffered
from chronic GVHD [16, 79–83]. Multiple sclerosis (MS),
which affects the central nervous system by demyelination
of the motor axons, is another autoimmune pathology
where no effective treatment is currently available. Progres-
sive MS patients treated with BMSCs, however, showed par-
tial responses, some degree of remyelination in affected CNS
areas, and improved Treg lymphocyte titers suggesting that
cellular therapy may have genuine therapeutic potential in
MS following improvement of its efficacy [84, 85]. Similar
conclusions can be drawn from clinical trials targeting
patients suffering from steroid-refractory systemic lupus ery-
thematous, a potentially fatal multisystem autoimmune dis-
ease. These trials showed that BMSC infusions maintained
patients in remission up to 18 months with elevated Treg lym-
phocyte numbers [86] but simple repetition of BMSC trans-
plantation did not improve the efficacy of the therapy [87].

Inflammation is always accompanied by hypoxia raising
the question if differential oxygen levels throughout the ther-
apeutic processes influence the immune-modulatory capacity
of naturally hypoxic BMSCs. Indeed, data indicate that, in
hypoxia, BMSCs are biasing their metabolic homeostasis
toward aerobic glycolysis. This, combined with the observed
glutamine-mediated anaplerosis, not only enables faster
ATP generation in the absence of full-blown oxidative phos-
phorylation but also provides a range of metabolic intermedi-
ates that can fuel de novo synthesis of essential biomolecules,
critical prerequisites of cell survival, translation, and secre-
tory functions [88].

Considering their phenotypic analogy, it is not surprising
that hypoxic BMSC metabolism resembles the one observed
in cancer cells that also often show an extremely high rate
of glutamine consumption and dependency [89]. Today, it
is also widely accepted that inflammation is tightly linked to
tumour formation and recent advances in immunotherapy
of neoplasms substantiate the notion that tumour cells exert
immune-modulatory properties. In addition, the striking var-
iation in the immune profiles of distinct tumours suggests
that transformed cells apply multiple mechanisms to attenu-
ate immune reactions [90]. Indeed, cancer cells are reported
to be able to recruit anti-inflammatory cells like Treg lympho-
cytes and myeloid-derived suppressor cells or secrete soluble
immunosuppressive factors like TGFβ, IL-10, or PD-L1 [91].
Since BMSCs are expected to exert their immune-modulatory
functions in pathologies with similarly diverse inflammatory
backgrounds, it seems to be a fascinating question if any of
the immune-modulatory mechanisms of cancer cells apply
to BMSCs.

Indeed, loss of function mutations of TP53, for instance,
attenuates cytotoxic T cell invasion of breast cancers [92].
In a number of cancers, the absence of physiologic TP53
functions activate the nuclear factor kappa B (NF-κB) path-
way, that is, typically, accompanied by the paralysis of
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immune cell influx of tumour mass [93]. Since some data
suggest that TP53 may be repressed in hypoxic BMSCs as
well, one may wonder if the NF-κB pathway, the critical
mediator of inflammatory responses, is upregulated in
hypoxic BMSCs modulating their cytokine/chemokine pro-
duction [61]. Since the activity of the NF-κB pathway in hyp-
oxic cells, apparently, depends on the cytokine profile of the
extracellular milieu, one can hypothesize that the putative
TP53-mediated, hypoxia-responsive activation of NF-κB
contributes to the cytokine/chemokine production of hyp-
oxic BMSCs. In return, this may downregulate the same in
neighboring hypoxic immune cells modulating their cytoki-
ne/chemokine profile and, thus, reactivity [94].

Current data support the idea that hypoxic exposure of
BMSCs pretransplantation may be one of the measures that
improve their immune-modulatory effects posttransplanta-
tion (Figure 3). Data, however, also indicate that the prereq-
uisite of an optimal hypoxic preconditioning protocol is the
appropriate supply of nutrients like glucose and glutamine
in order to fuel the hypoxia-reprogrammed translation of
BMSCs with necessary metabolites. Nevertheless, the careful
selection of supplements is underlined by the observation

that ascorbic acid (AA) promotes BMSC proliferation [95].
Though the primary underlying mechanism is not clear due
to its promiscuous metabolic roles, data indicate that exoge-
nous AA mimics the effects of extracellular collagen fibers
via increased collagen production, affects metabolism, and
alters DNA methylation in BMSCs. Since AA, among others,
acts as one of the cofactors of PHDs, one can speculate
that AA might counteract the HIF-mediated mechanisms.
Indeed, ascorbic acid, apparently, overrides the transcrip-
tional activity of HIF triggered by deferoxamine (DFO), a
routinely used hypoxia mimetic that, as an iron chelator,
blocks the iron-dependent PHDs and therefore stabilizes
HIFs. Since HIF transcriptional activity seems to be critical
in the unfolding of the hypoxic BMSC phenotype, these
observations illustrate that differential ex vivo culture condi-
tions may provoke fundamentally different molecular mech-
anisms even in the presence of apparently equivalent
macroscopic phenotypes.

These findings underline the importance of further opti-
mization of the treatment regimens including manufacturing
standards for future BMSC products. Experimental data not
only indicate that activation of the molecular hypoxia-
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↑ Extracellular lactate levels
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↓ Incorporation of glucose-derived
carbons into citrate

↓ Reduced production of ammonia
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↑ Proliferative capacity

↑ Cumulative population doublings

↑ Entry into the cell cycle

↓ CycD1/CDK4 activity

Cito- & chemokine production

↑ Macrophage migration inhibitory
factor expression

↑ Prostaglandin E synthetase
expression

↑ Glutamyl-prolyl-tRNA synthetase
expression

↑ VEGF, FGF2, IGF-1, and HGF
expression

↑ PGE2, VEGFA, angiopoietin 1,
keratinocyte growth factor,
insulin-like growth factor 1,
platelet-derived growth factor,
erythropoietin in 
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↓ Translation of interferon gamma
mediated phosphorylation-sensitive
inflammatory mRNAs

↓ TNF-𝛼, IFN-𝛾, IL-12, and IL-6
expression in co-cultured
macrophages

↑ Number of colony forming units

↑ LC-3, BECLIN-1 and ATG5
expression

↑ Conversion of LC3B-I to LC3B-II

↑ Resistance to hypoxia/serum
deprivation injury

↑ Resistance to oxygen-glucose
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Figure 3: Summary of the key effects of hypoxia on BMSCs. The micrograph depicts human bone marrow-derived mesenchymal stem cells
cultured under 2% oxygen in the absence of fibroblast growth factor-2 taken by the author using phase-contrast microscopy at 40x
magnification.
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adaptive machinery can significantly contribute to the effi-
cacy of BMSCs in inflammatory pathologies but also under-
line the importance of further research on the optimal
ex vivo conditions, including hypoxia, for establishing
enhanced anti-inflammatory BMSCs. Indeed, careful selec-
tion of the oxygen levels during isolation, ex vivo culturing,
and posttransplantation seems to be one of the key aspects
we need to consider in order to improve the efficacy of the
clinical use of BMSCs. Hopefully, future in vivo studies focus-
ing on the role of oxygen in BMSC-based cellular therapies of
inflammatory conditions will answer this question.
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