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Abstract: The purpose of this study was (1) to determine the effect of single bouts of volume- and
intensity-equated low- (LL) and high-load (HL) full-body resistance exercise (RE) on AR-DNA
binding, serum/muscle testosterone and dihydrotestosterone, muscle androgen receptor (AR),
and AR-DNA binding; and, (2) to determine the effect of RE on sarcoplasmic and nucleoplasmic
β-catenin concentrations in order to determine their impact on mediating AR-DNA binding
in the absence/presence of serum/muscle androgen and AR protein. In a cross-over design,
10 resistance-trained males completed volume- and intensity-equated LL and HL full-body RE.
Blood and muscle samples were collected at pre-, 3 h-, and 24 h post-exercise. Separate 2 × 3 factorial
analyses of variance (ANOVAs) with repeated measures and pairwise comparisons with a Bonferroni
adjustment were used to analyze the main effects. No significant differences were observed in muscle
AR, testosterone, dihydrotestosterone, or serum total testosterone in either condition (p > 0.05).
Serum-free testosterone was significantly decreased 3 h post-exercise and remained significantly less
than baseline 24 h post-exercise in both conditions (p < 0.05). In response to HL, AR-DNA binding
significantly increased at 3 h post-exercise (p < 0.05), whereas no significant differences were observed
at any time in response to LL (p > 0.05). Moreover, sarcoplasmic β-catenin was significantly greater
in HL (p < 0.05) without significant changes in nucleoplasmic β-catenin (p > 0.05). In conclusion,
increases in AR-DNA binding in response to HL RE indicate AR signaling may be load-dependent.
Furthermore, despite the lack of increase in serum and muscle androgens or AR content following
HL RE, elevations in AR-DNA binding with elevated sarcoplasmic β-catenin suggests β-catenin may
be facilitating this response.

Keywords: androgen receptor; β-catenin; skeletal muscle; cell signaling; Wnt signaling; hypertrophy;
resistance exercise; testosterone; dihydrotestosterone; load

1. Introduction

Androgens, such as testosterone and dihydrotestosterone (DHT), play a pivotal role in muscle
specific gene and protein expression, which can ultimately lead to skeletal muscle hypertrophy [1].
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Primarily, androgens exert their anabolic effects through the bloodstream where they interact with
androgen receptors (AR) in skeletal muscle. Specifically, free/unbound testosterone diffuses across
the sarcolemma in skeletal muscle, where a portion is converted to the more biologically active DHT
(relative greater AR binding affinity and reduced disassociation rate) by the enzyme, 5α-reductase [2,3].
Once bound by the androgen, the activated AR undergoes a conformational change causing a
dissociation from the heterocomplex of heat shock proteins and other co-chaperones, ultimately
resulting in dimerization. After dissociation, it is then considered an active AR complex and is
translocated into the nucleus where it binds to the androgen response element (ARE) upstream of AR
gene promoter regions. The AR gene, the p21 cyclin-dependent kinase inhibitor protein 1 gene, and the
insulin-like growth factor-1 gene have all been found to contain AREs [4]. This AR-DNA binding
results in up-regulation of these genes (and others) which play significant roles in skeletal muscle
anabolism and contribute to hypertrophy of the muscle [5].

It is thought that the acute increase in serum/muscle androgen and/or AR content are responsible for
the up-regulation in AR signaling. While this has been reported [4,6–17], AR activation and subsequent
DNA-binding has been shown to increase in response to resistance exercise (RE) independent of
an androgenic response as well [18–24]. Additionally, acute AR mRNA and/or protein expression
in response to RE has been shown to increase [17,18,25], decrease or not change in a number of
studies [6,13,23,25–28]. This suggests that increases in AR signaling may not be primarily dependent on
rises in androgens or AR protein concentrations. However, just as relevant, the variety of methodological
approaches between RE protocols may be influencing the differential results.

Recent research suggests increases in AR signaling in response to mechanical loading may be
due to up-regulation in specific AR-interacting proteins [23,29,30]. AR-interacting proteins may
increase AR signaling by modulating AR binding affinity and/or AR activation via ligand-dependent or
-independent processes [31,32]. Specifically, β-catenin, an important multifunctional protein involved
in wingless-type mouse mammary tumor virus integration site (Wnt) signaling, has been shown to be
a transcriptional co-activator of the AR [33–35]. Mechanistically, β-catenin concentrations increase
within the sarcoplasm in response to a series of regulatory steps. This process involves: (1) the binding
of a Wnt ligand to the extracellular cysteine rich domain on the transmembrane Frizzled receptor,
(2) phosphorylation/activation of the protein disheveled by low-density lipoprotein receptor-related
protein (LDLR-LRP) -5 or -6 co-receptors, (3) blocking of glycogen synthase kinase-3β activity (GSK-3β)
by sequestering GSK-3β via the inhibitory protein frequently rearranged in advanced T cell lymphomas
(Frat), and (4) inactivation of the “destruction complex” resulting in decreased phosphorylation and
down-regulating proteasomal degradation of β-catenin [36–39]. This leads to armadillo repeats 1–6 of
β-catenin to interact with the activation function-2 (AF-2) region (within the ligand-binding domain
(LBD)) to facilitate LBD-NTD interactions and the ensuing formation of a “ligand-binding pocket”
and/or stabilization of the bound androgen [32,34,39–41]. Following β-catenin-mediated activation,
the AR complex translocates into the nucleus where it binds to the ARE on the target gene up-regulating
muscle specific gene expression, which in turn can play an important regulatory role in skeletal muscle
growth. Currently, there are extremely limited data investigating β-catenin-AR interactions in RE
models. Thus far, the existing data suggest that β-catenin-mediated AR signaling does appear to be
responsive to RE [23,42]. However, β-catenin’s response to various RE design variables and the specific
mechanisms remain largely unexplored.

It is generally thought that higher volume and intensity RE are needed to elicit an appropriate
stimulus for increasing AR signaling activity. While this may be the case, RE load may be the
key variable responsible for increasing AR activity, provided it is accompanied with appropriate
training volume and intensity. This is due to the overwhelming role load has on recruitment of motor
units and the subsequent fiber type-specific metabolic and/or contractile stress placed on skeletal
muscle. However, research investigating the load’s impact on muscular adaptations is commonly
misinterpreted due to suboptimal methodological approaches and inconsistencies in terminology.
For example, much of the literature does not clearly define and differentiate between intensity and
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load. In RE, intensity is commonly defined as a percent of 1 repetition maximum (1 RM) [43]. However,
it is more appropriate to define this as “load”. Intensity may be more appropriately defined as the
number of repetitions performed at a given RM [44]. For example, performing 10 repetitions at a 10 RM
(which is approximately 75% of 1 RM) until volitional failure would be considered an intensity of
100%. These semantic differences and lack of clearly defined variables have contributed to some of the
confusion in this area. Furthermore, rarely is the effect of load on skeletal muscle adaptations examined
without being affected by confounding variables such as volume or intensity. This is problematic since
volume and intensity have both been shown to be important factors influencing androgenic hormone
responses following RE [45]. Therefore, the purpose of this study was (1) to determine the effect of
single bouts of volume- and intensity-equated low (LL) and high-load (HL) full-body RE on AR-DNA
binding, serum/muscle testosterone and DHT, AR muscle protein content, and AR-DNA binding and
(2) to determine the effect of on sarcoplasmic and nucleoplasmic β-catenin concentrations in order
to determine their impact on mediating AR-DNA binding in the absence/presence of serum/muscle
androgen and AR protein.

2. Materials and Methods

2.1. Experimental Approach

Participants visited the laboratory on 3 separate occasions in the following manner:
visit 1 = entry/familiarization, medical/physical activity screening, and RE max testing; visit 2 = LL
(50% 1 RM) RE; visit 3 = HL (80% 1 RM) RE session. Each visit was 7–10 days following the previous
visit and participants were instructed to refrain from exercise for 48 h prior to RE max testing and
RE protocols. In a crossover design and volume-equated manner, participants performed identical
full-body RE consisting of barbell bench press, angled leg press, lat pulldown, and unilateral leg
extension. During LL RE, participants performed 50% of their one repetition maximum to volitional
failure for 4 sets in each exercise. Total exercise load volume (sets × repetitions × load) was calculated
and equated in the HL RE during visit 3. During HL, sets were performed until participants reached
the volume in order to match the total volume performed during LL. This allowed for volume and
intensity to be equated between the two conditions. Each session involved the gathering of data for
the analysis of biochemical and hormonal markers of blood and muscle metabolite changes.

2.2. Participants

Ten apparently healthy, recreationally resistance-trained (regular, consistent resistance training
(i.e., thrice weekly) for at least 1 year prior to the onset of the study) men between the ages of
18–35 volunteered for this study. Resistance training status was confirmed by a leg press 1-RM,
which was compared to normal strength-to-body weight ratios. Participants were eligible for inclusion
if their strength-to-body weight ratio was ≥2.82 times body weight [46]. Participants were also
included if they were at low risk for cardiovascular disease with no contraindications to exercise as
outlined by the American College of Sports Medicine (ACSM) and had not consumed any nutritional
supplements (excluding multi-vitamins) one month prior to the study. All eligible participants signed
university-approved informed consent documents and received a written and verbal explanation
of the study design. All study procedures were approved by the Institutional Review Board at
Baylor University (approval #1521229-3) and conformed to the ethical consideration of the Declaration
of Helsinki. Mean (±SD) participant descriptive information (anthropometrics, baseline health
assessments, resistance training experience) are found in Table 1.
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Table 1. Mean (±standard deviation (SD)) descriptive information of all participants, anthropometrics,
health markers, and resistance exercise related variables.

Descriptive Mean (±SD)

Sample Size 10
Age (year) 23.2 (±4.68)

Height (cm) 176.78 (±0.58)
Total Body Mass (kg) 87.15 (±5.77)
Lean Body Mass (kg) 70.66 (±6.62)

Bone Mineral Content (kg) 2.87 (±0.25)
Fat Mass (kg) 13.62 (±3.54)
Body Fat (%) 15.73 (±4.30)

Resting Heart Rate (bpm) 63.6 (±9.13)
Systolic Blood Pressure (mmHg) 118.2 (±5.77)
Diastolic Blood Pressure (mmHg) 75.4 (±7.66)

Resistance Training Experience (year) 4.68 (±1.85)
Leg Press 1 RM (kg) 464.4 (±93.8)

Barbell Bench Press 1 RM (kg) 116.8 (±12.7)

SD, standard deviation; 1 RM, one-repetition maximum.

2.3. Resistance Exercise Max Testing

To determine muscular strength and proper RE load prescription, participants performed 1-RM
tests for bench press and angled leg press and 10-RM tests for unilateral leg extension and lat pulldown
in accordance with the National Strength and Conditioning Association (NSCA) guidelines. Leg press
foot placement and bench press/lat pulldown handgrip width were recorded and held constant over
all testing conditions in order to maintain consistency. To ensure participants were moving through
the full range of motion during each repetition, a goniometer was used to establish 90 degrees of knee
flexion on the leg press. Moreover, during the bench press, participants were instructed to touch their
chest with the barbell and extend their elbows to full extension to constitute a completed repetition.
Similarly, participants were required to fully extend their elbows and pull the cable attachment until it
made contact with their sternum/chest during the lat pulldown as well as fully extend their knees to
constitute a completed repetition during the unilateral leg extension.

Participants warmed up by completing 5 to 10 repetitions at approximately 50% of the estimated
1 RM/10 RM. Then participants rested for 1 min and then completed 3 to 5 repetitions at approximately
70% of the estimated 1 RM/10 RM. Load was then increased conservatively and the participant
attempted to lift the load for 1/10 repetition(s). If the lift was successful, the participant rested for 5 min
before attempting the next weight increment. As per NSCA guidelines, load was increased by 2.5–5%
for upper body exercises and by 5–10% for lower body exercises. This procedure was continued until
the participant failed to complete the lift. The 1 RM/10 RM was recorded as the maximum weight that
the participant was able to lift for 1/10 repetition(s).

2.4. Resistance Exercise Protocol

During visits 2 and 3 participants performed full-body RE protocols consisting of barbell bench
press, angled leg press, lat pulldown, and unilateral leg extension. As our main experimental
variable, load varied between LL and HL RE while keeping all other controllable variables constant.
During LL RE, participants performed 3 sets of each exercise at 50% 1 RM and were taken to volitional
failure following the previously described warm-up protocol. During HL RE, participants performed
each exercise at 80% 1 RM to volitional failure. Additionally, volume was equated between the two
visits. Due to the greater amount of volume that can be accumulated with a lighter load, additional
sets for each exercise were utilized (if necessary) in order to equate volume between LL and HL
conditions. Moreover, when fatigue/failure occurred, study personnel provided assistance to help
re-rack the weight safely. In all cases, 2–4 min rest occurred between all sets and exercises. Due to
the diurnal nature and dietary influence of the biomarkers being investigated, participants reported



Nutrients 2020, 12, 3829 5 of 17

to the laboratory upon waking and in a fasted state at 08:53 (±0:55) and 08:37 (±1:00) for LL and
HL, respectively. Moreover, in order to minimize nutritional mediation of the markers we were
investigating, participants received a standardized nutrition bar 30 min prior to RE (Power Bar®,
Premier Nutrition Corporation, Kings Mountain, NC, USA, (carbohydrate: 25 g, protein: 20 g, fat: 6 g,
fiber: 4 g)). Additionally, as auxiliary measures of exercise intensity, muscle soreness and a rating of
perceived of exertion (RPE) of each condition was gathered. Muscle soreness was assessed pre-exercise,
3 h post-, and 24 h post-exercise via a visual analogue scale in which participants were instructed to
draw an intersecting mark across a 13-cm scale (0 = no soreness, 13 = extreme soreness). The distance
of each mark was measured from 0, and the measurement was used as the observed muscle soreness
value. RPE was assessed immediately post-exercise via the modified Borg Scale (0–10). Lastly, in an
attempt to control for variations in RE performance, skeletal muscle strength, and proper recovery,
RE protocols were scheduled within 2 h of each other and separated by 7–10 days [47].

2.5. Body Composition, Dietary, and Hydration Analysis

Total body mass (kg) and height (cm) were determined on a standard dual beam balance scale
(Detecto Bridgeview, IL, USA). Percent bone mineral content, body fat, fat mass, and lean body
mass were determined using dual-energy X-ray absorptiometry (DEXA) (Hologic Discovery Series W,
Waltham, MA, USA). Participants were required to record their dietary intake for 48 h prior to RE max
testing and protocols. Participants’ diets were not be standardized but were asked to keep their dietary
habits consistent throughout the study. The dietary recalls were evaluated with the MyFitnessPal
mobile or desktop application (Under Armor Inc., Baltimore, MD, USA) to determine the average daily
macronutrient consumption of fat, carbohydrate, and protein in the diet for the duration of the study.
Since previous research has demonstrated individuals who are dehydrated will have an attenuated
testosterone response with RE [48] and to account for shifts in plasma volume, prior to the max testing
and RE protocols, total body water using bioelectrical impedance analysis (Tanita, Tokyo, Japan) and
packed cell volume were assessed.

2.6. Muscle Biopsies

Percutaneous muscle biopsies (~30 mg) were obtained from the middle portion of the vastus
lateralis muscle of the dominant leg (midpoint between the patella and the greater trochanter of the
femur) at a depth between 1 and 2 cm using the fine needle aspiration technique. Muscle tissue
was extraction using the TRU-CORE® 1 Automatic Biopsy Instrument (Angiotech, Medical Device
Technologies, Inc., Gainsville, FL, USA) after subcutaneous administration of the local anesthetic (1 mL
of 1% lidocaine/xylocaine). After the initial biopsy, the following biopsy attempts were made to extract
tissue from approximately the same location as the initial biopsy by using the pre-biopsy scar, depth
markings on the needle, and a successive incision that was made approximately 0.5 cm to the former
from medial to lateral. After removal, adipose tissue was trimmed from the muscle specimens and
was immediately frozen and stored at −80 ◦C for later analysis. Three muscle samples were obtained
at visits 2 and 3 for a total of 6 muscle biopsies performed during the course of the study. Biopsies
were taken pre-exercise and at 3 and 24 h post-exercise during visits 2 and 3.

2.7. Venipuncture

Venous blood samples were obtained into 10 mL vacutainer tubes using a 21-gauge phlebotomy
needle inserted into the antecubital vein. Blood samples stood at room temperature for 10 min and
then centrifuged. The serum was then removed and frozen at −80 ◦C for later analysis. Six blood
samples were obtained during the course of the study. The blood samples were collected pre-exercise
and at 3 and 24 h post-exercise during visits 2 and 3.
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2.8. Skeletal Muscle Total, Sarcoplasmic, and Nucleoplasmic Protein Extraction

A portion of each muscle sample was weighed and homogenized using a commercial tissue
extraction reagent (Invitrogen Corporation, Camarillo, CA, USA) and a tissue homogenizer. Following
total protein extraction, total sarcoplasmic and nucleoplasmic proteins were isolated separately using
cytoplasmic and nuclear extraction buffers (Aviva Systems Biology Corporation, San Diego, CA, USA).
All extracts were supplemented with phenylmethanesulfonyl fluoride and a protease inhibitor cocktail
(Sigma Chemical Company, St. Louis, MO, USA) with broad specificity for the inhibition of serine,
cysteine, and metallo-proteases. Protein contents for total protein, sarcoplasm-, and nuclear-extracted
samples were analyzed in duplicate and determined spectrophotometrically at a wavelength of 750 nm
(Bio-Rad Hercules, CA, USA) and using bovine serum albumin as the standard [49].

2.9. Serum Total and Free Testosterone Analysis

The concentrations of serum total and free testosterone were assessed via commercially-available
enzyme-linked immunosorbent assay (ELISA) kits (Eagle Biosciences Incorporation, Nashua, NH, USA).
The specificity of these kits are 100% with the sensitivity estimated to be 0.022 ng/mL and 0.018 pg/mL,
respectively, for total and free testosterone. Samples were analyzed in duplicate and absorbances
were read at a wavelength of 450 nm. Unknown concentrations were determined by linear regression
against known standard curves using commercial software (Microplate Manager, Bio-Rad, Hercules,
CA, USA). The overall intra-assay percent coefficients of variation were 2.37% (±2.54) and 2.1% (±1.98)
and, respectively, for total and free testosterone.

2.10. Intramuscular Testosterone and Dihydrotestosterone (DHT) Analysis

The same ELISA kit employed for serum free testosterone was used to analyze intramuscular
testosterone concentrations. Similarly, intramuscular DHT was assessed using a commercially available
ELISA kit (Eagle Biosciences Incorporation, Nashua, NH, USA). These assays were performed using
the total muscle protein cellular extracts [23,28]. The specificity of the free testosterone and DHT
ELISA kits were both 100% with the sensitivity estimated to be 0.018 pg/mL and 6 pg/mL, respectively.
All samples were analyzed in duplicate and absorbances were determined at a wavelength of 450 nm
using a microplate reader (iMark, Bio-Rad, Hercules, CA, USA) against known standard curves,
and final concentrations expressed relative to total protein concentration. The overall intra-assay
percent coefficients of variation were 1.31% (±1.15) and 3.35% (±2.71), respectively, for intramuscular
testosterone and DHT.

2.11. Intramuscular Androgen Receptor Analysis

Total AR protein content was assessed in total muscle protein cellular extracts via commercially
available ELISA kits (MyBioSource Incorporation, San Diego, CA, USA). The assay is 100% specific and
has a sensitivity of 0.1 ng/mL. All samples were analyzed in duplicate and absorbances were determined
at a wavelength of 450 nm using a microplate reader (iMark, Bio-Rad, Hercules, CA, USA) against
known standard curves, and final concentrations expressed relative to total protein concentration.
The overall intra-assay percent coefficient of variation was 7.91% (±6.64).

2.12. Androgen Receptor—DNA Binding Analysis

AR-DNA binding was quantified in nucleoplasmic extracts by a commercially available ELISA kit
(Aviva Systems Biology Corporation, San Diego, CA, USA). This particular immunoassay utilizes the
qualitative technique of an indirect ELISA and the incorporation specific double-stranded (dsDNA)
oligonucleotides (representing the ARE (5′-AGAACA-3′)). The assay is 100% specific and has a
sensitivity of 0.3 µg of AR–DNA binding in nuclear-extracted MCF7 cells. All samples were analyzed
in duplicate and absorbances were determined at a wavelength of 450 nm using a microplate reader
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(iMark, Bio-Rad, Hercules, CA, USA). Absorbances were then expressed relative to total nucleoplasmic
protein content. The overall intra-assay percent coefficient of variation was 9.89% (±7.59).

2.13. Sarcoplasmic and Nucleoplasmic β-Catenin Analysis

Sarcoplasmic and nucleoplasmic β-catenin were assessed via commercially available ELISA kits
(Biovision Incorporated, Milpitas, CA, USA) and performed using the sarcoplasmic and nucleoplasmic
extracts. The assay is 100% specific and has a sensitivity of 0.156 ng/mL. All samples were analyzed
in duplicate and absorbances were determined at a wavelength of 450 nm using a microplate reader
(iMark, Bio-Rad, Hercules, CA, USA) against known standard curves, and final concentrations
expressed relative to sarcoplasmic and nucleoplasmic protein concentration, respectively. The overall
intra-assay percent coefficient of variation was 9.79% (±6.86) and 9.04% (±7.70), respectively.

2.14. Statistical Analysis

Statistical analysis for serum and muscle hormone concentrations, protein metabolite
concentrations, and AR-DNA binding activity were performed by utilizing separate 2 × 3 (Condition
(LL, HL) × Time (Pre-exercise, 3-h Post-exercise, and 24-h Post-exercise)) factorial analyses of variance
(ANOVAs) with repeated measures. Given significant baseline value differences, an ANCOVA was
used to with the aforementioned baseline data as a covariate. If a significant interaction was found,
simple effects analysis was conducted to determine where the interaction occurred. If a significant
interaction was present, analysis of main effects was conducted using the simple effects, pairwise
comparisons with a Bonferroni adjustment to compare dependent variables within each independent
variable condition. If no interaction was present, then normal pairwise comparisons with a Bonferroni
adjustment were used to test main effects. The magnitude of statistical significance was measured by
effect size (partial Eta-squared), which estimates the ratio of variance in the dependent variable that is
explained by the independent variable. Partial Eta Squared effect sizes (η2) are characterized 0.1–0.3 as
small, 0.3–0.5 as medium, and ≥0.5 as large [50]. All statistical procedures were performed using SPSS
27.0 software and an alpha level of ≤0.05 was set for all statistical measures.

3. Results

3.1. Dietary Analysis and Hydration Status

The results of the separate one way repeated measures ANOVAs indicated that there was no
significant difference in total calories (F = 1.973, p = 0.194, η2 = 0.180) or carbohydrate (F = 1.690,
p = 0.213, η2 = 0.158), protein (F = 0.805, p = 0.462, η2 = 0.082), fat (F = 1.532, p = 0.243, η2 = 0.145),
or fiber intake (F = 0.395, p = 0.680, η2 = 0.047) between the max testing, LL, or HL conditions. Similarly,
total body water did not significantly change (F = 1.521, p = 0.285, η2 = 0.276) between the max testing,
LL, or HL conditions. For packed cell volume, no significant main effect for time (F = 1.257, p = 0.299,
η2 = 0.077) or condition (F = 0.242, p = 0.630, η2 = 0.016) was observed between conditions.

3.2. Resistance Exercise Volume, Rating of Perceived Exertion, and Muscle Soreness

The results of the separate pair samples t-tests indicated no significant differences between
conditions in the volumes for leg press (t = 0.482, p = 0.641), barbell bench press (t =−0.233, p = 0.821),
lat pulldown (t = 1.297, p = 0.227), single leg extension (t = −0.860, p = 0.412), and total testing session
(t = −0.482, p = 0.641), or RPE (t = 1.279, p = 0.237). Additionally, no significant main effect for condition
(F = 0.813, p = 0.380, η2 = 0.046) or significant interaction for time and condition (F = 0.396, p = 0.676,
η2 = 0.023) for muscle soreness were observed. However, a significant main effect for time (F = 10.983,
p < 0.001, η2 = 0.392) was observed. Specifically, analysis revealed a significant increase in muscle
soreness at 3 h post- (p = 0.003) and 24 h post-exercise (p = 0.001) compared to pre-exercise.
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3.3. Serum Total and Free Testosterone Concentration

The means (±SE) for serum total and free testosterone for each condition are indicated in Figure 1
and Table 2. No significant main effect of condition (F = 4.421, p = 0.103, η2 = 0.525) or significant time
and condition interaction (F = 0.718, p = 0.517, η2 = 0.152) for serum total testosterone concentrations
were observed. However, a significant main effect for time (F = 6.386, p = 0.022, η2 = 0.615) was
observed, which was revealed to be non-significant after adjusting for alpha level inflation via a
Bonferroni adjustment (p = 0.091).
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Regarding serum free testosterone, no significant main effect of condition (F = 0.097, p = 0.763,
η2 = 0.011) or significant time and condition interaction (F = 0.611, p = 0.554, η2 = 0.064) for serum free
testosterone concentrations were observed. However, a significant main effect for time (F = 21.736,
p < 0.001, η2 = 0.707) was observed. Pairwise comparisons revealed that there was a significant decrease
in serum free testosterone concentrations at 3 h post-exercise compared to pre-exercise (p < 0.001)
in both conditions. Additionally, 24 h post-exercise was significantly greater than 3 h post-exercise
(p = 0.041) but did not return to pre-exercise baseline values (p = 0.029) in either condition.

3.4. Intramuscular Testosterone and DHT Concentration

The means (±SE) for intramuscular testosterone and DHT for each condition are indicated in
Figure 2 and Table 2. No significant main effect of time (F = 0.451, p = 0.644, η2 = 0.048), condition
(F = 0.643, p = 0.443, η2 = 0.067), or significant time and condition interaction (F = 0.777, p = 0.475,
η2 = 0.079) for intramuscular testosterone concentrations were observed. For intramuscular DHT, no
significant main effect of time (F = 0.350, p = 0.711, η2 = 0.048), condition (F = 2.680, p = 0.146, η2 = 0.277),
or significant time and condition interaction (F = 0.169, p = 0.846, η2 = 0.024) for intramuscular DHT
concentrations were observed.
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Table 2. Mean (±SE) of all intramuscular and serum markers of AR—β-Catenin signaling in response
to low- (LL) and high-load (HL) resistance exercise.

Condition Pre-Exercise 3 h Post 24 h Post

AR-DNA Binding (Abs/mg)

LL 0.31 (±0.05) 0.26 (±0.05) 0.33 (±0.05)
HL 0.30 (±0.04) 0.52 (±0.10) * 0.36 (±0.08)

Sarcoplasmic β-Catenin (ng/mg)

LL 8.77 (±2.79) 14.38 (±4.38) 14.62 (±3.96)
HL 16.35 (±3.62) * 27.09 (±4.62) * 29.83 (±8.90) *

Nucleoplasmic β-Catenin (ng/mg)

LL 2.49 (±0.42) 2.28 (±0.58) 3.23 (±0.67)
HL 2.65 (±0.43) 2.46 (±0.50) 1.50 (±0.38)

Androgen Receptor (ng/mg)

LL 102.85 (±9.46) 74.21 (±9.73) 102.92 (±19.20)
HL 76.20 (±6.55) 113.02 (±20.45) 98.71 (±13.76)

Intramuscular TEST (pg/mg)

LL 0.71 (±0.15) 0.57 (±0.09) 0.65 (±0.08)
HL 0.55 (±0.05) 0.57 (±0.07) 0.61 (±0.10)

Intramuscular DHT (pg/mg)

LL 928.32 (±76.59) 975.60 (±72.34) 1047.05 (±113.02)
HL 1048.11 (±81.79) 1137.32 (±111.62) 1190.96 (±111.98)

Serum Total TEST (pg/mL)

LL 10.75 (±1.62) 7.69 (±0.96) 10.39 (±0.82)
HL 12.95 (±1.76) 9.26 (±1.21) 12.23 (±1.33)

Serum Free TEST (pg/mL)

LL 23.03 (±3.25) 18.05 (±3.28) * 20.84 (±2.58) *
HL 22.67 (±2.13) 18.86 (±2.73) * 21.41 (±2.18) *

Data were analyzed using separate 2 × 3 factorial analyses of variance (ANOVAs) with repeated measures and
an alpha level of ≤0.05. Protein markers are expressed relative to total protein content of the appropriate cell
compartment or total cellular protein content. LL, low load; HL, high load; AR, androgen receptor; TEST, testosterone;
DHT, dihydrotestosterone. * Indicates a significant main effect for time, condition, or time and condition
interaction (p < 0.05).

3.5. Intramuscular Androgen Receptor Protein Content

The mean (±SE) for total intramuscular androgen receptor protein content relative to total muscle
protein content (ng/mg) for each condition are indicated in Figure 2 and Table 2. A 2 × 2 (Condition
(LL, HL) × Time (3 h Post-, 24 h Post-Exercise)), with pre-exercise as a covariate, factorial ANCOVA
with repeated measures was used to account for differences in baseline values. The analysis indicated
that no significant main effect for time (F = 0.463, p = 0.518, η2 = 0.062), condition (F = 2.290, p = 0.174,
η2 = 0.274) or significant time and condition interaction (F = 0.372, p = 0.561, η2 = 0.030) were observed.

3.6. Intramuscular Androgen Receptor-DNA Binding Activity

The mean (±SE) for intramuscular androgen receptor-DNA binding relative to total nucleoplasmic
muscle protein content (Abs/mg) for each condition are indicated in Figure 2 and Table 2. No significant
main effect of time (F = 1.475, p = 0.225, η2 = 0.141) or condition (F = 1.406, p = 0.266, η2 = 0.135) for
AR-DNA binding activity were observed. However, a significant interaction for time and condition
(F = 4.809, p = 0.021, η2 = 0.348) was observed. Analysis revealed that there was a significant increase
in AR-DNA binding at 3 h post-exercise compared to pre-exercise in the HL condition (p = 0.030).
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Figure 2. Mean (±SE) and individual changes in (A) AR-DNA binding activity, (B) sarcoplasmic
β-catenin, (C) nucleoplasmic β-catenin, (D) androgen receptor protein, (E) intramuscular testosterone,
and (F) intramuscular dihydrotestosterone in response to volume- and intensity-equated low- and
high-load resistance exercise. (A): * Indicates a significant increase in AR-DNA binding activity at
3 h post high-load resistance exercise (p < 0.05). (B): * Indicates a significant condition effect where
high load was significantly greater than low load resistance exercise (p < 0.05). (C–F): There were no
significant changes over time, between conditions, or significant interactions observed (p > 0.05).

3.7. Intramuscular Sarcoplasmic and Nucleoplasmic β-Catenin Content

The means (±SE) for intramuscular sarcoplasmic and nucleoplasmic β-catenin for each condition
are indicated in Figure 2 and Table 2. For the sarcoplasmic fraction, the Mauchly’s test of sphericity
indicated that there were violations in sphericity (p = 0.002) of the data. Therefore, a Greenhouse–Geisser
adjustment was used to meet the needed assumptions to run the appropriate statistical analysis.
No significant main effect for time (F = 2.004, p = 0.164, η2 = 0.182) or significant time and condition
interaction (F = 0.504, p = 0.513, η2 = 0.053) for sarcoplasmic β-catenin content were observed. However,
a significant main effect for condition where HL was significantly greater compared to LL when
collapsed for time (F = 5.414, p = 0.045, η2 = 0.376). Regarding nucleoplasmic β-catenin, no significant
main effect for time (F = 0.054, p = 0.948, η2 = 0.011), condition (F = 1.600, p = 0.262, η2 = 0.242),
or significant time and condition interaction (F = 2.474, p = 0.134, η2 = 0.331) for nucleoplasmic
β-catenin content were observed.

4. Discussion

This appears to be the first study investigating the effects of RE load in an intensity- and
volume-equated manner on AR-DNA binding activity, AR protein content, the influence of the
androgenic hormones, as well as both sarcoplasmic and nucleoplasmic β-catenin concentrations on
AR signaling. It is generally thought that LL (≤60% 1 RM) and HL (>60% 1 RM) RE have similar
outcomes on skeletal muscle hypertrophy when performed to volitional muscular failure [51]. Therefore,
the mechanisms which regulate skeletal muscle hypertrophy are also suggested to be identical in both
LL and HL scenarios. In contrast to the prevailing theory, our data showed that HL full-body RE
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significantly increased (~74%) AR-DNA binding at 3 h post-exercise compared to pre-exercise values.
Moreover, this was not observed in the LL RE condition across all sampling times which indicates a
potential load dependence in AR activation, translocation, and DNA binding. Interestingly, in response
to both LL and HL conditions, we observed no significant changes in serum total testosterone,
muscle testosterone or DHT concentrations, while serum-free testosterone was significantly decreased
at 3 h post- (LL: ~28% vs. HL: ~20%) and 24 h post-exercise (LL: ~11% vs. HL: ~6%) compared to
pre-exercise. Similarly, muscle testosterone and DHT concentrations did not significantly change
suggesting the decrease/no change in serum-free and total testosterone concentrations did not affect
skeletal muscle testosterone and DHT concentrations. Therefore, the observed increase in AR-DNA
binding in the HL condition at 3 h post-exercise does not appear to be driven by load-mediated changes
in either circulating and/or skeletal muscle androgen concentrations.

For its critical role in facilitating increases in AR signaling, the AR protein response may conceivably
be mediating up-regulations in AR-DNA binding activity. However, we observed no significant changes
in AR protein content across all time points in either condition. This suggests that our observed increases
in AR signaling activity are not driven by changes in AR content. While more research is certainly
warranted, this provides further evidence, along with others [13,25,27,28], that AR protein content
does not appear to acutely increase in response to RE and provides preliminary evidence that it may
not be suggestive of upregulations in AR signaling or predictive of hypertrophic outcomes (AR protein
response to chronic resistance training may be more indicative of hypertrophic outcomes; see [52]).
Of particular interest, our data demonstrated time-independent, HL-specific greater concentrations
of the AR co-activating protein β-catenin relative to LL. Specifically, skeletal muscle sarcoplasmic
β-catenin concentrations were ~94% greater in the HL condition versus the LL condition with no
significant changes observed in the nucleoplasmic fraction. As a multifunctional protein shown
to positively influence a number of processes (cell-cycle progression, cell-to-cell adhesion activity,
and ribosome biogenesis) in addition to its ability to co-activate the AR, this load-mediated response
provides further evidence of superior anabolic signaling activity in HL compared to LL RE [32,38,53].
Collectively, our findings indicate that, contrary to the current theory of load-mediated RE, AR-DNA
binding and β-catenin activity are only increased after HL RE without concomitant increases in serum
or muscle androgens or AR content.

The multifunctional Wnt-signaling protein, β-catenin, has been shown to robustly impact stability,
activation, and transcriptional activity of the AR [32,54,55]. Theoretically, elevations in this AR
co-activating protein directly increase AR activation, translocation, DNA binding, and result in
up-regulations in muscle specific gene and eventual protein expression. As previously discussed,
our data showed a significant increase in AR-DNA binding activity and greater sarcoplasmic β-catenin
content in the absence of significant elevations in serum free and total testosterone, skeletal muscle
testosterone and DHT, or AR protein content following HL RE. Considering that nucleoplasmic
β-catenin did not appear to be significantly influenced, our data provide ostensible evidence that
sarcoplasmic β-catenin may be playing a key regulatory role in encouraging AR–androgen interactions
or activating the AR in an androgen-independent manner. Specifically, it appears as though this role is
largely mediated through a novel undescribed HL-dependent mechanism that facilitates sarcoplasmic
β-catenin accumulation ultimately increasing AR-protein interactions and facilitating AR-DNA binding
within the nucleus. This phenomena also ostensibly contradicts the current theory denoting equivocal
anabolic-signaling outcomes between HL and LL RE, and provides further evidence Wnt/β-catenin
signaling is responsive to mechanical loading [23,36,42]. However, this is the first study to propose
this response may be dependent on the resistance or load placed on skeletal muscle.

There is considerable evidence of crosstalk between Wnt/β-catenin and AR signaling in
the literature [35,38,39,55–58]. β-catenin has been reported to activate the AR in both an
androgen-dependent [54,55] and androgen-independent [35] manner. Previous in vitro and in vivo
animal models offer inconclusive support in determining this potential androgen dependence of
β-catenin-AR activity [54,55]. Lack of significant changes in muscle testosterone, DHT, or AR protein
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content with concomitant elevations in AR-DNA binding activity and greater sarcoplasmic β-catenin
content alone does not provide sufficient evidence to make definitive mechanistic inferences about our
data. Nevertheless, since we have demonstrated β-catenin’s ability to accumulate in the sarcoplasm,
with no changes within the nucleoplasm, we hypothesize our findings may be due to two primary
mechanisms or a combination thereof including: (1) sarcoplasmic stabilization and co-activation of the
AR-bound androgen by β-catenin and (2) sarcoplasmic androgen-independent activation of the AR by
β-catenin (Figure 3) [35,36,54,55,59].
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Figure 3. Sarcoplasmic androgen-dependent and androgen-independent AR activation by β-catenin.
Two primary hypothetical mechanisms or a combination thereof posited to be associated with our
findings: (1) sarcoplasmic stabilization and co-activation of the AR-bound androgen by β-catenin (A)
and (2) sarcoplasmic androgen-independent activation of the AR by β-catenin (B). AR = androgen
receptor; LPR 5/6 = low-density lipoprotein receptor-related protein 5 or 6; FZD = frizzled receptor;
Wnt = wingless-type mouse mammary tumor virus integration site (Wnt) protein; DVL = disheveled;
CK1 = casein kinase 1; GSK3β = glycogen synthase kinase 3β; FRAT = frequently rearranged in
advanced T cell lymphomas; ARE = androgen response element).

While in vitro and in vivo animal models provide valuable insight into the potential molecular
mechanisms governing this response, human models are more comparable given our study design.
In a recent study by Spillane et al. [23], they investigated the β-catenin and AR signaling response
to an acute bout of lower- and full-body RE. Also of relevance, this study design did not equate
RE volume between the two conditions. Therefore, the full-body condition performed significantly
more volume than the lower-body condition. Similar to our findings, they found increased AR-DNA
binding activity and β-catenin content at 3 h post- and 24 h post-exercise, in addition to elevated serum
Wnt4 concentrations at 30 min post-, 1 h post-, and 2 h post-exercise, following the full-body RE bout.
Consistent with our observations, no significant changes in serum-free and total testosterone or muscle
testosterone and DHT were observed at any time point or condition. However, they did witness a
significant increase in AR protein content at 3 h post- and a significant decrease at 24 h post-full body
RE. Given that an increase in AR-DNA binding activity occurred at these time points, it further begs
the question of whether the AR protein response is facilitating this acute increase in AR signaling
activity. Given the incongruent AR protein and AR-DNA binding response in our study and that
of Spillane et al. [23], we propose these observed acute elevations in AR signaling are not driven by
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changes in AR content. Rather, these data indicate up-regulations in Wnt/β-catenin signaling may be
facilitating increases in AR-DNA binding which appears reflective of elevations in AR signaling and
potentially transcriptional activity. Furthermore, these data collectively suggest this response appears
to be sensitive to load as well as the volume of mechanical work placed on skeletal muscle.

Previous research lends support to the notion that differential loading protocols do not dictate
hypertrophy or increase AR signaling-related markers in skeletal muscle. A recent 12-week study
by Morton et al. [12] concluded that LL (30–50% 1 RM) and HL (75–90% 1 RM) RE performed to
volitional failure did not preferentially influence androgen hormone concentrations acutely or dictate
skeletal muscle hypertrophy after 12-weeks. Similarly, our data demonstrate systemic and local
androgen concentrations may not be significantly impacting AR signaling responses given the observed
serum and muscle androgen-independent increase in AR-DNA binding. While the acute nature
of our design prevents us from making definitive statements on hypertrophic outcomes and load,
our data suggest a potential preferential anabolic response to HL RE as exhibited by the observed
load-mediated increase in AR-DNA binding. Due to the overwhelming role volume and intensity play
in RE-mediated hypertrophy, we speculate that the study design of Morton et al. [12] was unable to
detect a preferential load response or lack thereof due to unequivocal RE volumes performed between
HL and LL conditions [45,60]. Specifically, the HL condition only completed ~62% of the total volume
completed by the LL condition. By contrast, our design equated both volume and intensity of the
different load conditions allowing for the acute effects of load to be carefully disseminated in the
context of AR signaling and potential implications in skeletal muscle hypertrophy. Nevertheless,
while this study does not demonstrate the effects of varying loads on practical hypertrophic outcomes,
it corroborates our data and many others [52,61–64], providing evidence that systemic hormones are
neither related to nor predictive of RE-induced changes in skeletal muscle mass in healthy young
male participants.

In RE research, rarely is the effect of load on muscular adaptations examined without being affected
by confounding variables such as volume and intensity. Previous research has clearly demonstrated
the overwhelming influence volume and intensity have on skeletal muscle hypertrophy and the
molecular responses that regulate these adaptations [45,60]. At this point, it appears this is the first
study to control for these variables to accurately disseminate the effects of RE load on anabolic signaling
pathways suggested to mediate skeletal muscle hypertrophy. The novelty in our study design limits
our ability to speculate since no data seem to exist investigating the effects of RE load, in a volume-
and intensity-equated manner, on markers of AR signaling. Nevertheless, our findings suggest a
preferential load-dependent increase in AR signaling thought to be at least partially mediated through
elevations in Wnt/β-catenin-related signaling.

5. Conclusions

This appears to be the first study to date investigating the impacts of RE load, in a volume- and
intensity-equated manner, on AR-DNA binding activity, serum and muscle androgen concentrations,
AR protein content, and sarcoplasmic and nucleoplasmic β-catenin concentrations. In response to HL
RE, we observed a significant ~74% increase in AR-DNA binding activity without significant elevations
in serum or muscle androgen concentrations or AR protein content. However, sarcoplasmic β-catenin
content was ~94% significantly greater when comparing the HL versus LL conditions regardless
of time. Collectively, our findings provide evidence that when volume and intensity are equated,
the acute AR signaling response to mechanical loading on skeletal muscle appears to be load-mediated.
Moreover, the observed up-regulations in AR-DNA binding activity and greater sarcoplasmic β-catenin
content suggest a preferential AR signaling response to HL RE. Our data further mechanistically
support previous evidence of acute increases in AR signaling not being driven by changes in serum or
muscle androgen concentrations nor AR protein content. Rather, AR co-activating proteins, such as
β-catenin, may be largely responsible for mediating this response. Unfortunately, we cannot infer
causality with the current dataset, considering the (time × condition) interaction effect observed in
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AR-DNA binding at 3 h was not mirrored by the observed condition-only effect in sarcoplasmic
β-catenin. Furthermore, an inability to randomize study conditions to equate volume and intensity and
a relatively small sample size are both clear limitations and must be considered when interpreting our
findings. Many questions still remain about a variety of factors driving the acute AR signaling response
to RE. Better understanding of molecular mechanisms in which AR co-activating proteins, such as
β-catenin, interact with the AR may allow for more clarity and provide the necessary context to better
explain these occurrences. Future research should investigate the impacts of other AR co-activating
proteins and determine their differential impacts on the acute AR signaling response and, by extension,
hypertrophic outcomes in skeletal muscle.
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