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Abstract

Background: Protein tyrosine phosphatase non-receptor 12 (PTPN12) is ubiquitously tyrosine phosphatase with
tumor suppressive properties.

Methods: PTPN12 expression was analyzed by immunohistochemistry on a tissue microarray with 13,660 clinical
prostate cancer specimens.

Results: PTPN12 staining was typically absent or weak in normal prostatic epithelium but seen in the majority of
cancers, where staining was considered weak in 26.5%, moderate in 39.9%, and strong in 4.7%. High PTPN12
staining was associated with high pT category, high classical and quantitative Gleason grade, lymph node
metastasis, positive surgical margin, high Ki67 labeling index and early prostate specific antigen recurrence (p <
0.0001 each). PTPN12 staining was seen in 86.4% of TMPRSS2:ERG fusion positive but in only 58.4% of ERG negative
cancers. Subset analyses discovered that all associations with unfavorable phenotype and prognosis were markedly
stronger in ERG positive than in ERG negative cancers but still retained in the latter group. Multivariate analyses
revealed an independent prognostic impact of high PTPN12 expression in all cancers and in the ERG negative subgroup
and to a lesser extent also in ERG positive cancers. Comparison with 12 previously analyzed chromosomal deletions
revealed that high PTPN12 expression was significantly associated with 10 of 12 deletions in ERG negative and with 7 of
12 deletions in ERG positive cancers (p< 0.05 each) indicating that PTPN12 overexpression parallels increased genomic
instability in prostate cancer.

Conclusions: These data identify PTPN12 as an independent prognostic marker in prostate cancer. PTPN12 analysis,
either alone or in combination with other biomarkers might be of clinical utility in assessing prostate cancer
aggressiveness.

Keywords: PTPN12, Prostate cancer, Prognosis, Immunohistochemistry

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

* Correspondence: r.simon@uke.de
†Sören A. Weidemann and Charlotte Sauer contributed equally to this work.
1Institute of Pathology, University Medical Center Hamburg-Eppendorf,
Martinistrasse 52, 20246 Hamburg, Germany
Full list of author information is available at the end of the article

Weidemann et al. BMC Cancer          (2019) 19:944 
https://doi.org/10.1186/s12885-019-6182-3

http://crossmark.crossref.org/dialog/?doi=10.1186/s12885-019-6182-3&domain=pdf
http://orcid.org/0000-0003-0158-4258
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:r.simon@uke.de


Background
With more than 1.3 million estimated new cases world-
wide in 2018, prostate cancer is the most common cancer
in males in over one-half of the countries of the world [1].
The clinical course is highly variable. In elderly and
symptom-free patients watchful waiting and active surveil-
lance are alternatives to surgical therapy in localized
disease [2]. The currently available criteria used for the
distinction between high risk and low risk patients, such
as Gleason grade, clinical stage and prostate specific anti-
gen (PSA) level, are statistically powerful but not sufficient
to enable optimal treatment decisions for every patient.
To more reliably prevent unnecessary treatments better
prognostic markers are needed.
Protein tyrosine phosphatase non-receptor 12 (PTPN12)

is a member of the protein tyrosine phosphatases family,
which is ubiquitously expressed [3, 4]. It dephosphorylates
cellular tyrosine kinases, such as HER2 [5] and functions
as a tumor suppressive key regulator of signaling pathways
involved in cell-extracellular matrix crosstalk, cellular re-
sponses to mechanical stress and cell adhesion [6, 7]. The
oncogene c-ABL is an important target of PTPN12 driven
dephosphorylation resulting in its down regulation [8, 9].
A number of studies have reported that decreased expres-
sion of PTPN12 as determined by immunohistochemistry
was found to be significantly associated with advanced
tumor stage in hepatocellular [10, 11], renal cell [12], and
urinary bladder [13] as well as in squamous cell carcinoma
of the oral cavity, esophagus and nasopharynx [14–17].
High PTPN12 expression was described to be linked with
favorable survival duration in non-small cell lung carcin-
oma patients [18] and with response to neoadjuvant
chemotherapy in triple negative breast cancer [19].
Evidence suggests that PTPN12 expression might also

be relevant for prostate cancer. Using PC-3 cell lines Sahu
et al. showed a role of PTPN12 in regulating migration of
prostate cells [20]. For this purpose, a preexisting prostate
cancer tissue microarray (TMA) consisting of more than
13,000 prostate cancers with clinical follow-up informa-
tion and attached molecular data was examined for
PTPN12 expression levels.

Methods
Patients
The 13,660 patients had radical prostatectomy between
1992 and 2015 (Department of Urology and the Martini
Clinic at the University Medical Center Hamburg-
Eppendorf). Classical Gleason categories and “quantita-
tive” Gleason grading was performed as described [21].
In brief, for quantitative Gleason grading the percentage
of Gleason 4 patterns was recorded to categorize the
Gleason grades in 12 groups. Follow-up was available for
12,208 patients with a median follow-up of 49 months
(Table 1). PSA recurrence was defined as the time point

when postoperative PSA level was ≥0.2 ng/ml. The TMA
was produced with a single 0.6 mm core taken from a
tumor containing tissue block for each patient [22]. The
attached molecular database included data on Ki67 la-
beling index (Ki67LI) [23], HER2 immunostaining [24],
ERG expression and ERG rearrangement analysis by
fluorescence in situ hybridization (FISH) [25, 26], as well
as deletion status of 5q21 (CHD1) [27], 6q15 (MAP3K7)
[28], 10q23 (PTEN) [29], 3p13 (FOXP1) [30], 13q14

Table 1 Pathological and clinical data of the arrayed prostate
cancers

No. of patients (%)

Study cohort
on TMAa

Biochemical relapse
among categories

Follow-up

n 12,208 2759 (22.6%)

Mean / median (month) 59 / 49 –

Age (y)

≤ 50 310 54 (17.4%)

51–59 3278 656 (20.0%)

60–69 7539 1693 (22.5%)

≥ 70 2251 501 (22.3%)

Pretreatment PSA (ng/ml)

< 4 1659 242 (14.6%)

4–10 7942 1355 (17.1%)

10–20 2807 737 (26.3%)

> 20 940 397 (42.2%)

pT stage (AJCC 2002)

pT2 8646 1095 (12.7%)

pT3a 2904 817 (28.1%)

pT3b 1765 796 (45.1%)

pT4 68 51 (75%)

Gleason grade

≤ 3 + 3 2638 264 (10.0%)

3 + 4 7172 1436 (20.0%)

3 + 4 Tert.5 645 165 (25.6%)

4 + 3 1224 683 (55.8%)

4 + 3 Tert.5 987 487 (49.3%)

≥ 4 + 4 756 531 (70.2%)

pN stage

pN0 7899 1821 (23.1%)

pN+ 855 546 (63.9%)

Surgical margin

Negative 10,768 1833 (17.0%)

Positive 2613 1059 (40.5%)

Abbreviation: AJCC, American Joint Committee on Cancer
a Numbers do not always add up to 13,660 in the different categories because
of cases with missing data
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[31], 18q21 [32], 8p21 [33], 12p13 [34], 12q24 [35],
16q24 [36] and 17p13 [37]. Furthermore, data from dele-
tions of 5q13 (5441 tumors, unpublished) were available.

Immunohistochemistry (IHC)
Tissue microarray sections were stained in a single ex-
periment. Slides were dewaxed and heated for 5 min at
121 °C in pH 9.0 antigen retrieval buffer. Primary anti-
body HPA007097 specific for PTPN12 (rabbit polyclonal
antibody, dilution 1:450; Sigma-Aldrich, St. Louis, Missouri,
USA) was applied at 37 °C for 60min. This antibody was
comprehensively validated externally (https://www.protei
natlas.org/ENSG00000127947-PTPN12/antibody#ICC) [38,
39]. Bound antibody was visualized with the EnVision
Kit (Dako, Glostrup, Denmark). PTPN12 typically
shows cytoplasmic staining of all tumor cells (100%)
of a positive tissue spot with equal staining intensity.
Thus, only staining intensity was recorded in a semi

quantitative 4-step scale. ‘Negative’ was assigned if no
detectable staining was present. ‘Strong’ was assigned
to all tumors showing intense, dark brown staining.
‘Weak’ or ‘moderate’ was assigned to cancer showing
staining intensities in between; e.g. as shown in Fig. 1.
To rule out interobserver variability scoring was based
on a single observer.

Statistics
Contingency tables and the chi2-test were utilized to
examine associations between molecular and histopatho-
logical tumor parameters. Kaplan-Meier curves were
compared by the log-rank test to detect significant dif-
ferences between groups. Cox proportional hazards re-
gression analysis was performed to test for statistical
independence between pathological, molecular and clin-
ical variables. All calculations were performed with JMP
12 (SAS Institute Inc., NC, USA).

Fig. 1 Representative images of PTPN12 staining in normal (a) and cancerous glands (b-e) with negative (b), weak (c), moderate (d) and strong
(e) staining. Spot size is 600 μm at 100 / 400x magnification
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Results
Technical aspects
A total of 10,317 (76%) of the 13,660 arrayed tumor
samples displayed interpretable PTPN12 staining. Non-
informative cases (24%) were caused by lack of tissue at
certain TMA spots or absence of unequivocal cancer
cells.

PTPN12 protein expression in normal and cancerous
prostate tissues
In normal prostate epithelial cells, PTPN12 was negative
or displayed a weak cytoplasmic immunostaining while
basal cells frequently had a moderate positivity (Fig. 1).
PTPN12 immunostaining was often more intense in can-
cers. It was considered negative in 28.9%, weak in 26.5%,
moderate in 39.9%, and strong in 4.7% of cancers
(Table 2). High level PTPN12 staining was associated
with advanced pT category, high conventional and quan-
titative Gleason grade, and positive surgical margin
status and to a higher likelihood for PSA recurrence
(p < 0.0001 each).
It is of note that the prognostic impact of high

PTPN12 staining (Fig. 2a) was also retained in PTEN de-
leted cancers (Fig. 2e) and in cancers with a Gleason 3 +
4 (Fig. 2g) or Gleason ≥4 + 3 (Fig. 2h). It disappeared in
most of the quantitative Gleason categories (Additional
file 1: Figure S1 b-g) and remained in the category with
the highest percentage of Gleason 4 patterns (Additional
file 1: Figure S1 h).

PTPN12 and TMPRSS2:ERG fusion status
ERG fusion status by FISH and by IHC was available
from 5515 and 8134 tumors respectively (Fig. 3). Con-
cordant results regarding the ERG status using IHC and
FISH was obtained in 95.4% of cases. PTPN12 immuno-
staining was more prevalent in ERG fusion positive than
in ERG wild type cancers. PTPN12 immunostaining was
seen in 86.4% of ERG IHC positive and in only 58.4% of
ERG IHC negative cancers (p < 0.0001). Because of these
differences, all analyses comparing PTPN12 expression
and tumor phenotype or prognosis were also performed
in subgroups of ERG positive and negative cancers. This
revealed a tighter relationship of high PTPN12 staining
levels with unfavorable tumor features in ERG negative
than in ERG positive cancers (Fig. 2b and c; Additional
file 1: Tables S1 and S2). This was particularly evident
for the relationship with PSA recurrence, which was
striking in ERG negative (p < 0.0001, Fig. 2b) but much
less strong in ERG positive cancers (p = 0.0055, Fig. 2c).

PTPN12 and chromosomal deletions
For all analyzed chromosomal regions, PTPN12 immu-
nostaining was always stronger and more frequent in
cases of deletion (Fig. 4a). This was particularly evident

in the subgroup of ERG negative cancers where this
difference was statistically significant for 9 of 12 dele-
tions (p < 0.0005 each, Fig. 4b). In ERG positive cancers,
a statistically significant difference was still seen for 7 of
12 analyzed deletions (p < 0.05 each, Fig. 4c).

Table 2 PTPN12 staining results of the primary tumor and
prostate cancer phenotype in all cancers

Parameter N PTPN12 (%) P

Negative Weak Moderate Strong

All cancers 10,317 28.9 26.5 39.9 4.7

Tumor stage < 0.0001

pT2 6438 32.8 26.9 36.7 3.6

pT3a 2385 24.2 25.7 44.6 5.5

pT3b-pT4 1448 19.5 26.0 47.0 7.6

Gleason grade < 0.0001

≤ 3 + 3 1999 39.6 29.1 26.5 4.8

3 + 4 5526 29.2 26.9 40.3 3.6

3 + 4 Tert.5 444 26.4 26.1 44.4 3.2

4 + 3 1030 20.8 26.0 47.0 6.2

3 + 4 Tert.5 711 18.1 20.1 53.9 7.9

≥ 4 + 4 599 18.9 23.9 48.7 8.5

Quantitative Gleason grade < 0.0001

≤ 3 + 3 1971 39.7 29.1 26.3 4.8

3 + 4 ≤ 5% 1305 33.4 27.2 36.2 3.2

3 + 4 6–10% 1288 31.4 26.8 38.5 3.3

3 + 4 11–20% 1059 28.0 25.1 44.2 2.6

3 + 4 21–30% 600 25.0 26.7 42.7 5.7

3 + 4 31–49% 483 26.5 25.5 43.9 4.1

3 + 4 Tert.5 323 28.2 28.2 41.8 1.9

4 + 3 50–60% 400 22.0 23.5 49.0 5.5

4 + 3 61–80% 345 20.0 25.2 51.0 3.8

4 + 3 > 80% 93 19.4 25.8 43.0 11.8

4 + 3 Tert.5 518 20.5 21.6 53.3 4.6

≥ 4 + 4 406 20.4 25.6 48.3 5.7

Lymph node metastasis < 0.0001

N0 6081 27.0 26.4 41.9 4.8

N+ 718 17.4 22.0 53.5 7.1

Preoperative PSA level (ng/ml) 0.0158

< 4 1222 25.1 26.1 42.7 6.1

4–10 6084 29.4 26.8 39.6 4.2

10–20 2146 29.7 25.4 39.7 5.1

> 20 752 27.9 28.1 39.5 4.5

Surgical margin < 0.0001

Negative 8120 30.0 26.5 39.3 4.2

Positive 1982 24.3 27.0 42.2 6.4
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Fig. 2 Association between PTPN12 expression and biochemical recurrence in (a) all cancers, (b) ERG-fusion negative cancers, (c) ERG-fusion
positive cancers, (d) PTEN normal cancers, (e) PTEN deleted cancers, (f) Gleason grade 3 + 3, (g) Gleason grade 3 + 4 and (h)
Gleason grade≥ 4 + 3
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PTPN12, tumor cell proliferation and HER2
immunostaining
High levels of PTPN12 staining were linked to increased
cell proliferation as determined by the Ki67-labeling
index (Ki67LI). The average Ki67LI increased from 1.82
in PTPN12 negative cancers to 3.61 in cancers with
strong PTPN12 staining (Table 3). This association was
independent from Gleason score as it held true in all
subgroups with high significance (p < 0.0001 each) ex-
cept for Gleason score ≥ 4 + 3 (p < 0.0047).
PTPN12 staining was significantly associated with the

expression of HER2 protein (Fig. 5). Negative PTPN12
staining was seen in 32% of HER2 negative cancers and
in 17% of HER2 positive cancers. The same effect was
seen in both ERG subsets.

Multivariate analysis
Four different models were analyzed (Additional file 1:
Table S3): Scenario 1 included the postoperatively avail-
able parameters pT, pN, surgical margin status, preopera-
tive PSA value and prostatectomy Gleason grade. Scenario
2 excluded pN, because the lymph node dissection is not
standardized and may introduce a bias towards high-grade
cancers. Scenario 3 was a mix of pre- and postoperative
parameters (PTPN12 staining, preoperative serum PSA,
clinical tumor stage (cT) and the prostatectomy Gleason
grade). Since it is well documented that sampling differ-
ences lead to up-grading of the postoperative Gleason
grades in 36% of cases [40], this parameter was replaced
by the original preoperative biopsy Gleason grade in
Scenario 4. These analyses identified PTPN12 as an inde-
pendent prognostic feature in all 4 scenarios, if the entire
cohort or the subgroup of ERG negative cancers was
considered (p < 0.0005 each). Independent prognostic

impact, although weaker, was also seen in the ERG posi-
tive cancer subset (p < 0.005 each). The hazard ratio for
PSA recurrence after radical prostatectomy for strong ver-
sus negative PTPN12 expression was in the univariate
model a weak 1.85 for all cancers and a moderate 2.50 in
the ERG negative subset as compared with 6.01 for the
Gleason grade at biopsy (Table 4).

Discussion
These data identify high PTPN12 expression as an inde-
pendent predictor of poor prognosis in prostate cancer.
That PTPN12 immunostaining increased from normal

to cancerous epithelial cells in combination with the
marked further increase of PTPN12 expression with ad-
vanced tumor stage and high Gleason grade, demon-
strates that elevated PTPN12 expression parallels tumor
development and progression in a fraction of prostate
cancers. The striking prognostic role of high PTPN12
expression being independent of all established prognos-
tic features available before and after prostatectomy in
our study on 13,660 cancers was not expected. Both
functional data from prostate cancer cell lines [20] and
earlier reports on PTPN12 down regulation in other
cancer types [10–19] suggest a tumor suppressor func-
tion of PTPN12. However, that tumor suppressor genes
are overexpressed in cancer cells is not uncommon. For
example, the tumor suppressor p16 is markedly up regu-
lated in cells infected by human papilloma virus in an at-
tempt to compensate for disrupted p53 and rb pathways
[41, 42]. P16 expression is so massive in affected cells,
that p16 expression analysis can be used in HPV associ-
ated neoplasia in routine diagnostic [43, 44]. Moreover,
it is well possible that the causes and consequences of
PTPN12 overexpression differ between different cancer
types. Some studies analyzing the prognostic value of
PTPN12 in small cohorts of up to 250 patients report a
positive correlation of increased PTPN12 expression and
outcome in non small cell lung cancer [18], breast can-
cer [45] and squamous cell carcinoma [14], whereas
Zhangyuan et al. found a contrary result in their study
in at least one subgroup of non-hepatitis B-positive pa-
tients with hepatocellular carcinoma [11]. At present,
there is no mechanistic explanation for these findings.
However, similar observations have been reported from
the tumor suppressor checkpoint kinase 2 (CHK2), a
protein interacting with p53 and BRCA1. Both reduced
and increased CHK2 expression has been described in
different tumor types to be associated with poor patient
prognosis [46–48]. The largest study investigating the
prognostic role of CHK2 expression on more than 1000
well characterized breast cancers failed to show a prog-
nostic impact of CHK2 expression in all cancers but re-
vealed associations of high CHK2 expression with poor
patient outcome in p53 positive and ER negative cancers

Fig. 3 Association between PTPN12 staining and ERG-status in IHC
and FISH analysis
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Fig. 4 Association between PTPN12 staining and common chromosomal deletions in a all cancer, b in ERG negative cancers and c in ERG
positive cancers
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while low CHK2 expression was linked to poor progno-
sis in ER positive cancers [49].
The TMA used in this study had earlier been utilized for

dozens of studies evaluating the clinical relevance of mo-
lecular features in prostate cancer [50]. This led to an accu-
mulation of relevant molecular information for our patient
cohort that can potentially be utilized to hypothesize on the
possible functional role of new genes of interest. For the
purpose of this study, we compared PTPN12 expression
with TMPRSS2:ERG fusion because this is the most com-
mon molecular alteration in prostate cancer [51], 12 differ-
ent chromosomal deletions representing the next most

Table 3 Association between PTPN12 expression and Ki67-
labeling index

Gleason (p-value) PTPN21 N Ki67 LI
(mean ± SEM)

All (p < 0.0001) Negative 1673 1.82 ± 0.06

Weak 1518 2.79 ± 0.07

Moderate 2103 3.36 ± 0.06

Strong 198 3.61 ± 0.18

≤3 + 3 (p < 0.0001) Negative 492 1.50 ± 0.09

Weak 362 1.98 ± 0.11

Moderate 332 2.39 ± 0.11

Strong 49 2.50 ± 0.29

3 + 4 p < 0.0001 Negative 926 1.59 ± 0.07

Weak 863 2.58 ± 0.08

Moderate 1301 3.10 ± 0.06

Strong 96 2.67 ± 0.23

4 + 3 (p < 0.0001) Negative 189 1.8676 ± 0.26

Weak 223 2.9945 ± 0.24

Moderate 350 3.7877 ± 0.19

Strong 38 3.4073 ± 0.57

≥4 + 3 (p = 0.0047) Negative 54 1.5949 ± 1.5949

Weak 65 3.8142 ± 3.8142

Moderate 107 4.1036 ± 4.1036

Strong 14 4.3912 ± 4.3912

Table 4 Cox proportional hazards for PSA recurrence-free
survival after prostatectomy of established preoperative
prognostic parameter and PTPN12 expression

Variable Univariable analysis Multivariable analysis

Gleason grade biopsy

≥ 4 + 4 vs. ≤3 + 3 6.01 (5.41–6.66) *** 4.21 (3.71–4.79) ***

Preoperative PSA-level (ng/μl)

> 20 vs. < 4 5.12 (4.46–5.89) *** 3.14 (2.61–3.80) ***

cT-stage

T2c vs. T1c 3.95 (3.24–4.76) *** 2.08 (1.66–2.58) ***

PTPN12 expression

Strong vs. negative 1.85 (1.53–2.23) *** 1.71 (1.40–2.07) ***

ERG negative subset 2.50 (1.82–3.35) *** 2.28 (1.65–3.09) ***

ERG positive subset 1.51 (1.23–2.02) * 1.37 (1.01–1.85) *

Confidence interval (95%) in brackets; asterisk indicate significance level: * p ≤
0.05, ** p ≤ 0.001, *** p ≤ 0.0001; ERG ETS-related gene

Fig. 5 PTPN12 staining and HER2 expression in all cancers, the ERG negative, and the ERG positive subset
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common genomic alterations in prostate cancer [52], the
Ki67 labeling index because of its pivotal role in cancer
aggressiveness [53], and immunohistochemical HER2 ex-
pression because of the earlier well described interaction
with PTPN12 [3, 54]. The significant association of
PTPN12 and HER2 expression seen in our patients there-
fore fits well. TMPRSS2:ERG fusions occur in about 50% of
prostate cancers and result in a permanent expression of
the transcription factor ERG. ERG activation by itself lacks
prognostic relevance [25] but modulates the expression of
more than 1600 genes in affected cells [55]. Our data
identify PTPN12 protein as another protein whose expres-
sion was increased in ERG positive compared to ERG nega-
tive cancers.
That the prognostic role of PTPN12 was more striking

in ERG negative and somewhat less prominent in ERG
positive cancers fits with the observation, that many mo-
lecular features that show different prevalence in ERG
positive and ERG negative cancers have a different im-
pact on patient prognosis in these subgroups. For ex-
ample, the prognostic impact of SOX9 [56], SENP1 [57]
and mTOR [58] was limited to ERG positive cancers
while FOXA1 [59], MTCO2 [60] and FOXP2 [61] were
only prognostic in ERG negative cancers. It is well con-
ceivable that differences in the cellular microenviron-
ment with more than 1600 dysregulated genes in ERG
activated cancers impact the biological effect of molecu-
lar features such as PTPN12. Dependency of the prog-
nostic impact of biomarkers on other specific molecular
tumor features is likely to constitute a significant chal-
lenge for the development of prognostic prostate cancer
tests.
Most chromosomal deletions are linked to either posi-

tive or negative ERG status [28–30, 62]. Molecular fea-
tures that are also linked to the ERG status, such as
PTPN12, are thus expected to show statistically signifi-
cant associations with ERG dependent deletions. That a
separate analysis of subgroups identified significant rela-
tionship between high PTPN12 expression and 10 of 12
deletions in ERG negative and of 7 of 12 deletions in
ERG positive cancers shows, however, that elevated
PTPN12 levels preferentially occur under conditions
linked to genomic instability in prostate cancers. That
none of the deletions examined in this study was more
prominently linked to PTPN12 expression argues against
a relevant functional relationship of PTPN12 with genes
impacted by these deletions. It seems more likely that
the PTPN12 up regulation results from a general re-
sponse to genetic instability. One of PTPN12s substrates,
WASP [63], mediates homology-direct repair together
with Arp2/3 in DNA double-strand breaks [64] and
could therefore be a conceivable link to PTPN12 overex-
pression. Also Tang et al. were able to demonstrate that
suppression of FAK1, also a target of PTPN12-

dephosphorylation [65], leads to activation of DNA re-
pair in lung cancer [66].
Besides the two mentioned, 16 more substrates of

PTPN12 are currently known including HER2, PYK2,
PSTPIP, p130CAS/BCAR1, paxillin, Shc, catenin, c-Abl,
ArgBP2, CAKß and members of the Rho proteins [3, 9,
63, 65, 67–74]. Several of these genes play a particular
role in the growth controlling EGFR-pathway, which fits
well to the markedly elevated Ki67 LI in cancers with
high PTPN12 expression. Especially FAK1 is of particu-
lar interest in this context. For example, in colonic car-
cinoma, Fonar and Frank were able to show that FAK is
in connection with the Wnt signaling pathway at several
sites [75]. In particular, cell cycle control is regulated by
transcriptional control of cyclin D1 via FAK. In turn, the
Wnt signaling pathway is known to be massively up reg-
ulated in ERG translocated prostate carcinomas [76].
This fits with our observations suggesting that this path-
way is strongly driven in ERG positive tumors.
This study suggests that PTPN12 expression may rep-

resent a useful prognostic biomarker in prostate cancer.
This is not only illustrated by the statistical independ-
ence of all established prognostic parameters, even if pa-
rameters are included that are – such as pT and pN –
unavailable at the time, when therapeutic decisions are
taken. Moreover, PTPN12 retained prognostic impact in
molecularly defined high risk groups such as in PTEN
deleted cancers and in some morphologically defined
high-risk groups such as in Gleason 3 + 4 cancers. That
PTPN12 expression analysis was not better than Gleason
grading does not compromise the potential for PTPN12
expression analysis, however. Although Gleason grading
is a very powerful statistical parameter, it suffers from
notorious interobserver heterogeneity, which is in the
range of 40% [77, 78]. Accordingly, there is not only a
need for better predictors of PCA aggressiveness than
the established ones but also for more reproducible
ones. Molecular analysis may, thus, help to improve
standardization of prognosis assessment in the future.

Conclusions
This study identifies PTPN12 expression measurement
as a valuable prognostic marker in prostate cancer.
PTPN12 analysis, either alone or in combination might
be of clinical utility in the prognostic assessment of
prostate cancers.
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Supplementary information accompanies this paper at https://doi.org/10.
1186/s12885-019-6182-3.

Additional file 1: Table S1. Association between protein tyrosine
phosphatase non-receptor 12 (PTPN12) staining results and prostate can-
cer phenotype in ERG fusion negative tumors. Table S2. Association
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between protein tyrosine phosphatase non-receptor 12 (PTPN12) staining
results and prostate cancer phenotype in ERG fusion positive tumors.
Table S3. Multivariate analysis including PTPN12 expression in all cancers,
ERG negative and ERG positive cancers. Figure S1. PTPN12 expression
(negative vs. strong) and biochemical recurrence in (a) classic Gleason
grade (b) < 5% Gleason 4, (c) 6–10% Gleason 4, (d) 11–20% Gleason 4, (e)
21–30% Gleason 4, (f) 31–49% Gleason 4, (g) 50–60% Gleason 4, (h) 61–
100% Gleason 4.
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