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Spatially resolved transcriptomics reveals the
architecture of the tumor-microenvironment
interface
Miranda V. Hunter 1,4, Reuben Moncada2,4, Joshua M. Weiss1,3, Itai Yanai2,5✉ & Richard M. White 1,5✉

During tumor progression, cancer cells come into contact with various non-tumor cell types,

but it is unclear how tumors adapt to these new environments. Here, we integrate spatially

resolved transcriptomics, single-cell RNA-seq, and single-nucleus RNA-seq to characterize

tumor-microenvironment interactions at the tumor boundary. Using a zebrafish model of

melanoma, we identify a distinct “interface” cell state where the tumor contacts neighboring

tissues. This interface is composed of specialized tumor and microenvironment cells that

upregulate a common set of cilia genes, and cilia proteins are enriched only where the tumor

contacts the microenvironment. Cilia gene expression is regulated by ETS-family transcrip-

tion factors, which normally act to suppress cilia genes outside of the interface. A cilia-

enriched interface is conserved in human patient samples, suggesting it is a conserved

feature of human melanoma. Our results demonstrate the power of spatially resolved tran-

scriptomics in uncovering mechanisms that allow tumors to adapt to new environments.
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As tumors grow and invade into new tissues, they come
into contact with various new cell types, but it is poorly
understood how these cell–cell interactions allow for

successful invasion and tumor progression. In melanoma, these
interactions can occur between the tumor cells and a diverse
number of cell types. In many cases, the tumor cells interact
directly with stromal cells such as fibroblasts1 or immune cells2.
However, increasing evidence suggests that the repertoire of such
interactions is considerably broader, and can include cell types
including adipocytes3 and keratinocytes4. Many of these cell
interactions can influence tumor cell behavior1–4.

There are likely at least two levels of cell–cell interactions that
are relevant to cancer: “microenvironmental” interactions in
which the tumor cell directly interacts with adjacent non-tumor
cells, and “macroenvironmental” interactions, in which the tumor
cell indirectly interacts with more distant cells. The micro-
environment is increasingly appreciated to play a major role in
cancer phenotypes, including proliferation, invasion, metastasis,
and drug resistance5,6. However, it is debatable whether every cell
type that a tumor interacts with is truly part of the micro-
environment, since the mechanisms by which these cells influence
tumor cell behavior are often unclear. This uncertainty is com-
pounded by the fact that tumor cells themselves are highly
heterogeneous7, making it challenging to determine which subset
of tumor cells are directly interacting with surrounding non-
tumor cells. The macroenvironment may also influence tumor
progression, since the tumor cells can interact with other cells in
the body at a distance, as recently demonstrated for metabolic
coupling between melanoma cells and distant cells in the liver8.

A better understanding of the nature of these cell–cell inter-
actions requires high resolution imaging and analyses of genes
expressed by tumor cells as they interact with different cell types.
While bulk and single-cell RNA-sequencing approaches have
improved our ability to understand cell–cell interactions, these
techniques require dissociation of the tissue of interest, resulting
in a loss of spatial information. Thus, a comprehensive under-
standing of how tumor and surrounding cells interact in situ is
lacking, at least in part due to the limitations of current RNA-
sequencing technologies.

Spatially resolved transcriptomics (SRT) has recently emerged
as a way to address the limitations of both bulk and single-cell
RNA-seq by preserving tissue architecture, while still profiling the
genes expressed by the cell or tissue at high resolution. Current
SRT techniques typically either use spatially-barcoded probes to
capture and sequence mRNA from tissue sections9,10, or multiple
rounds of in situ hybridization, sequencing, and imaging to
computationally reconstruct the transcriptional landscape of the
cell11,12. In situ hybridization-based SRT techniques allow the
user to profile the transcriptional landscape of the cell at cellular
or even subcellular resolution, whereas the resolution of techni-
ques that capture and sequence mRNA from sections is limited by
the diameter of each capture spot on the SRT array (for example,
55 µm with the current 10× Genomics Visium SRT technology,
with a 45 µm gap between spots). However, to overcome the
limited spatial resolution of SRT arrays, a number of computa-
tional methods to infer single cell resolved gene expression pro-
files have recently been developed, including SPOTlight13 and
Stereoscope14. We recently developed a technique to integrate
capture probe-based SRT and scRNA-seq to map the tran-
scriptomic and cellular architecture of tumors15. This provides a
unique opportunity to understand the mechanisms that are
driving the cell–cell interactions that occur between the tumor
and its immediately adjacent microenvironment.

Here, we integrate SRT, single-cell RNA-seq, and single-nucleus
RNA-seq to characterize the transcriptional landscape of melanoma
cells as they interact with the immediately adjacent

microenvironment. Using a zebrafish model of melanoma, we con-
struct a spatially-resolved gene expression atlas of transcriptomic
heterogeneity within tumors and surrounding tissues. We discover a
histologically invisible but transcriptionally distinct “interface” region
where tumors contact neighboring tissues, composed of cells in
specialized tumor-like and microenvironment-like states. We
uncover enrichment of cilia genes and proteins at the tumor
boundary, and find that ETS-family transcription factors regulate
cilia gene expression specifically at the interface. We further
demonstrate that this distinct “interface” transcriptional state may be
conserved in human melanoma, suggesting a conserved mechanism
that presents opportunities for halting melanoma invasion and
progression.

Results
Spatially resolved transcriptomics reveals the architecture of
the melanoma–microenvironment interface. To investigate the
transcriptional landscape of tumors and neighboring tissues
in situ with spatial resolution, we processed frozen sections from
three adult zebrafish with large, invasive BRAFV600E-driven
melanomas16 for capture probe-based spatially resolved tran-
scriptomics (SRT), using the 10× Genomics Visium platform
(Fig. 1a–c). Although the size of the tissue section used is limited
by the size of the Visium array (6.5 mm2), zebrafish allow us the
unique advantage that a transverse section through an adult fish
(~5 mm diameter) fits in its entirety on the array (Fig. 1c).
Zebrafish are thus one of the only vertebrate animals that can be
used to study both the tumor and all surrounding tissues in their
intact forms, without any need for dissection. Our SRT dataset
contained transcriptomes for 7281 barcoded array spots across
three samples, encompassing 17,317 unique genes (Fig. 1d, e and
Supplementary Fig. 1). We detected approximately 1000–15,000
transcripts (unique molecular identifiers, UMIs) and 500–3000
unique genes per spot, with somewhat fewer UMIs/genes detected
in sample C (Supplementary Fig. 1). Visium array spots within
the tumor region typically contained more UMIs than spots in
the rest of the tissue (Supplementary Fig. 1d, f), likely at least in
part due to higher density of cells within the tumor region
(Supplementary Fig. 1g).

We first combined our expression matrices using an anchoring
framework to identify common cell states across different
datasets17 (Supplementary Fig. 2a). After community-detection
based clustering on our integrated dataset, we inferred the
identities of 13 distinct clusters. When we projected the cluster
assignments back onto the tissue coordinates (Fig. 1d) and onto
the UMAP embeddings for each spot (Fig. 1e), we found complex
spatial patterns in the data that strongly recapitulated tissue
histology. Our Visium data captured multiple microenvironment
cell types (muscle, liver, brain, skin, pancreas, heart, intestine, and
gills) in addition to the BRAFV600E-driven melanomas (Fig. 1d–f).
We validated our cluster assignments by plotting onto the Visium
array the expression of marker genes that should be expressed
exclusively in the tumor (BRAFV600E), muscle (pvalb4), heart
(kcn6a), and nervous system (mbpa), and observed that
expression of these marker genes was restricted to the expected
regions of the tissue (Fig. 1f).

To further characterize the transcriptional architecture of the
microenvironment, we asked whether we could leverage publicly
available, annotated gene sets to uncover spatially-organized
patterns of biological activity across the tissue. To this end, we
computed the mean expression of genes associated with all
zebrafish Gene Ontology (GO) terms, and measured the distance
between spots that highly express these genes, reasoning that
shorter distances between spots may represent underlying spatial
organization of these biological pathways across the tissue. We
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then compared this distribution to that of a null distribution of
distances between random spots, allowing us to identify GO
terms with spatially coherent, non-random expression patterns.
Applying this to the tumor region of our samples, we identified
several GO terms displaying interesting spatial expression
patterns related to tissue structure (GO: extracellular structure

organization; p= 2.3 × 10−8) and the immune system (GO:
macrophage migration, p= 7.1 × 10−4), among others (Fig. 1g
and Supplementary Fig. 3a and Supplementary Movie 1). We
performed the same analysis on the microenvironment, and
found several notable spatially-organized pathways that function
in tumor growth and invasion (GO: lipid import into cell,
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Fig. 1 Spatially resolved transcriptomics reveals the transcriptional architecture of melanoma and its surrounding microenvironment. a Schematic
showing the spatially resolved transcriptomics (SRT) experiment workflow. b Images of zebrafish with BRAFV600E-driven melanomas used for SRT. The
region where the fish were sectioned is highlighted. Scale bar, 2 mm. c H&E staining of cryosections used for SRT (n= 3 sections). d Visium array spots
colored by clustering assignments of the integrated dataset (see “Methods” section). e UMAP embedding of SRT spots from all three samples colored by
cluster assignments of the integrated dataset (see “Methods” section). f The expression of select marker genes (BRAFV600E, tumor; pvalb4, muscle; kcn6a,
heart; mbpa, nervous system) from the SRT data projected over tissue space (left), with images of the corresponding histology from the indicated region of
the SRT array (right). Scale bar, 500 µm. g, h Average, standardized expression of annotated genes for gene ontology (GO) terms displaying spatially-
coherent expression patterns in the tumor (g) and microenvironment (h) regions in each sample. p-values represent the comparison between the distance
between spots expressing that GO term genes and a null-distribution of distances between random spots (Wilcoxon’s Rank Sum test, two-sided).
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p= 1.2 × 10−96; GO: IMP biosynthetic process, p= 2.0 × 10−40)
(Fig. 1h and Supplementary Fig. 3b and Supplementary Movie 2).
Together, these data validate our spatially resolved transcrip-
tomics workflow and demonstrate the existence of discrete tumor
and microenvironment regions within our SRT dataset.

The tumor–microenvironment interface is transcriptionally
distinct from the surrounding tissues. We noticed in all of the
samples a transcriptionally distinct cluster of array spots that
localized to the border between the tumor and the adjacent
microenvironment (Fig. 1c–e), in which specific biological path-
ways were upregulated (Fig. 1h). This “interface” cluster was
present in all three samples (Supplementary Fig. 2). Interestingly,
the tissue in this interface region appeared largely indistinguish-
able from the surrounding microenvironment (muscle) (Fig. 2a),
despite it being transcriptionally distinct (Fig. 1e). We thus
hypothesized that this interface cluster represented the region in
which the tumor was contacting neighboring tissues. To get a
better sense of the transcriptional profile of the interface cluster,
we computed the correlation between the averaged tran-
scriptomes of each SRT cluster across all three samples. We found
that the transcriptional profile of the interface cluster was more
correlated with the tumor (R= 0.33) than with muscle (R= 0.06)
(Fig. 2b), despite the fact that the tissue in this region histologi-
cally resembles muscle with few tumor cells visible (Fig. 2a).

We next sought to identify genes that may differentiate the
interface from muscle (to which it is most similar histologically)
and from tumor (to which it is most similar transcriptionally)
(see “Methods” section). We found a number of genes that were
upregulated specifically in the interface cluster relative to both
tumor and muscle, including, interestingly, a number of
uncharacterized genes, genes related to increased transcrip-
tional/translational activity (atf3, eif3ea, and ribosomal genes),
and genes related to the microtubule cytoskeleton (tuba1a and
tuba1c) (Fig. 2c and Supplementary Data). The upregulation of
most of these genes was subtle (though statistically significant;
Supplementary Data), which may be due to the somewhat lower
cellular resolution of the Visium technology and number of UMIs
detected per spot (note: to address this, we further compare the
magnitude of changes for these genes in our single cell datasets
below). To identify gene expression programs that are enriched
specifically at the interface and provide further evidence for the
interface as a transcriptionally distinct tissue region, we
performed non-negative matrix factorization (NMF) on all
microenvironment spots (including both interface and muscle
clusters) across all samples (see “Methods” section). When we
projected the NMF factor scores onto each spot, we found that
some factors were enriched across all three samples (e.g., factor 2,
Supplementary Fig. 4), whereas some were only enriched in one
or two of the samples (e.g., factors 4, 11, Supplementary Fig. 4).
These differences may be due to different tissue types present
across the three samples. Notably, we also found that multiple
factors were specifically enriched at the interface between the
tumor and the microenvironment (factors 7 and 8; Fig. 2d and
Supplementary Fig. 4). To investigate the biology underlying the
genes contributing to each factor, we looked for significantly
enriched GO terms among the top 150 genes contributing to each
factor (Fig. 2e and Supplementary Fig. 4). This revealed several
factors enriched in muscle-specific genes, as expected (Supple-
mentary Fig. 4), and that the interface factors were enriched in
genes functioning in biological processes including membrane-
bound organelles, protein targeting to organelles and the
membrane, and DNA replication (Fig. 2e and Supplementary
Fig. 4). This result suggests a high degree of biological activity
within the interface region, with a potential role for membrane-

bound organelles in signaling within this region (the role of such
organelles is discussed below). Together, these data uncover a
unique “interface” region bordering the tumor, which histologi-
cally resembles the microenvironment, transcriptionally resem-
bles tumor, but expresses distinct gene modules that may
contribute to tumor–microenvironment cell interactions.

The tumor–microenvironment interface is composed of spe-
cialized cell states. Our SRT results so far detail a tran-
scriptionally distinct “interface” region where tumors contact the
microenvironment. However, spatially resolved transcriptomics
data is limited in resolution by the diameter of each spot on the
Visium array (55 µm with current technology). Thus, each array
spot probably captures transcripts from multiple cells. As the
interface region is, by nature, likely a mixture of tumor and
microenvironment cells, we performed single-cell RNA-seq
(scRNA-seq) on tumor and non-tumor cells from three adult
zebrafish with large melanomas (Fig. 3a) in order to better define
the cell states present in the interface. We detected approximately
10,000–75,000 transcripts and 1000–5000 unique genes per cell
(Supplementary Fig. 5a–c). As expected, our scRNA-seq data
contained tumor cells as well as various non-tumor cell types,
including erythrocytes, keratinocytes, and several types of
immune cells (Fig. 3b). We did not identify a muscle cell cluster
in our scRNA-seq dataset, likely because adult skeletal muscle is
composed of multinucleated muscle fibers that cannot be isolated
and encapsulated for droplet-based scRNA-seq.

Consistent with our SRT results, clustering of our scRNA-seq
data revealed a distinct “interface” cell cluster (Fig. 3b–d), which
we identified based on the fact that cells in this cluster
significantly upregulated the same genes that were upregulated
in our SRT interface cluster (p= 1.83 × 10−26; Fig. 3c). The
distinct clustering of the interface population was not due to the
presence of a significant number of cell doublets within this
cluster (Supplementary Fig. 5g). Strikingly, UMAP and principal
component analysis of the interface cluster revealed two distinct
cell populations (Fig. 3d–f), one expressing tumor markers such
as BRAFV600E and the other expressing muscle genes such as
ckba, with other genes such as the centromere gene stra13
upregulated in both populations (Fig. 3e, f). This result suggests
that the transcriptionally distinct “interface” region we identified
in our SRT data is actually composed of at least two similar, but
distinct cell states: a “tumor-like interface” and a “muscle-like
interface”. The interface region may not be limited to only tumor-
like and muscle-like cell states; however, since zebrafish
melanomas frequently invade into muscle, this likely contributes
to the presence of muscle-like interface cells in our data.

Based on this, we separated the interface cluster into two
subclusters, and confirmed that the two subclusters express anti-
correlated levels of tumor markers such as BRAFV600E, mitfa, and
pmela, and muscle markers such as ckba, neb, and ak1 (Fig. 3f). A
common set of genes, including many genes related to the
microtubule cytoskeleton and cell proliferation such as stra13,
stmn1a, plk1, and haus4, were upregulated in both subclusters
(Fig. 3d–f). Both the tumor-like and muscle-like interface cell
states were present in both scRNA-seq samples (Supplementary
Fig. 5c–f). The presence of putative “muscle” cells in the interface
is particularly notable, in light of the fact that adult skeletal
muscle is composed of multinucleated muscle fibers that we were
unable to isolate in our scRNA-seq workflow due to their size,
evidenced by the lack of a muscle cell cluster in our dataset
(Fig. 3b). This could suggest the presence of mono-nucleated
muscle cells, or a hybrid tumor-muscle cell state at the invasive
front. Previous work suggests that tumor and immune cells can
fuse to create a hybrid cell state that contributes to tumor
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heterogeneity and metastasis18, although tumor-muscle cell
fusion has not yet been reported. Together, these data suggest
that the interface region is composed of specialized tumor-like
and microenvironment-like cell states.

Interface cell states are distinct from neighboring tissues. Our
results so far indicate that we have uncovered an “interface” cell
state localized to where the tumor contacts neighboring tissues.
However, our scRNA-seq dataset does not contain a muscle cell
cluster due to the fact that muscle fibers cannot be encapsulated
for scRNA-seq. This makes it difficult to assess whether the
specialized muscle cell state found in the interface is truly distinct
from muscle that is not in proximity to the tumor. Thus, to
effectively compare the interface cell state(s) to other micro-
environment cell types/states that cannot be captured with
scRNA-seq, we validated our scRNA-seq results by performing
single-nucleus RNA-seq (snRNA-seq) on nuclei extracted from
three adult zebrafish, all with large transgenic melanomas.
Although snRNA-seq captures only nascent transcripts in the
nucleus, which contains only 10–20% of the cell’s mRNA19,
scRNA-seq, and snRNA-seq typically recover the same cell states/
types, albeit sometimes in different proportions20. After quality
control and filtering, our dataset encompassed transcriptomes for
10,527 individual nuclei (Fig. 4a). We detected an average of 3800
UMIs and 1350 unique genes per nucleus (Supplementary Fig. 6a,
b). Overall gene expression was lower in our snRNA-seq dataset
compared to our scRNA-seq dataset, likely due to the relatively
low number of transcripts found in the nucleus in general
(Supplementary Fig. 6c). Dimensionality reduction and clustering
revealed 12 distinct clusters encompassing tumor and non-tumor
cell types, including muscle, keratinocytes, liver, and various
immune cells (Fig. 4a). We also identified an “interface” cluster in
our snRNA-seq dataset (Fig. 4a). We identified the interface
cluster based on the fact that nuclei in this cluster strongly
upregulated genes that were strongly upregulated in the interface
cluster in our scRNA-seq dataset, including stmn1a (Figs. 3d and
4b), stra13 (Figs. 3e and 4b), plk1 (Figs. 3e and 4b), and haus4
(Figs. 3f and 4b), and that the interface cluster from our snRNA-
seq dataset clustered with the interface cluster from our scRNA-
seq dataset when the two datasets were integrated17,21 (Fig. 4c).

To interrogate the types of nuclei present in the interface
cluster in our snRNA-seq dataset, we performed dimensionality
reduction and clustering on the nuclei from the interface cluster,
which identified five discrete subclusters (Fig. 4d). Similar to our
scRNA-seq dataset, within the interface cluster in our snRNA-seq
dataset we identified subclusters of nuclei that upregulated
tumor-specific or muscle-specific genes (Fig. 4d, e). The interface
cluster in our snRNA-seq dataset also contained other subclusters
that did not express tumor-specific or muscle-specific genes.
Nuclei in these subclusters expressed genes related to other cell
types in our snRNA-seq dataset, including immune cells (ctss2.1),
liver (fabp10a), and digestive system (ela2) (Fig. 4d, e). This is in
line with recent work showing that melanomas can reprogram
microenvironmental cells such as liver cells even when not in
physical contact8. However, similar to our scRNA-seq and SRT
datasets, there were many genes that were specifically upregulated
across the interface subclusters that were not upregulated in any
other cell type in the snRNA-seq dataset, further suggesting that
the “interface” cell state is a distinct transcriptional entity
(Fig. 4f).

Although our snRNA-seq analysis workflow includes multiple
processing steps to exclude doublets, including filtering steps
based on the number of UMIs per nucleus and removing possible
doublets identified by DoubletFinder22 (see “Methods” section),
to further interrogate whether these tumor-like and

microenvironment-like interface nuclei could be attributed to
doublets with the corresponding cell type, we quantified the
number of UMIs/genes expressed by interface cells/nuclei relative
to other cells/nuclei in the dataset. The results were inconclusive:
in some cases we quantified significantly more UMIs/genes in
interface cells, in some cases we quantified significantly less
UMIs/genes in interface cells, but in other cases there was no
significant difference (Supplementary Figs. 5b–e and 6b). Thus, to
further investigate the presence of doublets in the interface, we
calculated the degree of overlap between genes expressed by the
tumor/microenvironment nuclei and genes expressed by the
corresponding interface nuclei (Supplementary Fig. 7). Although
the tumor-like and microenvironment-like interface clusters
expressed some tumor-specific and microenvironment-specific
genes, as expected (Fig. 4e and Supplementary Figs. 7–8), in most
cases there was not a significant degree of overlap between all
genes upregulated between both cell states (Supplementary
Figs. 7–8), suggesting that these interface cell states are not
caused by doublets. We did observe some overlap between all
genes expressed by NK cells and macrophages relative to the
immune-like interface cells, suggesting that some doublets could
be present within the immune-like interface cluster. Notably,
tumor-immune cell fusion has been reported in melanoma18.
Determining whether these potential doublets result from
technical or biological reasons will be an important area of
future study.

Since our snRNA-seq dataset contained more cells/nuclei and a
greater breadth of cell types than our scRNA-seq dataset, we
integrated our snRNA-seq data with our Visium SRT data using
our recently developed multimodal intersection analysis (MIA)
method15 to confirm the presence of tumor-like and
microenvironment-like cell states within the interface region
(see “Methods” section; Supplementary Fig. 9). Notably, our MIA
results suggested that the interface regions in our SRT dataset
were enriched in cell types including muscle, macrophages, and
tumor, in line with our scRNA-seq and snRNA-seq results
(Supplementary Fig. 9). The cluster that was most significantly
enriched in the interface region was the muscle-like interface cell
state (Supplementary Fig. 9), in accordance with the histology of
our SRT samples that showed that the interface region closely
resembles the surrounding muscle (Fig. 2a). Together, these
results suggest that the interface is composed of tumor and
microenvironment cells which upregulate a common gene
program that may contribute to tumor–microenvironment cell
interactions at the tumor boundary.

As our SRT results suggest that the interface cell state may be
modulated by direct cell–cell interactions between tumor and
microenvironment cells, we used NicheNet23 to computationally
infer interactions between interface cells and the rest of the cells in
our snRNA-seq dataset by identifying potential ligands expressed by
interface cells and receptors and target genes in the other cell types
(Supplementary Fig. 10a–c). As the NicheNet model is currently
designed to work with human genes, we performed this analysis with
the human orthologs of the zebrafish genes in our dataset (see
“Methods” section). The top ligand predicted to be active in interface
nuclei was HMGB2 (Supplementary Fig. 10a), of which there are two
zebrafish orthologs: hmgb2a and hmgb2b. These genes were highly
expressed in the interface clusters across our snRNA-seq, scRNA-seq,
and SRT datasets (Supplementary Fig. 10d). Interestingly, HMGB2
expression has been reported to be correlated with tumor
aggressiveness24,25. The predicted receptors for HMGB2 were AR,
ITPR1, and CDH1 (fish orthologs: ar, itpr1a, itpr1b, cdh1)
(Supplementary Fig. 10b). Of these potential receptors, cdh1 was
the most highly expressed in general across the three datasets
(Supplementary Fig. 10e). cdh1 was expressed in various micro-
environment cell types, including intestinal cells, keratinocytes, and
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also in some interface cell states (Supplementary Fig. 10e). cdh1 (E-
cadherin) is a core component of adherens junctions along with α-
catenin and β-catenin26. Interestingly, HMGB2 and β-catenin have
been reported to cooperate to promote melanoma progression27.
These data demonstrate one of likely many signaling interactions that
occur between interface cells and other cells adjacent to the tumor.
Taken together, our results suggest that we have identified a putative
“interface” cell state in each of our SRT, scRNA-seq, and snRNA-seq
datasets, composed of tumor and microenvironment cells which
upregulate a common gene program that may contribute to
tumor–microenvironment cell interactions at the tumor boundary.

Cilia genes and pathways are upregulated at the interface. To
gain further insight into the biological processes underlying the
specialized “interface” region identified in our SRT and scRNA-
seq data, we performed pre-ranked gene set enrichment analysis
(GSEA), using differentially expressed genes in the scRNA-seq
interface cluster, to identify conserved pathways that may be
active in interface cells. We noticed that many cilia-related
pathways were enriched in the combined interface cluster
(Fig. 5a). This enrichment of cilia-related pathways occurred in
both the muscle-like and tumor-like interface cell states (Fig. 5b).
Cilia-related GO terms were also enriched in the SRT interface
(Fig. 5c), as were GO terms related to membrane-bound orga-
nelles in the genes contributing to NMF factor 7, which localized
to the interface (Fig. 2d, e). When we calculated a list of common
genes upregulated across the SRT, scRNA-seq, and snRNA-seq
interface clusters, several cilia genes were present on this list
including ran, tubb4b, stmn1a, and tuba8l4 (Supplementary
Fig. 11 and Supplementary Table 1). Several recent studies have
implicated cilia in an important role in melanoma initiation and
progression, although the mechanism by which cilia mediate
melanoma progression is unclear28–32. To further investigate a
role for cilia at the tumor–microenvironment interface, we scored
each cell from our scRNA-seq dataset for relative enrichment of
cilia genes, using the “gold standard” SYSCILIA gene list33, and
quantified a significant upregulation of cilia genes in both inter-
face cell states in our scRNA-seq data, with a particularly strong
upregulation in the muscle-like interface cluster (Fig. 5d).
Although cilia genes generally were expressed at relatively low
levels in our snRNA-seq dataset, in line with the overall lower
expression of most genes in our snRNA-seq data relative to our
scRNA-seq data (Supplementary Fig. 6c, d), the most highly
upregulated cilia genes in the scRNA-seq interface cluster were
also upregulated across the tumor-like and muscle-like cell states
in the snRNA-seq interface cluster relative to the tumor and
muscle clusters (Fig. 5e). Furthermore, we quantified a clear
enrichment of cilia genes such as ran, tubb4b, tuba4l, and gmnn
specifically in tumor-like and muscle-like interface cells in our
snRNA-seq dataset, and, similar to our scRNA-seq results, all
four genes were upregulated more highly in the muscle-like
interface cluster than in any of the other interface clusters
(Fig. 5f). Together, these results suggest a potential role for cilia at
the tumor–microenvironment interface.

The tumor–microenvironment interface is ciliated. Interest-
ingly, previous studies have shown that human and mouse mel-
anomas are not ciliated, although they express cilia genes28–32. To
reconcile these models, we stained sections through adult zebra-
fish with invasive BRAFV600E-driven melanomas for acetylated
tubulin, a common cilia marker30. Strikingly, we found that
although the bulk of the tumor was not ciliated as expected
(Fig. 5g, center and Supplementary Fig. 12), there was a specific
enrichment of cilia at the invasive front of the tumor, where it
contacts the muscle. We observed long, acetylated tubulin-

positive projections that were often found in the extracellular
space spanning tumor and adjacent muscle cells (Fig. 5g, h left
and Supplementary Fig. 12). These projections were not found in
the bulk of the tumor (Fig. 5g, center and Supplementary Fig. 12)
or in muscle that was not adjacent to the tumor (Fig. 5g, right and
Supplementary Fig. 12). These structures did not resemble typical
cilia, which we occasionally see on cultured zebrafish melanoma
cells expressing a transgenic cilia reporter (Supplementary
Fig. 13), as the acetylated tubulin-positive structures we see
in vivo are longer and structurally distinct from typical cilia.
Determining the nature and function of these structures will be
an exciting area of future study. We could not conclusively
determine whether these cilia originated in tumor cells, muscle
cells or both cell types, another interesting topic that awaits
further study. These data suggest that although the bulk of pri-
mary melanomas is not ciliated, cilia are enriched at the
tumor–microenvironment interface, where they may facilitate
growth of the tumor into surrounding tissues.

ETS-family transcription factors regulate cilia gene expression
at the interface. To identify potential regulators of gene expres-
sion within the interface, we performed HOMER motif analysis34

to identify conserved transcription factor (TF) binding motifs
enriched in genes differentially expressed in the interface. When
we performed de novo motif enrichment analysis on genes dif-
ferentially expressed in the SRT interface compared to normal
muscle, the top-ranked motif was the highly conserved ETS
DNA-binding domain, containing a core GGAA/T sequence
(p= 1 × 10−22; Fig. 6a). The ETS domain was also the top-ranked
motif enriched in genes differentially expressed in the SRT
interface compared to all other SRT spots (p= 1 × 10−15), and
was the second-ranked motif enriched in genes differentially
expressed in the interface cluster identified in our scRNA-seq
dataset (p= 1 × 10−13; Fig. 6a) and in genes differentially
expressed in our snRNA-seq interface cluster (p= 1 × 10−13;
Fig. 6a). Furthermore, ETS motifs were frequently enriched in
both the tumor-like and muscle-like interface subclusters in our
scRNA-seq dataset, along with, notably, motifs for RFX-family
transcription factors which regulate ciliogenesis35 (Fig. 6b).
Although ETS-family transcription factors have not been widely
studied in melanoma, they have been reported to function in
melanoma invasion36 and phenotype switching37, and are aber-
rantly upregulated in many types of solid tumors38. Interestingly,
zebrafish ETS-family transcription factors were downregulated in
the interface in each of our scRNA-seq, snRNA-seq, and SRT
datasets (Fig. 6c–e).

To identify potential biological processes that could be regulated
by ETS transcription factors at the tumor–microenvironment
interface, we investigated putative target genes containing an ETS
motif in their promoter. We queried the zebrafish genome for genes
with an ETS motif within 500 bp of the transcription start site,
filtered these genes to include only those differentially expressed in
the tissue/cell state of interest, and performed GSEA on the resulting
target gene lists. Surprisingly, within the ETS-target genes in both the
SRT and scRNA-seq interface clusters, we again found an enrichment
of pathways related to cilia (Fig. 6g). As ETS TFs are downregulated
specifically in the interface (Fig. 6d–f), this suggests that ETS-family
TFs may act as a transcriptional repressor of cilia genes. ETS TFs can
act as transcriptional activators and/or repressors depending on gene
and context (Supplementary Table 2). In support of this model, when
we scored each cell in the interface for relative expression of both ETS
genes and ETS-target genes, the two were strongly anti-correlated
(R=−0.625, p= 9.02 × 10−27, Fig. 6h). Collectively, these data
suggest that ETS-family transcription factors act as transcriptional
repressors of cilia genes in cells at the interface between tumors and
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the microenvironment, where upregulation of cilia may contribute to
tumor–microenvironment cell interactions.

An interface signature may be present in human melanoma.
Finally, we investigated whether “interface”-like cells are also
found in human melanoma. We chose to take advantage of a

recently published scRNA-seq dataset of 29,247 cells isolated
from 43 human patients with metastatic melanoma39, as this
dataset contains significantly more cells than other commonly
used human metastatic melanoma scRNA-seq datasets40. This
new dataset contains mostly tumor, myeloid, and immune cells39

(Supplementary Fig. 14a). We scored each cell for expression of
the human orthologs of the genes upregulated by more than 1.5-
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Fig. 5 Cilia genes and proteins are enriched at the tumor–microenvironment interface. a Waterfall plot showing the top and bottom 250 GO cellular
component terms by normalized enrichment score (NES) in the scRNA-seq interface cluster, with cilia GO terms labeled in red. b Cilia-related GO term
enrichment scores within the tumor-like and muscle-like interface cell states from the scRNA-seq dataset. c Cilia-related GO term enrichment scores for
the scRNA-seq and SRT interface clusters. d Relative expression of fish SYSCILIA genes in the scRNA-seq interface cluster. e Relative expression of the top
25 SYSCILIA genes upregulated in the scRNA-seq interface cluster across the snRNA-seq clusters. d, e p-values are noted (Wilcoxon rank sum test, two-
sided, with Bonferroni’s correction). f Normalized expression of selected cilia genes across the snRNA-seq interface clusters. g Immunofluorescent images
of sections through adult zebrafish with invasive melanomas, stained for GFP (tumor cells), acetylated tubulin (cilia), and Hoescht (nuclei), showing the
tumor-muscle interface (left), center of the tumor (middle), and distant muscle (right). Arrows denote cilia at the interface. Scale bars, 100 µm. Images are
representative from at least three independent experiments. h Inset of region highlighted in g (left). Scale bars, 25 µm.
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fold in our scRNA-seq interface cluster (Supplementary Fig. 14b),
and classified cells that upregulated these genes as an “interface”
population (Supplementary Fig. 14c, d). Similar to our snRNA-
seq results, “interface” cells were found across all the major cell
types in the human melanoma dataset (Supplementary
Fig. 14b–d, g). For the purposes of statistical power, we focused
on interface-like cells from the three largest clusters (tumor,
myeloid cells, and T/NK cells). Human cells in an interface-like
cell state upregulated many of the same genes upregulated in the
interface in our zebrafish datasets, including PLK1 (Figs. 3e and
4b and Supplementary Fig. 14e, g), HMGB2 (Supplementary
Figs. 10, and 14e, g), TUBB4B (Fig. 5f and Supplementary
Fig. 14e, g) and TPX2 (Fig. 3e and Supplementary Fig. 14e, g).
Cilia genes were significantly upregulated across all of the inter-
face cell states, relative to their corresponding tumor/TME cell
types (Supplementary Fig. 14f). This suggests that a tran-
scriptionally distinct “interface” gene signature may be found in
human melanoma. Identifying which human melanoma subtypes
(e.g., BRAF, NRAS, c-KIT, etc) in which an interface cell state is
found awaits larger datasets of freshly isolated tumors subjected
to scRNA-seq and/or SRT. Follow-up analyses determining the
roles of specific types of immune and myeloid cells in the inter-
face would also be an interesting area of future study. Together,
our results suggest that cell-cell interactions at the
tumor–microenvironment interface are accomplished by a subset
of specialized tumor and muscle cells, which together upregulate
a conserved common gene program characterized by upregula-
tion of cilia genes and downregulation of ETS transcription
factors.

Discussion
Here, we combined spatially resolved and single-cell and single-
nucleus transcriptomics approaches to characterize how tumor
cells interact with new tissues in their surrounding environment,
revealing key regulators of how this interface is formed. We
analyzed a total of 49,944 transcriptomes encompassing expres-
sion of 20,589 unique genes from 7281 spatial array spots, 2889
zebrafish cells, 10,527 zebrafish nuclei, and 29,247 human cells.
Our results identified a series of spatially-patterned gene modules,
some of which specifically localize to the interface between
tumors and surrounding tissue. We showed that the interface is
composed of specialized tumor and muscle cell states, which are
distinguished by upregulation of cilia genes and proteins. We
further show that ETS transcription factors regulate expression of
cilia genes at the interface, and that a distinct “interface” cell
population is conserved in human melanoma patient samples.
Together, our results reveal an “interface” transcriptional state
that may mediate melanoma growth into surrounding tissues.

Our results identify a role for ETS-family transcription factors
in mediating cilia gene expression at the interface. In recent years
cilia have been implicated in multiple facets of melanoma biology,
but their role in melanoma progression is still unclear. The bulk
of melanomas are not ciliated30,31 (Fig. 5g, h and Supplementary
Fig. 12), and in fact, the “ciliation index” is gaining prominence as
a diagnostic tool to distinguish melanomas from benign nevi28,32.
Furthermore, cilia disassembly has recently been implicated in
melanoma metastasis29, in which deconstruction of cilia, regu-
lated by EZH2, drives metastasis. The paradox is that while most
melanoma cells are not ciliated, many melanomas still express
cilia genes (Fig. 5d, e). Our data adds a layer onto this complexity,
in that we find that not only are cilia genes upregulated specifi-
cally at the interface between tumor and microenvironment, but
more importantly that only cells at that interface express high
levels of cilia proteins. This raises the still not fully answered
question of what role cilia play in various steps in melanoma

progression. In primary melanoma growth, it is clear that most
cells are unciliated, and that EZH2 acts to suppress those genes.
Loss of cilia via EZH2 increases metastasis in these models via
enhanced Wnt/β-catenin signaling29. Our finding that most
melanoma cells do not have cilia is consistent with this finding,
but yet we find a specific subset of cells at the interface that
upregulate cilia genes and protein, and these cells appear to be
present in human melanoma as well.

How to reconcile these seemingly conflicting pieces of data?
Our data would suggest that intact cilia may be most important
when they are first encountering new, heterotypic cell types in the
neighboring environment. We can envision several different
possibilities to why cilia are upregulated specifically at this
interface. First, this upregulation of cilia genes and proteins at the
interface may be transient, induced by heterotypic cell–cell
interactions between tumor and muscle. Primary cilia are critical
signaling hubs for the cell, and regulate signaling pathways such
as Hedgehog and TGF-β/BMP41, all of which are important in
cancer progression42 and cell–cell communication. Our NicheNet
analysis (Supplementary Fig. 10) suggests that there may be
distinct ligand/receptor pairs, including HMG family proteins,
that may mediate such signaling. A second possibility is that the
primary cilia are acting as mechanotransducers, and play a role in
directional migration of the cells as they invade into new tissues.
For example, seminal work on primary cilia demonstrated that
cilia can orient in the direction of migration in 3T3 cells43, which
has been also seen in the context of wound healing44,45. Finally, it
is possible that the emergence of cilia at the interface is actually
acting as a barrier to systemic metastatic dissemination, and that
heterotypic interactions between melanoma and muscle might be
restraining progression. It is notable that our zebrafish melano-
mas metastasize at a low rate, and in fact skeletal muscle (where
we most easily see the interface) is a rare site of metastasis in
humans, consistent with this possibility. A major endeavor for
future studies will be to delineate how cilia act at each step of
tumorigenesis, what signaling nodes are most critical, and whe-
ther they act as a barrier or enabler of metastasis. Another open
and related question is which microenvironment cell types (other
than muscle) trigger ciliation of the tumor–microenvironment
interface. Our snRNA-seq data (Fig. 4) and analyses of human
patient data (Supplementary Fig. 14) suggest that the interface is
not solely restricted to tumor and muscle, but that other cell types
may also be reprogrammed to adopt this cell state, such as
immune cells or liver cells. Recent work has suggested that in
melanoma, tumor cells can reprogram microenvironment cells
such as liver cells at a distance8. It is not clear yet whether direct
physical contact between tumor/microenvironment cells is
required to induce an interface-like cell state, or whether longer-
range signaling mechanisms may also be at play, but determining
the nature of these tumor–microenvironment interactions (whe-
ther metabolic or epigenetic) is an exciting area for future
mechanistic study.

Our results uncovered a role for ETS-family transcription
factors in melanoma, as potential transcriptional repressors of
cilia genes. Although most ETS TFs can function as transcrip-
tional activators, at least four ETS TFs are known to have
repressor activity46 (Supplementary Table 2). Despite the fact that
ETS TFs have a well-characterized role in several types of solid
tumors, their role in melanoma has not been studied in depth,
although a recent study found that ETS TFs induce a UV damage
signature that correlates with increased mutational burden in
human melanoma47. ETS TFs broadly function in various facets
of tumorigenesis, including DNA damage, metabolism, self-
renewal, and remodeling of the microenvironment38. However,
most if not all of these situations have been found to be induced
by aberrant upregulation of ETS genes. Conversely, we found a
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role for downregulation of ETS TFs specifically where tumors
contact surrounding tissues. It is still unclear what triggers this
downregulation of ETS genes in such a spatially-restricted region.
Despite their role as transcription factors, ETS proteins also
participate in a wide range of protein–protein interactions, and
their activity is regulated through phosphorylation as a result of
signaling cascades48. MAPK signaling has been reported to reg-
ulate ETS49, and the MAPK pathway is frequently activated in
melanoma50. It is unclear if MAPK or other signaling pathways
display spatially-restricted patterns of activation within tumors
and/or the microenvironment, but the advent of SRT techniques
will help to address these questions.

Although it was not a focus of our study, our SRT dataset also
uncovered spatially-organized transcriptomic heterogeneity
within the tumor itself (Fig. 1f, g). In recent years, the advent of
single-cell transcriptomics approaches has identified a substantial
degree of transcriptomic heterogeneity in most if not all types of
cancer51. Tumor heterogeneity often increases as tumors pro-
gress, and may be a predictor of poor clinical outcomes as it is
believed to be a major contributor to drug resistance52. Investi-
gating the underlying cause and complex clonal relationships
within different tumor cell subtypes has proven to be challenging
for many reasons, one of which being a lack of information
regarding the spatial patterning of this heterogeneity. Our dataset
acts as a proof-of-principle for the use of spatially resolved
transcriptomics in identifying spatially-organized tumor hetero-
geneity, and lays the groundwork for future studies using our
dataset or others to explore the basis of this spatial patterning.

Our study is, to our knowledge, the first spatially-resolved gene
expression atlas of the interface between the tumor and its
environment. Although we uncovered many genes, pathways and
gene modules that are spatially patterned within the tumor and/
or environment, there are likely many more interesting biological
phenomena in our dataset that we have yet to identify. Recently,
deep learning methods have been applied to histopathology
images to uncover spatially-resolved predictions of molecular
alterations, mutations, and prognosis53,54. A logical next step
would be extension of these approaches to integrate deep learning
and pattern recognition algorithms with SRT data, to identify
interesting spatial patterns of gene expression and also predict
transcriptomes based on histopathology. Ultimately, integration
of transcriptomics, histopathology, and deep learning techniques
will allow us to expand the utility of both SRT and histological
datasets and broaden our understanding of cancer cell interac-
tions in vivo.

Methods
Zebrafish husbandry. Zebrafish lines were maintained at 28.5 °C in a dedicated
aquatics facility with a 14 h on/10 h off light cycle. casper55 fish were used for all
experiments. Fish were anesthetized with Tricaine (MS-222) at a stock con-
centration of 4 g/L (pH 7.0). All zebrafish experiments and procedures were carried
out in compliance with institutional protocols for vertebrate animals, and were
approved by the Memorial Sloan Kettering Cancer Center IACUC (protocol #12-
05-008).

Generation of transgenic fish. Transgenic tumor-bearing fish were generated
using the miniCoopR system as previously described56,57. Briefly, casper fish with
the genotype mitfa-BRAFV600E; p53−/−; mitfa−/− were incrossed, and the resulting
1-cell stage embryos were injected with plasmids containing mitfa-MITF and
mitfa-GFP. Fish were raised to adulthood (4–6 months) and screened for the
presence of pigmented, GFP-positive tumors.

Generation and validation of ZMEL-cilia cell line. The mouse ARL13B coding
sequence was PCR amplified (removing the stop codon) from the plasmid pENTR-
Arl13b2 (Addgene #40871) and subcloned into a middle entry vector containing a
C-terminus EGFP tag. Primer sequences can be found in Supplementary Table 3.
LR cloning was subsequently performed using 5′ entry ubi promoter, middle entry
ARL13B-EGFP, and 3′ entry SV40 fragment. To generate the cell line, 8 million
ZMEL1 cells58 were electroporated with 15 µg of the ubi-ARL13B-EGFP plasmid

using the Neon Transfection System (Thermo Fisher Scientific). Following elec-
troporation, cells were allowed to recover for 72 h, and then GFP+ cells were
isolated using a BD FACSAria III Cell Sorter (BD Biosciences). To validate loca-
lization of ARL13B-GFP to the cilium and acetylated tubulin staining, cells were
grown on chamber slides before fixation with 4% PFA for 15 min at RT. Cells were
then washed with PBS before permeabilization with 0.1% Triton X-100 in PBS for
30 min at RT. Cells were blocked for 1 h at RT with 10% goat serum, before
incubation overnight at 4 °C with goat anti-GFP (abcam #ab5450, 1:100) and
mouse anti-acetylated tubulin (Sigma-Aldrich #6793, 1:100). Secondary antibodies
(anti-goat IgG conjugated to Alexa 488 and anti-mouse IgG conjugated to Alexa
555) were used at 1:250 for 2 h at RT. Slides were mounted in Prolong Glass
(Thermo Fisher Scientific) and imaged on a Leica SP5 upright line scanning
confocal microscope.

Spatially resolved transcriptomics
Sample preparation. Adult tumor-bearing fish were euthanized on ice and washed
in 1× PBS. After dissection of the head and tail, the remaining tissue was equili-
brated in cold OCT for 2 m, before transfer to a tissue mold filled with fresh OCT
for snap-freezing in liquid nitrogen-chilled isopentane. Tissue blocks were stored at
−80 °C. For cryosectioning, both the tissue block and the Visium slide were
equilibrated inside the cryostat for 15–30 m at 16 °C before sectioning. Transverse
sections through the entire fish were cut at a thickness of 10 µm and immediately
placed on the Visium array slide (Visium Spatial Gene Expression slides, 10×
Genomics). Array slides containing sections were stored at −80 °C for a maximum
of 1 week before use.

Fixation, staining, imaging, and construction of cDNA libraries. Samples were
processed according to the Visium Spatial Gene Expression User Guide (10×
Genomics) and all reagents were from the Visium Spatial Gene Expression Kit (10×
Genomics). Briefly, sections were fixed in chilled methanol for 30 min at −20 °C,
stained with hematoxylin and eosin, and mounted in 85% glycerol for imaging.
Imaging was performed on a Leica SCN400 F whole-slide scanner at ×40 magni-
fication. After imaging, sections were permeabilized at 37 °C for 45 m. After per-
meabilization, the on-slide reverse transcription (RT) reaction was performed at
53 °C for 2 h. Permeabilization time and RT reaction length were determined using
the Visium Spatial Tissue Optimization Kit (10× Genomics). Second strand
synthesis was subsequently performed on-slide for 15 m at 65 °C. All on-slide
reactions were performed in a thermocycler with a metal slide adapter plate.
Following second strand synthesis, samples were transferred to tubes for cDNA
amplification and cleanup. Library quality was assayed using a Bioanalyzer High
Sensitivity chip (Agilent).

Sequencing. 10× Genomics Visium libraries were pooled, denatured, and diluted to
a loading concentration of 1.8 pM with 1% PhiX control, followed by paired-end
sequencing on an Illumina NextSeq 500 to a depth of approximately 110–180
million paired reads per sample. Sequencing parameters: Read1 28 cycles. i7 10
cycles, i5 10, Read2 120 cycles. Sequencing data was processed using the Space
Ranger pipeline v.1.0.0 (10× Genomics).

Dimensionality reduction and clustering. SRT data was processed using R version
3.6.3, Seurat version 3.1.417, Python version 3.6, and MATLAB 2019b. Data was
normalized using SCTransform59. The three SRT datasets were integrated using the
Seurat SCTransform integration workflow, using 3000 integration features and
including all common genes between the three datasets. Principal component
analysis60 and UMAP dimensionality reduction61 were done using default para-
meters. Initial clustering was done using the FindClusters function implemented in
the Seurat R package with the resolution parameter = 0.8. Tissue types of each
cluster were inferred and clusters were further refined by plotting clusters onto the
associated histology images and identifying marker genes using the Wilcoxon’s
Rank Sum test. Expression scores for ETS and cilia gene sets were calculated using
the Seurat function AddModuleScores with default parameters. A list of cilia genes
was obtained from the SYSCILIA gold standard list33. A list of ETS genes was
obtained from ref. 62.

Identification of genes enriched in the SRT interface. To identify genes that were
enriched at the interface in the SRT data, we first used the Seurat function Find-
Markers and the Wilcoxon rank sum test in order to calculate the average log2 fold
change for each gene in our dataset within the interface cluster, relative to all other
SRT array spots. We then used the same function to calculate the average log2 fold
change of each of these genes within the tumor and muscle clusters. To account for
the likely admixture of tumor and muscle cells within the interface region, we
defined interface-upregulated genes as: genes with a log2 fold change > 0, log2 fold
change in the interface > log2 fold change in the tumor, and log2 fold change in the
interface > log2 fold change in the muscle. We defined interface-downregulated
genes as: genes with a log2 fold change < 0, log2 fold change in the interface < log2
fold change in the tumor, and log2 fold change in the interface < log2 fold change
in the muscle. Finally, we filtered the lists of genes upregulated and downregulated
in the interface to only include genes with an adjusted p-value of <0.05.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26614-z ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:6278 | https://doi.org/10.1038/s41467-021-26614-z | www.nature.com/naturecommunications 13

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Non-negative matrix factorization (NMF). After normalization and integration of
SRT data (see “Dimensionality reduction and clustering” section), negative values
in the integrated expression matrix were set to zero. NMF was performed with a
rank of 11. The optimal number of ranks was estimated using the function
nmfEstimateRank63 based on the first rank for which cophenetic starts
decreasing64 and for which RSS presents an inflection point65. Factor scores were
first z-scored across factors prior to plotting onto array spots.

Analysis of gene ontology (GO) terms with spatially coherent expression patterns. GO
term annotations for Danio rerio were downloaded from Biomart66. For each GO
term, the average expression of genes annotated for that GO term was computed.
We defined spots that highly express this GO term as spots, whose expression level
for these genes is above the mean plus two standard deviations (we required the
number of these spots to be at least five to proceed with the analysis). We then
computed the Euclidean distance between these spots. Next, we computed the
Euclidean distance between the same number of random spots, and repeated this
computation 100 times to generate a null distribution of distances. We then
compared the GO term spot distances to the null distribution using Wilcoxon’s
rank sum test to compute a p-value.

Correlation between SRT spots and SRT clusters. For computing the correlation
across SRT clusters, we first computed the average expression of each tissue cluster
in the integrated expression matrix of our three datasets. We then used the union
of the ~1000 variably expressed genes in each individual dataset to obtain a list of
~2300 total variably expressed genes. We then used these genes to compute the
Pearson’s correlation and associated p-values.

GSEA and pathway analysis. Lists of differentially expressed genes for pathway
analysis were created using the Seurat function FindMarkers using the Wilcoxon
rank sum test. Ribosomal genes and genes with p-values above 0.05 were removed.
Zebrafish genes were converted to their human orthologs using DIOPT67, keeping
only human orthologs with a DIOPT score >6. In cases where there were multiple
zebrafish orthologs for one human gene, the gene with the highest log fold change
in expression was used. Pathway analysis and GSEA68 was done using the fgsea R
package69, using the MSigDB70 GO71,72 biological processes and GO cellular
component human genesets.

HOMER motif analysis. Motif analysis was performed using HOMER34, using the
function findMotifs.pl. Motifs of lengths 8, 10, and 16 were queried within+/− 500 bp
of the TSS of differentially expressed genes. Target genes containing the motif of
interest were found by filtering the list of differentially expressed genes to contain only
those with the desired motif. JASPAR73 was used to annotate motifs.

Multimodal intersection analysis (MIA). To determine cell type enrichment in
tissue regions we used MIA14, which uses the hypergeometric cumulative dis-
tribution to determine the statistical significance of the overlap between cell type
specific gene sets and tissue region specific gene sets. We used the intersect between
all genes in the SRT count matrix and all genes in the snRNA-seq count matrix as
the gene background to calculate the p-value. In parallel, we tested for cell type
depletion by computing −log10(1− p).

Single-cell RNA-seq
Sample preparation. Adult tumor-bearing fish were dissected to obtain only the
tumor and surrounding tissues (i.e., head and tail were removed). Tissue was
minced with a fresh scalpel and incubated in 0.16 mg/mL liberase (Sigma-Aldrich
#5401020001) in 0.9× PBS for 15 m at RT. Tissue was then further dissociated by
repeated pipetting with a wide-bore P1000, followed by incubation for an addi-
tional 15 m at RT. After adding 500 µL FBS to stop the dissociation reaction,
samples were filtered through a 70 µm filter and centrifuged at 500 × g for 5 m at
RT. The resulting pellet was resuspended in DMEM supplemented with 2% FBS,
and cells were sorted at room temperature to remove debris and doublets, using a
BD FACSAria III cell sorter (BD Biosciences). Equal numbers of GFP+ (tumor)
and GFP− (microenvironment) cells were collected.

Cell encapsulation and library preparation. Equal numbers of sorted GFP+ (tumor)
and GFP− (microenvironment) cells were centrifuged at 300×g for 5 m at RT, and
resuspended in DMEM+ 10% FBS. Droplet-based scRNA-seq was performed
using the Chromium Single Cell 3′ Library and Gel Bead Kit v3 (10× Genomics)
and Chromium Single Cell 3′ Chip G (10× Genomics). Approximately 10,000 cells
from two fish were split encapsulated in a single v3 reaction. GEM generation and
library preparation were performed according to manufacturer’s instructions.

Sequencing. 10× scRNA-Seq libraries were pooled, denatured, and diluted to a
concentration of 1.8 pM with 1% PhiX prior to paired-end sequencing on a
NextSeq 500. Each library (corresponding to approximately 5000 cells) were
sequenced to a depth of 550M paired-end reads. Sequencing parameters: Read1 28
cycles, index read 8 cycles, Read2 132 cycles. Sequencing data was aligned to our
reference zebrafish genome using Cell Ranger v5.0.1 (10× Genomics).

Analysis. Data was processed using R version 3.6.3 and Seurat version 3.1.417. Cells
with fewer than 200 unique genes or >20% mitochondrial reads were filtered out.
Expression data was normalized using SCTransform59. Datasets were integrated
using the Seurat SCTransform integration workflow, with 3000 integration anchors
and including all genes expressed in both datasets (15,154 genes). Principal com-
ponent analysis60, UMAP dimensionality reduction61, HOMER analysis34, GSEA,
and pathway analysis were performed as described above. Cluster annotations were
performed using the Seurat function FindAllMarkers, in conjunction with marker
genes used in previous analyses74. Doublets were detected using the doubletFinder
R package22, using 15 principal components.

Single-nucleus RNA-seq
Sample preparation. Adult tumor-bearing fish were dissected to obtain only the
tumor and surrounding tissues (i.e., head and tail were removed). The tissue was
then ground in a Dounce homogenizer on ice in Nuclei EZ Prep Lysis Buffer
(Sigma-Aldrich #NUC101). The nuclear suspension was then spun down at 4 °C
(500×g, 5 min). After resuspending the pellet in 1 mL wash buffer (250 mM
sucrose, 50 mM citric acid, 1% BSA, 20 mM DTT, 0.2U/µL RNAse inhibitor), the
sample was again spun at 4 °C for 5 min at 500×g. The pellet was resuspended in
1 mL wash buffer and subsequently sorted at 4 °C to isolate individual nuclei, using
a BD FACSAria III cell sorter (BD Biosciences). Approximately equal numbers of
GFP+ (tumor) and GFP− (microenvironment) nuclei were collected.

Cell encapsulation and library preparation. Equal numbers of sorted GFP+ (tumor)
and GFP− (microenvironment) nuclei were centrifuged at 600×g for 5 m at 4 °C.
Droplet-based snRNA-seq was performed using the Chromium Single Cell 3′
Library and Gel Bead Kit v3 (10× Genomics) and Chromium Single Cell 3′ Chip G
(10× Genomics). Approximately 12,000 nuclei were encapsulated in a single v3
reaction. GEM generation and library preparation were performed according to
manufacturer’s instructions.

Sequencing. 10× snRNA-Seq libraries were pooled, denatured, and diluted to a
concentration of 1.8 pM with 1% PhiX prior to paired-end sequencing on a
NovaSeq 6000. Sequencing parameters: Read1 26 cycles, Read2 70 cycles, index
read 8 cycles. Sequencing depth was approximately 200 million reads per 10,000
nuclei. Sequencing data was aligned to our reference zebrafish genome using
CellRanger (10× Genomics).

Analysis. Data was processed using R version 3.6.3 and Seurat version 3.1.417.
Nuclei with fewer than 200 unique genes, more than 1 million UMIs, predicted
doublets22 and/or >20% mitochondrial reads were filtered out. A putative ery-
throcyte cluster was also filtered out for quality control reasons, due to the unusual
nature of zebrafish erythrocyte nuclei75. Expression data was normalized using
SCTransform59. PCA60, UMAP61, and HOMER analysis34 were performed as
described above. Potential doublets were detected with doubletFinder22 and were
filtered out before downstream analyses. Cluster annotations were performed using
the Seurat function FindAllMarkers, in conjunction with marker genes used in
previous analyses74. Modeling of ligand–receptor interactions was performed using
NicheNet and the nichenetR R package23, with the combined interface cluster as
the “sender” cell population and all other cells as “receiver”, using a cutoff of 0.1 for
determining expressed genes and 0.5 for ligand-target scores. For NicheNet ana-
lysis, Zebrafish genes were converted to human as described above, using DIOPT67,
keeping only human orthologs with a DIOPT score >6. In cases where there were
multiple zebrafish orthologs for one human gene, the gene with the highest log fold
change in expression was used.

Calculation of an interface gene signature. Genes significantly upregulated in the
interface clusters of the SRT, scRNA-seq, and snRNA-seq datasets were calculated
using the Seurat function FindMarkers and the Wilcoxon rank sum test. Ribosomal
genes (starting with “rps” or “rpl”) were filtered out. The three genelists were then
merged to only include common genes present on all three lists.

Immunofluorescence and imaging. Adult casper zebrafish with large pigmented
tumors were euthanized on ice and fixed in 4% paraformaldehyde in PBS for 72 h
at 4 °C. Fish were then stored in 70% ethanol before embedding in paraffin and
sectioning by Histowiz, Inc. FFPE slides were deparaffinized in xylene before
several rounds of washing in 100–50% ethanol. Antigen retrieval was performed by
heating slides to 95 °C for 20 m in 10 mM sodium citrate pH 6.2 in a pressure
cooker. After cooling, slides were blocked in a solution of 5% donkey serum, 1%
BSA, and 0.4% Triton-X100 in PBS for 1 h at room temperature, before overnight
incubation with primary antibodies in blocking buffer. Primary antibodies used
were: goat anti-GFP (abcam #ab5450, 1:200) and mouse anti-acetylated tubulin
(Sigma-Aldrich #6793, 1:100). Following overnight incubation with primary anti-
bodies, slides were washed in PBS before incubation with secondary antibodies for
2 h at room temperature. Secondary antibodies used were: donkey anti-goat IgG
conjugated to Alexa 488 (Thermo Fisher Scientific #A11055, 1:250) and goat anti-
mouse IgG conjugated to Alexa 555 (Cell Signaling Technology #4409S, 1:250).
Hoechst 33342 (Thermo Fisher Scientific #H3570) was added to the secondary
antibody solution at 1:1000. Slides were mounted in ProLong Glass (Thermo Fisher
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Scientific #P36980) and cured overnight at room temperature. Slides were imaged
on a Leica SP5 upright line-scanning confocal microscope using a 40× (oil)
objective. Twelve-bit Z-stacks were acquired at 0.3–0.5 µm steps using 3× line
averaging. Maximum intensity projections were created of the Z-stacks in ImageJ.
Noise was removed from each image using the ImageJ “Despeckle” function.

Re-analysis of Smalley et al. human melanoma scRNA-seq dataset. The counts
matrix was obtained from GEO (GSE174401). All analysis was done using R
version 3.6.3 and Seurat version 3.1.421, based on the analyses done in the original
publication39. A Seurat object was created with default parameters, keeping all
genes expressed in three or more cells and all cells expressing 200 or more genes,
and filtering out any cells with more than 20% expression of mitochondrial genes,
resulting in a final object containing 29,247 cells. Dimensionality reduction and
clustering were performed using 15 principal components. Expression scores for
interface, cilia, and ETS genes were calculated using the Seurat function AddMo-
duleScore with default parameters. Interface marker genes were defined as the
human orthologs of all genes with a log fold change >1.5 in our zebrafish scRNA-
seq interface cluster.

Statistical analysis. Statistical analysis and figure generation were performed in
MATLAB (Mathworks, R2019a) and R (R Foundation for Statistical Computing,
3.6.3). Image processing and analysis was performed in MATLAB and ImageJ
(NIH). Unless otherwise noted, p-values were calculated using the Wilcoxon rank-
sum test, two-sided, with Bonferroni’s correction for multiple groups as necessary
(R functions wilcox.test and pairwise.wilcox.test). Pearson correlation coefficients
and corresponding p-values were calculated using the R function cor.test.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The scRNA-seq, snRNA-seq, and SRT data generated in this study have been deposited
to the Gene Expression Omnibus (GEO) under accession number “GSE159709”. Human
scRNA-seq data was obtained from GEO under accession code “GSE174401”. All other
relevant data supporting the key findings of this study are available within the article and
its Supplementary Information files or from the corresponding author upon reasonable
request.

Code availability
All code used for analysis and plotting is available at https://doi.org/10.5281/
zenodo.551262976.
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