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Abstract

A new methodology, imputation by feature importance (IBFI), is studied that can be applied

to any machine learning method to efficiently fill in any missing or irregularly sampled data. It

applies to data missing completely at random (MCAR), missing not at random (MNAR), and

missing at random (MAR). IBFI utilizes the feature importance and iteratively imputes miss-

ing values using any base learning algorithm. For this work, IBFI is tested on soil radon gas

concentration (SRGC) data. XGBoost is used as the learning algorithm and missing data

are simulated using R for different missingness scenarios. IBFI is based on the physically

meaningful assumption that SRGC depends upon environmental parameters such as tem-

perature and relative humidity. This assumption leads to a model obtained from the com-

plete multivariate series where the controls are available by taking the attribute of interest as

a response variable. IBFI is tested against other frequently used imputation methods,

namely mean, median, mode, predictive mean matching (PMM), and hot-deck procedures.

The performance of the different imputation methods was assessed using root mean

squared error (RMSE), mean squared log error (MSLE), mean absolute percentage error

(MAPE), percent bias (PB), and mean squared error (MSE) statistics. The imputation pro-

cess requires more attention when multiple variables are missing in different samples,

resulting in challenges to machine learning methods because some controls are missing.

IBFI appears to have an advantage in such circumstances. For testing IBFI, Radon Time

Series Data (RTS) has been used and data was collected from 1st March 2017 to the 11th

of May 2018, including 4 seismic activities that have taken place during the data collection

time.
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Introduction

Radon (222Rn) gas is ubiquitous in the environment. It is found in air, water, and soil, and con-

centrates in the environment and buildings in a complex manner dependent upon geological,

chemical, meteorological, and other temporally variant parameters [1–10]. While the bulk of

knowledge about the adverse health effects has resulted from studies of lung cancer in uranium

miners, radon health effects are an active area of epidemiological work involving indoor

domestic radon gas concentrations [10–14]. Such work often involves indoor radon air con-

centration time series coupled with data about various multiple environmental and geographic

variables. Such data sets may be incomplete, resulting in the need to discard data or perform

extrapolations using machine learning or other modeling methods. While radon is of concern

when found in hazardously high concentrations in occupied dwellings, it has been found to be

beneficial in that it is potentially predictive of earthquakes [15–25]. Various studies show that

anomalies in the radon time series data offer strong evidence for earthquake prediction and

forecasting [21, 26–30]. Decades of studies have specifically explored the linkages between

SRGC and seismic activity [31]. Moreover, soil radon gas emission and transportation dynam-

ics are influenced by various meteorological factors (such as temperature, rainfall, pressure

and relative humidity) which are unrelated to seismological activities deeper in the earth crust

which also influence radon gas environmental movement [32, 33]. Multiple studies had been

performed to analyze the correlation between SRGC and different meteorological parameters

[7, 34–38]. A study was conducted at Hokkaido University in Sapporo, Japan for monitoring

soil radon gas concentration found that temperature was the dominant meteorological param-

eter affecting soil radon levels and variability [39]. Sahoo et al. [40] analyzed the influence of

meteorological parameter on radon emission dynamics using linear regression analysis. It was

observed that temperature is negatively correlated whereas humidity and pressure are posi-

tively correlated with radon time series. This study also reports a considerable amount of

anomalies prior to the occurrences of local earthquakes with the magnitude of 3.7 and 4.2

Badargadh, India. Different computationally intelligent methods have been proposed and suc-

cessfully applied to predict radon concentration from environmental parameters such as pres-

sure, rainfall, air and soil temperature [27, 41–44]. Such predictions depend upon data sets

which may often include missing information for radon or some of the important environ-

mental parameters which influence its concentrations [45]. This paper concerns itself with a

method for imputing, or filling in, missing data to improve the performance of machine learn-

ing approaches being considered for identifying seismic abnormalities from soil radon gas

concentration (SRGC). Radon health effects and usage of radon as a precursor indication of

earthquakes represent prime examples of the interaction of the atmosphere, lithosphere, and

hydrosphere with human biology influenced by their behavior and the built environment.

Improving the data sets for analysis is the overall goal of this work.

If missing data are not properly imputed this may lead to unreliable outcomes. Within any

time series lost data/info may result from human error, instruments failure, or downtime due

to routine maintenance purposes [46]. The classification of missing data can be performed by

the mechanism through which the missing data is generated [47]. The choice of imputation

method is influenced by the actual causes and characteristics of the missing data, whether due

to data loss, perceived inapplicability, or lack of relationship to a given situation [48].

The nature of absent data, or missingness, can be classified in three ways[47, 49]. The miss-

ing data is said to be completely at random (MCAR) if the probability of the data missing is

the same for all the cases, i.e. the missingness of data is not related to the data itself. When the

tendency of the data point to be missing is related to the observed data, but not the missing

data, then it is called missing at random (MAR). Finally, for data missing not at random
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(MNAR), two possible reasons may occur: the missing data point depends on the hypothetical

value or the missingness is related to some other variables in the data. To impute missing data,

straightforward methods are typically used. Examples are complete or available case analysis,

missing-indicator methods, and mean, median and mode imputation. Unfortunately, these

approaches may result in severely biased estimates and inefficient analyses [50, 51]. Multiple

imputation is a more sophisticated approach to handling missing data that performs better

than other conventional methods [52–55]. However, there are certain pitfalls in multiple

imputation analyses [56]. When dealing with highly skewed data, multiple imputation results

in implausibly low or even negative values. In various scenarios, an analysis needs to explore

the association between an outcome and one or more predictor variables, the missing values in

the outcome variable result in neglecting the outcome variable in imputation procedure. The

omitting of outcome variables would falsely weaken the association among predictors and out-

come variables. Moreover, multiple imputation procedure is computationally intensive and

some algorithms run repeatedly for better approximation, and its length increases with more

missing data. Machine learning methods have been used to reconstruct incomplete and irregu-

larly sampled experimental data for indoor radon gas concentrations [45]. A comparison of

traditional statistical and machine learning with available controls methods of data imputation

concluded that machine learning outperformed statistical methods and increased the progno-

sis accuracy significantly [57, 58]. Mital et al. [59] proposed a sequential imputation algorithm

for the imputation of missing values in spatio-temporally daily time series precipitation rec-

ords. The authors demonstrated that the proposed sequential imputation method by incorpo-

rating it with a spatial interpolation based on a Random Forest method has several benefits as

the number of stations with incomplete records increases. However, the sequential imputation

method does not add any extra information for spatial information if the stations having

incomplete records decreases. Stochastic semi-parametric regression imputation was found to

be superior to existing semi-parametric regression imputation for both simulated and real data

[60]. An efficient imputation-based method was also proposed which uses an expectation-

maximization (EM) algorithm for multivariate time series data under the assumption of nor-

mal distribution [61].

In this study, a more robust methodology for data imputation, Imputation by Feature

Importance (IBFI), is proposed and its performance compared with the commonly applied

mean, median, mode, hot-deck, and predictive mean matching statistical imputation methods.

Actual SRGC data collected over a 14-month period during which time four seismic events

occurred is used for the study. Simulations of missing data were made using the R package

entitled “mice” [62] for 10, 20, and 30% of the data under MAR, MCAR, and MNAR scenarios.

The XGBoost machine learning method was utilized as a base learner for this work. It is noted

that any method may be used to impute complex missingness patterns using IBFI, and IBFI

may be applied to any machine learning method, such as Random Forest and Naïve Bayes.

Materials and methods

Instrumentation and location

SRGC time series data were obtained on the fault line present in Muzaffarabad, a city in the

Pakistani territory of Kashmir. The location of the soil radon measuring station is presented in

Fig 1. A humidity-insensitive radon and thoron monitor (SARAD RTM 1688–2, Nuclear

Instruments, Germany) recorded radon, thoron, temperature, humidity, and barometric pres-

sure at latitude 34.39621 and longitude 73.47347. Readings were integrated over 40 min, result-

ing in 36 measurements every 24 h for more than 1 y. Additional details concerning the

instrument and the resulting data are reported elsewhere [27, 63, 64]. The statistical details of
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the variables in soil radon gas concentration time series data are provided in Table 1

below.

The dataset consists of 15692 radon and thoron measurements along with environmental

parameters viz. temperature (˚C), relative humidity, and pressure (mbar). Radon concentra-

tion (RN) varied from 13743 Bq/m3 to 28085 Bq/m3. Mean and median of radon time series

were found to be 21364 Bq/m3 and 21569 Bq/m3 respectively. The temperature varied from 4

to 42.5˚C during the study period.

Missing data simulation and analysis plan

Fig 2 displays the complete simulation and analysis plan for the current study. The over-

all SRGC dataset consists of the different attributes (or measured variables) radon,

thoron, temperature, relative humidity, and pressure. For the sake of analysis of the

imputation methods, the three different missingness patterns (MCAR, MNAR, and

MAR) are introduced into the SGRC dataset resulting in modified data sets with 10, 20,

and 30% of the data missing. The missing values are introduced into the dataset

Fig 1. Soil radon measuring station located inside 150 km from the epicentre of the strongest earthquake since 1900 with the

latitude, longitude of 34.39621 and 73.47347 respectively.

https://doi.org/10.1371/journal.pone.0262131.g001

Table 1. Statistical details of the SRGC time series dataset.

Variable Mean StDev Minimum Q1 Median Q3 Maximum Skewness

Radon 21364 2130 13743 19950 21569 22876 28085 -0.31

Thoron 2515.3 384.3 1495.0 2246.3 2489 2761 16182 4.26

Temperature 22.485 8.085 4 16 23 28.5 42.5 -0.05

Relative Humidity 77.884 13.166 34 70 81 88 101 -0.81

Pressure 928.26 4.92 914 925 929 932 943 -0.28

https://doi.org/10.1371/journal.pone.0262131.t001
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artificially by the R package entitled “mice” [62]. The core idea for introducing missing

values in the multivariate dataset lies in the missing patterns. Where missing patterns are

the mixture of variables with missing values and variables with available values [65]. The

missing patterns with their frequency are shown in Fig 4. The complete dataset is divided

into k subsets randomly based upon missing data patterns. The subset size depends upon

the frequency vector which is the frequency of the certain pattern to be missing the com-

plete dataset. The data rows in the subsets are considered to be a candidate for missing is

based upon several factors such as missingness mechanism (MCAR, MNAR, and MAR).

In MCAR scenarios, all the data rows in the subsets have an equal probability of being

missing while in MNAR and MAR scenarios, the weighted sum scores are computed.

More simply put, the weighted sum scores are the outcome of a linear regression equa-

tion. These scores provide the basis for candidates’ data rows to be missing or not.

Finally, the data rows in the subsets are made missing or incomplete according to the

missing data pattern along with its probability of being missing. After the introduction of

missing values, these subsets are merged to make an incomplete dataset having missing

values in different data rows.

The resulting nine altered SRGC data sets are then treated with six different data imputa-

tion methods. These include IBFI and the more common mean, median, mode, predictive

mean matching (PMM), and hot-deck imputation methods. Performance metrics computed

following the application of the imputation method include root mean squared error (RMSE),

mean square error (MSE), root mean squared log error (RMSLE), mean absolute percentage

error (MAPE), and percentage bias (PB). The performance of the imputation method is heavily

dependent upon the ability of imputation method to impute values that are much nearer to the

real value for each of these metrics. Descriptions of both the performance metrics and the

imputation methods are given below.

Fig 2. Simulation plan of the study.

https://doi.org/10.1371/journal.pone.0262131.g002
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Performance measures

To assess the performance of imputation models for imputing the missing values of radon,

thoron, temperature, relative humidity, and pressure, the following five different statistical

parameters are computed: Root mean square error (RMSE), root mean squared log error

(RMSLE), mean absolute percentage error (MAPE), mean squared error (MSE), and percent-

age bias (PB). RMSE is a very frequently used performance evaluation measure for prediction

models in many different areas, such as air pollution [66, 67]. This method is sensitive to outli-

ers [68] because each error has an effect on RMSE that is proportional to the size of the squared

error and thus larger difference between actual predicted value results in an excessively larger

effect on it. RMSE is the square root of the average of squared errors computed over a total

number of values T, specifically:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T

XT

k¼1
ðPredictedk � ActualkÞ

2

r

ð1Þ

The RMSLE is obtained from the log of predicted and observed values, namely:

RMSLE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T

XT

k¼1
ðlogðPredsk þ 1Þ � ðlogðActk þ 1ÞÞ

2

r

ð2Þ

The RMSLE is employed when it is desirable to avoid over-penalizing huge differences in the

predicted and observed values in the case when those values are very high numbers. While

RMSE is sensitive to outliers and explodes the error term when these are present, RMSLE seri-

ously scales down the impact of outliers. It should be noted that RMSLE penalizes the underes-

timation of the observed values more severely than it does for overestimation. The MAPE is a

frequently used statistical measure of how accurate a prediction system is, computed from:

MAPE ¼
1

T

XT

k¼1

Actualk � Predictedk

Actualk

�
�
�
�

�
�
�
� ð3Þ

The principal advantage of expressing the MAPE as a percentage, as opposed to simply report-

ing the mean absolute error, is that it is easier for researchers to conceptualize. The weakness

arising from the normalization is that the MAPE becomes undefined datasets that contain val-

ues of 0.

The Mean Squared Error (MSE) is a measure that finds out how much close the predicted

and observed values are, and is given by:

MSE ¼
1

T

XT

k¼1
ðActualk � PredictedkÞ

2
ð4Þ

For each predicted value, the distance is measured from the corresponding actual value and

then squares the resultant value. More simply put, the metric is the average of the squares of

errors. The average tendency of the predicted value to be smaller or larger than that of its

actual value is captured by the PB performance metric, defined as:

PB ¼ 100 �

XT

k¼1
ðPredictedk � ActualkÞ
XT

k¼1
Actualk

ð5Þ

A PB of 0 is considered to be an optimal value indicating accurate model simulation with val-

ues having low magnitude. Larger positive and negative values indicate overestimation and

underestimation bias, respectively.
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Mean, median, and mode imputation methods

The mean model for imputation is a method in which the mean of the observed cases (all non-

missing values of the attribute of interest) of the certain variable serves as a replacement for

missing values in that variable. The simple-to-use mean model inherently reduces the variabil-

ity in the data, resulting in an underestimation of standard deviation and variance estimates.

Median imputation substitutes the middlemost number in the observed values when these are

arranged in order. Mode imputation replaces missing data with the most frequently occurring

value for that particular variable. SRGC data consist of attributes that are continuous, meaning

that no two values will be the same exactly. For this reason, for mode imputation kernel

density estimation is used to produce a continuous estimate of the probability density func-

tion. The point at which the probability density function reaches a maximum is considered its

mode. For kernel density estimation, R package “stats” [69] has been used. The function “den-

sity ()” with its default parameters are used to calculate the kernel density estimate. The func-

tion “density.default ()” uses the algorithm that first use a regular grid of at least 512 points to

disperse the mass of the empirical distribution function. The fast Fourier Transform along

with the discretized version of the kernel such as Gaussian is used to convolve the approxima-

tion. Finally, the densities at specified points are evaluated using linear approximation.

Hot deck imputation method

Hot deck imputation is the method to impute missing data of one or more features for a

non-respondent, called the recipient, where each missing value is substituted with a practi-

cal response from a “similar” unit i.e. it involves replacing the targeted missing values with

those from a “similar” responding unit (the donor). Though, Hot-deck imputation is an old

but popular method of imputation because it is simple in concept and suitable for missing

at random (MAR) patterns. The basic principle is to locate one appropriate donor value

from the available observed case that is comparable to the missing case in some regards

[70]. The donor is similar to the recipient for features observed in both cases. The random

hot-deck imputation method involves the random selection of donors or respondents from

a set of possible available donors called the donor pool. There are other versions of this

method involving a single donor and values are replaced from that case, generally, the

“nearest neighbor” based on some metric; these methods are called deterministic hot-deck

methods as no randomness is involved in the donor selection. However, the hot deck impu-

tation has certain limitations e.g., good matches of respondents or donors are required by it

to recipients reflecting available covariate information. There are cases when the single

donor may be chosen to accommodate several recipients’ leads to replication of values [71].

This replication of values causes several problems and there is an inherent risk that lot of

missing values or even all of the missing values gets imputed from a single donor. The hot-

deck method does not take the correlation of the variables into account when imputing val-

ues in different features. The imputation procedure is univariate and does not distinguish

the multivariate nature of the dependent variables. Due to the copying or borrowing of

value from the available case, another problem that arises when imputing with hot-deck

imputation is the addition of random noise if the value is quantitative. The missing values

were imputed through Hot-Deck using the R language package entitled “VIM” [72].

Predictive mean matching (PMM) imputation method

The predictive mean matching (PMM) method existed a long time ago [73, 74], but its wide-

spread and practical applications began only recently. For the multiple imputation of the miss-

ing data, predictive mean matching (PMM) [73, 75] is considered a good method, typically
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when the quantitative features are involved that are not normally distributed. It is the state-of-

the-art hot deck multiple imputation method [76]. The imputed values will be skewed, if the

original feature values are skewed and bounded by some upper and lower limit e.g., 0 to 50 if

the original feature is bounded by the limit. The reason is that imputed values are the original

values that are borrowed from individuals with original data. The potential donees and donors,

selected by either automatic distance-aided or nearest neighbor method, are matched in PMM

by the closeness of predicted means. Considering each donor case, the predicted value for the

incomplete case is compared to the fitted value obtained from some regression model. More-

over, in the classical PMM approach, a case is drawn from the pool of k cases whose estimated

values are nearer to one of the value predicted for the missing case. Further, the missing value

is imputed by the observed value of donor case. Initially, it was limited in usage i.e. only a sin-

gle variable with missing data could be handled by PMM or, more broadly, its applications

were limited to the situations where there existed monotonic missing data patterns. The PMM

method has been embedded in various software packages that employ multiple imputation

approaches, referred to as sequential generalized regression (SGR), fully conditional specifica-

tion (FCS), or multiple imputation by chained equations (MICE). The quality of imputed val-

ues depends upon the availability of appropriate donor cases. In small datasets, the imputation

by predictive mean matching could not give promising results, as there might not be suitable

donor cases available.

In the current study, missing values were imputed through PMM using the R language

package entitled “mice” [62] with the parameters i.e. m (stands for ‘number of multiple impu-

tations’), maxit (stands for ‘no of iterations’), method, and the seed of 5, 500, pmm, and 50

respectively. The ‘m’ with a value of 5 (considered to be enough [75] and also a default value)

will generate five imputed datasets that differ only in imputed missing values. In classification

or regression problems, the prediction models build upon these imputed datasets perform bet-

ter by aggregating the prediction of these models. Considering the importance of the imputa-

tion process to reach convergence, a maximum number of iterations have been chosen i.e. 500.

Generally, in the region of 20 to 30 or fewer iterations for each imputation are taken as a rule

of thumb. Also, a random seed value of 50 is chosen for reproducibility.

Imputation by feature importance (IBFI) method

A pictorial representation of this new imputation method appears as Fig 3, while the coded

algorithm itself appears in pseudo-code format below. The proposed method starts with the

input data matrix (DM) which contains the different attributes (or quantities), specifically

SRGC, thoron concentration, soil temperature, pressure, and humidity. DM contains different

types of missingness (MNAR, MCAR, and MAR) of values of the attributes shown in Fig 2.

Pseudocode: as implemented, for the imputation by feature importance (IBFI) method.
Input:
DM(X1. . .Xn) = Data Matrix where X1. . .X_n contains the missing values
RejectionThreshold = The extent to which the number of features in
each sample gets imputed
FIM = Feature Importance Matrix having feature importance for each
feature in descending order
BM = Base Model
Set
ModelList = NULL
U  sequence(1 to number of features)
PriorityMat  NULL
k = 1
Process:
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1. Split DM in to two parts i.e. PD(X1. . .Xn) and ID(X1. . .Xn) //Pure
data (PD) has feature values available for all datarows whilst
Impure data (ID) has one or more missing values

2. while k < = RejectionThreshold

a. For scanindex = 1 to number of rows in ID

i. NAvector = indices(is.NA(ID[scanindex,] == TRUE)) // To
the find features having missing values at certain scan
index

ii. If length(NAvector)> RejectionThreshold OR length
(NAvector) == 0)

1. Reject that sample

iii.Else

1. TrainVector = setdiff(U,NAvector) // List of features
other than having missing values

2. Priority_Mat = FIM[NAvector,] // feature importance
vectors of the missing features

Fig 3. Proposed methodology to envelop base learning algorithm for imputation.

https://doi.org/10.1371/journal.pone.0262131.g003

PLOS ONE Imputation by feature importance (IBFI)

PLOS ONE | https://doi.org/10.1371/journal.pone.0262131 January 13, 2022 9 / 22

https://doi.org/10.1371/journal.pone.0262131.g003
https://doi.org/10.1371/journal.pone.0262131


3. For all the indices where Priority_Mat contain values
of TrainVector, Set Priority_Mat[indices] = 0

4. For all the indices where Priority_Mat do not contain
values of TrainVector, Set Priority_Mat[indices] = 1

5. For n in 1 to RowsCount(Priority_Mat))

a. For j in 1 to ColumnsCount (Priority_Mat))

i. if(Priority_Mat[n,j] == 1)

1. location_vector[l_c] = j

2. l_c = l_c + 1

3. break

6. IF length(location_vector) == 0)

a. indice_to_train = NA_vect

7. Else

a. max_value = max (location_vector)

b. max_i = indices where (location_vector == max_value)

c. max_i = max_i[1]

d. indice_to_train = NAvector[max_i]

8. End if

9. Traindata = PD[,TrainVector]

10. Trainclass = PD[,indice_to_train]

11. trainF = Concatenate Column(traindata,class = train-
class) // to concatenate response variable with
predictors

12. ModelName = concatenate(indice_to_train, TrainVector)

13. Flag = CheckModel(ModelList,ModelName) // check for
model reusability

14. IF flag == -1 // Model not in the already fitted
ModelList

a. Fit a machine learning model i.e. BMMName and save the
fitted model to ModelList

b. Testdata = ID[scanindex,TrainVector]

c. Val = predict(model,testdata)

d. ID[scanindex,indice_to_train] = val

15. Else

a. print("Model Hit")
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b. testdata = ID[scanindex,TrainVector]

c. val = predict(Model_List[[flag]],testdata)

d. ID[scanindex,indice_to_train] = val

16. End if

iv. End if

3. k = k + 1

4. End

Procedure: CheckModel (ModelList, ModelName):

1. Flag = -1

2. For i in 1 to length(Model_List)

a. IF ModelList[i] == ModelName

i. Flag = 1

ii. break

3. Return flag

In the very first step, the original DM is divided into two subsets: Pure Data (PD) and

Impure Data (ID). PD contains those samples from the data matrix which do not have any

missing values, while ID consists of those samples that had between one and a maximum of n
missing values per sample. The IBFI uses Pure Data (PD) to fit a machine learning model for

imputing missing values in Impure Data (ID). As values are imputed during the IBFI process,

predicted missing values are continuously imputed to their respective locations and during

iterations, completing the missing patterns based on the feature importance matrix (FIM). The

feature importance matrix is computed by using the R package “randomForest” [77]. For each

feature in the pure dataset (PD) by taking it as a response feature and others as the predictor,

the feature importance of other features for predicting that response is computed. The features

are arranged as per their importance value from highest to lowest. The imputation of missing

values for a given attribute is next executed on the ID. This is done by applying a machine

learning model trained using the non-missing attributes in pure data (PD) to predict the value

in missing attributes of impure data (ID). Consider the different attributes F1, F2 . . ..Fn. If the

missing value occurs in F1, the remaining attributes F2. . ..Fn will be used for training any

machine learning model and the resulting fitted model will be used to predict the missing val-

ues for F1. If the attribute F3, is missing, then the attributes F1, F2, F4 . . . Fn will be used for

training any machine learning model and F3 will be predicted from that fitted model. These

predicted values will serve in place of the missing values.

The complexity increases when a sample has more than one missing value and certain fea-

tures or attributes exhibit strong dependencies. Suppose DM contains the five attributes F1, F2,

F3, F4, F5 and missing values occur in F1 and F5 of some samples as shown in Fig 5. Also,

assume that certain attributes have a strong correlation with other attributes in the DM. For

example, suppose F1 and F5 have a feature importance vector with other attributes from high-

est to lowest of F5, F3, F4, F2 and F2, F4, F1, F3 respectively. For those samples having F1 and F5

as missing values, conventionally F2, F3, F4, F5 and F1, F2, F3, F4 will be used for training the

model. The imputation process becomes complicated for a machine learning model to impute

the values for F1 and F5 when both have missing values in different samples. In this scenario,
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F2, F3, F4 are only attributes available for training the model because predicting the missing

value of F5 needs the available value for F1 and vice versa. Moreover, to efficiently impute the

value for F1 and F5, one must decide whether F1 or F5 must be imputed first. From the correla-

tion vector above F5 is the most important attribute to predict the value of F1 whilst F2 is the

most important attribute to predict the value of F5. Based on feature importance F5 needs to be

imputed first and when the value of F5 is available then that value of F5 will be used to predict

the value of F1. Initially, there may be missing values for multiple attributes. The best attribute

to impute is first selected, and the missing values for that attribute are imputed. After this is

completed, there is now one less attribute that has missing values. The best attribute to impute

after that first process is completed is then determined, and its values are imputed. The process

continues until there are no attributes that contain missing values.

The order of selection of attributes for imputation is determined by the FIM, which is deter-

mined by calculating the variable importance for each attribute of the data set and arranging

the values in descending order. Because it is an iterative approach, IBFI requires a termination

criterion. For this purpose, the number of missing values per sample, termed the rejection

threshold, is selected. As Fig 3 shows there exist multiple features are missing at once in a sam-

ple e.g. F1 and F4, the rejection threshold is the extent to which we want to impute the number

of missing values per sample. If the rejection threshold is 3 it means that if the number of miss-

ing values per sample is greater than 3, those samples will be rejected, and all the other samples

get imputed in their respective scans. The methodology works in such a way that during the

first iteration when keeping the rejection threshold of 3; all the samples having missing values

of count 3 will be reduced to missing at 2 per sample as shown in Fig 4. After the second itera-

tion, missing at 2 per sample will be reduced to missing at one per sample and further missing

at one per sample is imputed and we got full imputed data other than those samples whose

missingness count lies above the rejection threshold. Moreover, the proposed methodology

uses model reusability to make it asymptotically better by storing the models which are fitted

during subsequent iterations. The models are stored in such a way that if F1 is the dependent

feature while F2 and F3 are independent features then model is stored in the memory as M123.

In the subsequent iterations e.g. missing at 3 features is reduced to missing at 2 features and

Fig 4. Proposed methodology to select a feature needed to imputed first in imputation by feature importance (IBFI) method.

https://doi.org/10.1371/journal.pone.0262131.g004
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again F1 needs to be trained using F2 and F3; instead of fitting another model the same model

M123 will be used to impute the value for F1. The sequence of imputation of values for the

missing features in different samples differs from each other. The whole procedure is scanning

the impure dataset as per the rejection threshold. Consider data row 1, the features F1 and F5

having a missing value while data row 100 have missing values at features F1, F2, and F5. Data

row 1 has F2, F3, and F4 feature values available to predict the value of F1 and F5 whilst F3 and

F4 have only available feature values to predict the missing value of F1, F2, and F5. During

scan 1 and iteration 1, the feature importance matrix directs the algorithm to predict the miss-

ing value of F1 using the model fitted on features F2, F3, and F4 by considering F1 as a

response and F2, F3, and F4 as predictor features. After predicting and imputing the missing

value of F1, the model should store as M1234 for future patterns. Through the same iteration

when scanning data row 100, the feature importance matrix directs the algorithm to impute

the value of F2 which is missing by taking F2 as a response attribute while F3 and F4 as predic-

tor attributes. After predicting and imputing the missing value of F2, the data row 100 has now

an available value of F2 to predict other features. Now consider the second iteration and scan

100, the feature importance matrix directs the algorithm to impute the value of F1 first instead

of F5. Currently, F2, F3, and F4 are available values to predict the missing value of F1. Instead

of fitting another model to predict the missing value of F1, the previously generated M1234

model is reused and values of F2, F3, and F4 are passed to that model to predict the missing

value of F1. The reusability of the already fitted model to impute the similar missing patterns

enhance the performance and reduces the time and space requirements.

Results and discussion

The MAPE and PB statistics for all methods tested are shown in Tables 2 and 3 for all variables,

radon (RN), thoron (TH), temperature (TC), relative humidity (RH), and pressure (PR), for

20% MCAR, MNAR, and MAR data. All methods had<0.03% MAPE for PR, expected as

pressure variations are generally very small and regular in time. RN and TH had similar statis-

tics for a given method, with IBFI performing the best compared to all other methods. As

shown in this table, for 20% missingness the MAPE for IBFI for RN ranged between 0.50 and

0.53%, with this statistic being up to 1.8 times higher for Hotdeck. IBFI is similarly superior to

all other methods for imputing TC values. The average MAPE for 20% MCAR was 0.8%

Table 2. MAPE and PB statistics for IBFI compared with other imputation methods (mean, median, mode, PMM, and Hotdeck) for 20% missingness of type

MCAR and MAR and all parameters tested (RN, TH, TC, RH, and PR).

Method Statistics MCAR 20% MNAR 20%

RN TH TC RH PR RN TH TC RH PR

IBFI MAPE 0.53% 0.48% 0.83% 0.24% 0.01% 0.52% 0.46% 0.54% 0.18% 0.01%

IBFI PB -0.04% -0.05% -0.18% -0.01% 0.00% 0.31% 0.21% 0.12% 0.07% 0.01%

Mean MAPE 0.69% 0.72% 2.78% 0.74% 0.02% 0.67% 0.75% 1.71% 0.47% 0.02%

Mean PB -0.05% -0.11% -1.38% -0.18% 0.00% 0.42% 0.42% 0.46% 0.34% 0.01%

Median MAPE 0.69% 0.71% 2.84% 0.75% 0.02% 0.63% 0.77% 1.70% 0.37% 0.02%

Median PB -0.13% -0.05% -1.56% -0.36% 0.00% 0.35% 0.47% 0.38% 0.18% 0.01%

Mode MAPE 0.72% 1.07% 3.01% 0.75% 0.03% 0.86% 1.42% 2.91% 0.30% 0.03%

Mode PB 0.17% 0.98% 2.61% -0.18% 0.02% 073% 1.40% 2.71% -0.14% 0.03%

PMM MAPE 0.81% 0.71% 1.28% 0.33% 0.02% 0.77% 0.67% 0.82% 0.26% 0.02%

PMM PB -0.09% -0.11% -0.24% -0.01% 0.00% 0.32% 0.21% 0.10% 0.08% 0.01%

Hotdeck MAPE 0.95% 0.98% 3.47% 0.96% 0.03% 0.88% 0.94% 2.24% 0.64% 0.03%

Hotdeck PB -0.02% -0.14% -1.34% -0.13% 0.00% 0.45% 0.42% 0.40% 0.34% 0.01%

https://doi.org/10.1371/journal.pone.0262131.t002
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compared to 1.3–3.5% for other methods. For TC, and 20% MNAR, IBFI had a MAPE of 0.5%

compared to 0.8% to 2.9% for other methods. The 20% MAR data has similar results, namely

1% for IBFI compared to 1.4–3.9% MAPE for other methods. When PB is considered, the

absolute percent bias for IBFI was lower than for all other methods and variables for 20%

MNAR, MCAR, and MAR data with 20% missingness.

Fig 5 shows the results when the statistics are normalized to the same statistic averaged over

all of the methods, then averaged across all variables. The average statistics are calculated for

all variables across different missingness scenarios such as MCAR, MNAR, and MAR. Firstly,

the average of each performance metric among all imputation methods is calculated for the

entire variables across different missingness scenarios with their associated missingness per-

centages. Secondly, each value in different missingness scenarios such as MCAR 10% is nor-

malized with respect to different performance metrics by dividing with the corresponding

average value calculated in step 1. This results in normalized values of each performance met-

ric across different missingness scenarios for different missingness percentages. Thirdly, the

averages of different metrics for all the variables are calculated with respect to imputation

method. As can be observed in Fig 5, there is little difference as a function of data missingness

type and degree for the RMSE, RMSLE, MAPE, and MSE statistics. IBFI is superior for all

cases for these statistics. The percent bias (PB), as illustrated in Fig 6, appears to be somewhat

dependent upon both the type and degree of missingness. For MCAR data, the PB for IBFI is

similar to Hotdeck and PMM for 10% missingness, but superior for greater degrees of missing-

ness (20%, 30%). With MNAR data, PB shows only positive bias. IBFI is similar to PMM for all

degrees of missingness but better than the other methods for these. When missingness is

MAR, mixtures of negative and positive PB are observed. IBFI has a similar PB to Hotdeck and

Mean at 10% MAR, and to PMM at 10% and 20% MAR. For Mode>10% MAR missingness,

IBFI shows lower PB than all methods.

The complete statistical results (RMSE, RMSLE, MAPE, MSE, PB) for IBFI compared with

other methods (mean, median, mode, PMM, Hotdeck) for different types (MCAR, MNAR,

MAR) and degrees (10%, 20%, 30%) of data missingness are provided in the supplementary

materials.

Fig 7A–7C shows the previously fitted model reusability in subsequent scans at missing

completely at random with different missingness percentages ranging from 10 to 30 percent.

Table 3. MAPE and PB statistics for IBFI compared with other imputation methods (mean, median, mode, PMM, and Hotdeck) for 20% missingness of type MAR

and all parameters tested (RN, TH, TC, RH, and PR).

Method Statistics MAR 20%

RN TH TC RH PR

IBFI MAPE 0.50% 0.48% 0.97% 0.23% 0.01%

IBFI PB 0.01% -0.03% -0.16% -0.01% 0.00%

Mean MAPE 0.65% 0.74% 3.08% 0.63% 0.02%

Mean PB 0.17% -0.15% -2.28% -0.24% -0.01%

Median MAPE 0.63% 0.73% 3.14% 0.66% 0.02%

Median PB 0.09% -0.09% -2.37% -0.41% -0.01%

Mode MAPE 0.75% 0.71% 2.82% 0.93% 0.02%

Mode PB 0.44% 0.10% 2.38% -0.90% 0.01%

PMM MAPE 0.78% 0.68% 1.39% 0.36% 0.02%

PMM PB -0.02% -0.06% -0.28% -0.03% 0.00%

Hotdeck MAPE 0.92% 1.00% 3.93% 0.83% 0.03%

Hotdeck PB 0.19% -0.14% -2.34% -0.26% -0.01%

https://doi.org/10.1371/journal.pone.0262131.t003
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On the X-axis there is a sample number in subsequent iterations while model hit rate and

model creation is shown on the Y-axis. The proposed methodology uses model reusability by

keeping the models which are fitted during subsequent iterations for future patterns. Fig 7A

shows that with the processing of samples, fitted models are stored and in the subsequent sam-

ples those models are utilized that is represented with the black dotted line. Fig 7A–7C shows

that with the advancement of samples the model hit rate increases rapidly and is shown in

Fig 5. Statistics for IBFI compared with other methods (mean, median, mode, PMM, Hotdeck) normalized to the

average statistic for all methods averaged across different variables, showing RMSE, RMSLE, MAPE, and MSE.

https://doi.org/10.1371/journal.pone.0262131.g005
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black dotted line. Model hit reflects the previous model’s reusability. While imputing each

value, before model creation, the current formulated model directed by the feature importance

matrix is searched in the model list. If it is found, the already fitted model should serve to pre-

dict the missing value at this stage. In the case when the model hit does not occur, the new

model is fitted for the current formulation, and the fitted model is added to the model list

which may use for further formulations. The point where the new model is created is shown as

blue bubbles. As shown the model hit rate of the proposed methodology is getting higher with

the advancement in the processing of samples. The model creation is just observed during the

first few measurements and further that models were used for the prediction of missing values

in upcoming samples. The reusability of models in such a way helps the proposed methodol-

ogy to impute the missing patterns asymptotically better in terms of time and space. The same

pattern was observed in Fig 7D–7I which shows the fitted model’s reusability statistics during

the subsequent iterations (missing not random, missing at random). The model creation was

observed just at the start of the imputation process as shown in red bubbles but the hit rate of

these fitted models increases with the advancement of measurements. This reusability results

in the efficient imputation of missing values for all the missing scenarios and makes it asymp-

totically better.

Conclusion

Real-time series often contain missing values and missingness can arise for many possible rea-

sons. The situation becomes very important when missingness induces bias in the forecasting

model. In this article a methodology has been proposed that utilizes the feature importance

and iteratively imputes the missing values in the time series data by incorporating any machine

learning model e.g. XGBoost. The proposed methodology imputes various complex patterns

of missingness and sets the rejection count that automatically rejects those samples whose

number of missing values matches the count. Missing values patterns in the data have been

Fig 6. Statistics for IBFI compared with other methods (mean, median, mode, PMM, Hotdeck) normalized to the average

statistic for all methods averaged across different variables, showing PB for 10%, 20%, and 30% MCAR, MNAR, and MAR

missingness.

https://doi.org/10.1371/journal.pone.0262131.g006
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simulated at different missing percentages ranging from 10 to 30 percent in terms of missing

completely at random (MCAR), missing not at random (MNAR) and missing at random

(MAR) scenarios. In this way, artificially missing value patterns have been introduced in differ-

ent features. On imputing the same incomplete data, the proposed methodology outperforms

than other frequently used methods such as mean, median, mode, predictive mean matching,

and hot-deck imputation. Different statistical parameters, viz. RMSE, RMSLE, MAPE, and

MSE, have been calculated and indicates that the proposed methodology-based results got very

less error values when compared to other imputation methods at different missing scenarios of

MCAR, MNAR, and MAR with the percentages of 10, 20, and 30 percent. The findings of the

study show that the efficiency of the proposed methodology lies in the selection of the best pre-

dictor variable for different missingness patterns and the utilization of previously fitted mod-

els. The runtime decision of choosing the best and available predictor variables for different

Fig 7. Previously fitted model reusability in subsequent scans with different missingness percentages ranging from 10 to 30 percent, for data missing,

with data: a/b/c) completely at random, d/e/f) not at random, and g/h/i) at random.

https://doi.org/10.1371/journal.pone.0262131.g007
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response variables results in the efficient development of machine learning model for imputing

the values. As far as future directions are of concern, the application of the proposed method-

ology to other fields of research may be of interest such as electric load forecasting and medical

databases. Imputation by feature importance (IBFI) can be extended to add class information

while imputing supervised classification datasets.
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Supervision: Fatih Vehbi Çelebi, Muhammad Rafique.

Validation: Adil Aslam Mir, Fatih Vehbi Çelebi, Muhammad Rafique.

Visualization: Adil Aslam Mir, Kimberlee Jane Kearfott, Fatih Vehbi Çelebi, Muhammad
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