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Hepatocellular carcinoma (HCC) is one of the most common malignancies, which causes serious financial burden worldwide. This
study aims to investigate the potential mechanisms contributing to HCC and identify core biomarkers. The HCC gene expression
profile GSE41804 was picked out to analyze the differentially expressed genes (DEGs). Gene ontology (GO) and the Kyoto
Encyclopedia of Genes and Genomes (KEGG) analyses were carried out using DAVID. We constructed a protein-protein
interaction (PPI) network to visualize interactions of the DEGs. The survival analysis of these hub genes was conducted to
evaluate their potential effects on HCC. In this analysis, 503 DEGs were captured (360 downregulated genes and 143
upregulated genes). Meanwhile, 15 hub genes were identified. GO analysis showed that the DEGs were mainly enriched in
oxidative stress, cell cycle, and extracellular structure. KEGG analysis suggested the DEGs were enriched in the absorption,
metabolism, and cell cycle pathway. PPI network disclosed that the top3 modules were mainly enriched in cell cycle, oxidative
stress, and liver detoxification. In conclusion, our analysis uncovered that the alterations of oxidative stress and cell cycle are
two major signatures of HCC. TOP2A, CCNB1, and KIF4A might promote the development of HCC, especially in proliferation
and differentiation, which could be novel biomarkers and targets for diagnosis and treatment of HCC.

1. Introduction

Primary liver cancer, the sixth most common cancer overall,
is causing the second largest number of cancer death all over
the world. Hepatocellular carcinoma (HCC) is a predomi-
nant primary liver cancer, accounting for approximately
90% of all types of primary hepatic malignancy and trigger-
ing a major international public health problem [1]. The
pathogenesis of HCC is a multistep process implicated with
the progressive accumulation of gene alterations that
pinpoint various cellular and molecular events including
oxidative stress, endoplasmic reticulum stress, and abnormal
cell cycle [2]. Take oxidative stress, for example, the increased
production of reactive nitrogen species (RNS) or reactive
oxygen species (ROS), in addition to the reduced antioxidant

defense, can accelerate the progression of HCC. To be more
specific, oxidative stress damage affects the gene expression
of cellular survival, the products of which can promote the
proliferation and differentiation of normal cells and eventu-
ally lead to the reduction of cellular apoptosis or even the
formation of the tumor cells [3].

A great body of studies have disclosed that the tumori-
genesis and progression of HCC are implicated with the
mutation and abnormal expression and of genes, involving
epidermal growth factor receptor (EGFR) [4], cyclin D1
(CCND1) [5], FoxQ1 [6], c-myc [7], as well as mutations of
some tumor-suppressor genes. However, in clinic, the serum
detection of alpha-fetoprotein (AFP), magnetic resonance
imaging (MRI), or dynamic computed tomography (CT)
scan are the conventional methods for the diagnosis and
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treatment of HCC. Lacking the specificity of auxiliary exam-
ination biomarker, it was thus difficult for physicians to
achieve accurate diagnosis and treatment of HCC as early
as possible, so some patients missed the optimal chance for
surgery, thus increasing the risk of death [8]. Hence, the iden-
tification of specific and sensitive biomarkers which can
assistant us to confirm patients at a lower or higher risk of
death from HCC is of great significance, not only for more
precise diagnosis, optimal treatment, and better prognosis,
but also for a comprehensive understanding of the cellular
and molecular mechanisms involved in carcinogenesis.

The recent adoption of high-throughput gene microarray
in analyzing tumors and normal samples from patients and
healthy individuals enables us to share and explore the global
molecular landscapes of tumors at multiple levels ranging
from somatic mutations and copy number alterations at the
genome level to gene expression at transcriptome level, as
well as epigenetic alterations [9–11]. However, the applica-
tion of microarrays in clinic is limited to a great extent
because of countless genes identified by gene profiling, lack
of both independent validation and repeatability, as well as
the complicated statistical analyses. To put these expression
profiles in clinical practice as quickly as possible, it is neces-
sary to identify a suitable amount of genes and develop a
proper approach that could be operated by routine assay.

In this study, we downloaded GSE41804 from the Gene
Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/
geo/) and utilized the GEO2R online tool to comprehensively
identify the differentially expressed genes (DEGs). Where-
after, we established protein-protein interaction (PPI)
network of the DEGs and selected the top 15 hub genes with
a high degree of connectivity. Furthermore, we analyzed the
gene ontology involving biological process (BP), molecular
function (MF), cellular component (CC), and KEGG path-
ways of the DEGs. Additionally, we constructed three mod-
ules and verified their enriched pathways. Meanwhile,
overall survival (OS) analysis of the top 15 hub genes were
carried out based on the Gene Expression Profiling Interac-
tive Analysis online database (http://gepia.cancer-pku.cn/).
Finally, we chose 3 genes to further identify the correlation
by comparing the level of the 3 genes and their protein
expression in tumor and normal tissues based on TheHuman
Protein Atlas database (http://www.proteinatlas.org).

2. Materials and Methods

2.1. Microarray Data. We downloaded the gene expression
profile of GSE41804 from the GEO database, which was a
free and publicly available database. The GSE41804 dataset
has a total of 40 samples, containing 20 HCC samples and
20 normal liver tissues, which was based on agilent GPL570
platform ([HG-U133_Plus_2] Affymetrix Human Genome
U133 Plus 2.0 Array) by Hodo et al. We also downloaded
the Series Matrix File of GSE41804 from the GEO database.

2.2. Screen Genes of Differential Expression. The differentially
expressed genes (DEGs) between HCC samples and normal
liver samples were analyzed using GEO2R (https://www
.ncbi.nlm.nih.gov/geo/geo2r/), an interactive online analysis

tool for the GEO database, which was based on R language.
We defined DEGs as differentially expressed with logFC < −
2 (upregulated genes) or logFC > 2 (downregulated genes),
according to the criteria described in [12, 13]. The adjusted
P value < 0.05 was regarded statistically significant, which
was used to decrease the false positive rate. Then, 503 DEGs
were found, including 360 upregulated genes and 143 down-
regulated genes, and we selected the top 15 genes with a high
degree of connectivity as hub genes.

In addition, we used visual hierarchical cluster analysis
to show the heat map and volcano plot of two groups by Ima-
geGP (http://www.ehbio.com/ImageGP/index.php/Home/
Index/index.html) after the relative raw data of TXT files
were downloaded.

2.3. Gene Ontology and KEGG Pathway Analysis of DEGs.
Gene ontology (GO) analysis can annotate genes and their
products with functions involving cellular components,
molecular function, as well as biological pathways [14]. The
Kyoto Encyclopedia of Genes and Genomes (KEGG) is a col-
lection of databases that could handle genomes and biologi-
cal pathways associated with diseases and drugs. KEGG
essentially is a resource for the comprehensive understanding
of biological systems and some high-level genome functional
information [15]. The Database for Annotation, Visualiza-
tion and Integrated Discovery (DAVID, http://david.ncifcrf
.gov) (version 6.7) is an online biological information data-
base which has integrated a bulk of biological data and corre-
sponding analysis tools, thereby providing systematic and
comprehensive biological function annotation information
for high throughput gene expression [16]. P < 0 05 was
regarded as the cut-off criterion with statistic difference. To
visualize the key molecular functions, biological processes,
cellular components, as well as pathways of DEGs, biological
analyses were carried out by the DAVID online database.

2.4. PPI Network and Module Analysis. The Search Tool for
the Retrieval of Interacting Genes (STRING) is an online tool
that was designed to assess and integrate the protein-protein
interaction (PPI) information, such as physical and func-
tional associations. Up to now, a total of 9,643,763 proteins
from 2031 organisms have been covered in STRING version
10.0 [17] To evaluate the interactional correlation of these
DEGs, we first drew DEGs by STRING and then utilized
the Cytoscape software to construct a PPI network. Mean-
while, we set a maximum number of interactors = 0 and a
confidence score ≥ 0 4 as the cut off criterion. Additionally,
the Molecular Complex Detection (MCODE) app was also
employed to select modules of the PPI network in the Cytos-
cape according to node score cut − of f = 0 2, degree cut − o
f f = 2, max. depth = 100, and k − core = 2. The pathway anal-
ysis of genes in the three modules was carried out based on
DAVID, respectively. Also, 15 hub genes were mapped into
STRING according to confidence score ≥ 0 4 and maximum
number of interactors ≤ 5. We also used GO and KEGG
pathway analysis to investigate their potential information.

2.5. Comparison of the Hub Gene Expression Level. GEPIA
(http://gepia.cancer-pku.cn/index.html) is a newly developed
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interactive web server designed by Zefang Tang, Chenwei Li,
and Boxi Kang of Zhang Lab, Peking University, aimed at
analyzing the RNA sequencing expression data of 9736
tumors and 8587 normal samples from the TCGA and the
GTEx projects, using a standard processing pipeline. GEPIA
provides customizable functions such as tumor/normal dif-
ferential expression analysis, profiling according to cancer
types or pathological stages, patient survival analysis, similar
gene detection, correlation analysis, and dimensionality
reduction analysis [18]. In our study, we mainly employed
the boxplot to visualize the expression of hub genes in HCC
and normal liver tissues. Then we selected two suspicious
genes to analyze their correlation in a scatter diagram. The
Human Protein Atlas (HPA, https://www.proteinatlas.org/)
is a Swedish-based program initiated in 2003 with the aim
to map all human proteins in cells, tissues, and organs using
the integration of various omics technologies, including
antibody-based imaging, mass spectrometry-based proteo-
mics, transcriptomics, and systems biology [19]. By acquiring
immunohistochemical data of patients with or without HCC
based on HPA, we further verified the expression of these
hub genes.

2.6. Survival Analysis of Hub Genes. The relapse-free and
overall survival information were based on GEPIA database.
The hazard ratio (HR) with 95% confidence intervals and
logrank P value were calculated and displayed on the plot.
P < 0 05 was considered statistically significant.

2.7. Gene Set Enrichment Analysis. 20 HCC samples from
GSE41804 were divided into two groups (high versus low)
according to the expression level of CCNB2, and the median
expression value was regarded as the cut-off point. In order to
investigate the potential function of CCNB2, GSEA (http://
software.broadinstitute.org/gsea/index.jsp) was carried out
between the two groups. Annotated gene sets c2.cp.kegg.
v5.2.symbols.gmt, sets c2.cp.bp. v5.2.symbols.gmt, sets
c2.cp.mf. v5.2.symbols.gmt, and sets c2.cp.cc. v5.2.sym-
bols.gmt were selected as the reference gene sets. FD
R < 0 05, |enrichment score ES ∣ > 0 5 and gene size
≥ 100 were regarded as the cut-off criteria.

2.8. Reidentification of Oxidative Stress in HCC. To further
verify the vital role of oxidative stress in HCC, we detected
the level of some typical markers in carcinoma tissue and
adjacent tissue obtained from 6 patients with HCC. The level
of superoxide dismutase (SOD), malondialdehyde (MDA),
and glutathione peroxidase (GSH-Px) were determined using
an assay kit (Beyotime, China) according to the standard
operational process. Meanwhile, the mRNA level of NADPH
P67 and gp91 were also measured in carcinoma tissue and
adjacent tissue. Additionally, the protein expression of
SOD, 4-hydroxynonenal (4-HNE), and p65 were also quanti-
fied using Western blot. Immunohistochemical staining
further verified the expression of 4-HNE in carcinoma tissue
and adjacent tissue. The study was carried out in accordance
with legal requirements and supported by the Ethics Com-
mittee of Renmin Hospital of Wuhan University.

2.9. Statistical Analysis. All values are presented as the m
ean ± SD. All statistical analyses were performed by SPSS
19.0 software. A difference of P < 0 05 was considered
statistically significant.

3. Results

3.1. Identification of DEGs and Hub Genes. There were 20
HCC samples and 20 normal samples in the study. The
GEO2R online analysis tool was applied to detect the
DEGs, using adjusted P value < 0.05 and logFC ≥ 2 or logF
C ≤ −2 as cut-off criteria. A total of 503 DEGs were captured
after analyzing GSE41804, 360 of which were downregulated
genes while 143 were upregulated (Figure 1(b)). The expres-
sion level of the top 50 DEGs with fold change 2 was
displayed in (Figure 1(a)). Additionally, 15 hub genes were
identified according to their degree of connectivity from high
to low (Table1).

3.2. GO Function and KEGG Pathway Enrichment Analysis.
In order to obtain a more comprehensive and in-depth
knowledge of those chosen DEGs, GO function and KEGG
pathway enrichment analysis were employed via DAVID.
After importing all the DEGs to the DAVID software, we
discovered upregulated DEGs and downregulated DEGs by
GO analysis. To be more specific, these DEGs were mainly
enriched in biological processes (BP), involving epoxygenase
P450 pathway; oxidation-reduction process; cellular
response to zinc ion; negative regulation of growth; and exog-
enous drug catabolic process for downregulation, mitotic
nuclear division, cell division, sister chromatid cohesion,
chromosome segregation, and protein localization to kineto-
chore for upregulation. As for function (MF), the downregu-
lated DEGs were mainly implicated with oxidoreductase
activity (acting on paired donors, with incorporation or
reduction of molecular oxygen), oxygen binding, iron ion
binding, monooxygenase activity, and oxidoreductase activ-
ity (acting on paired donors, with incorporation or reduction
of molecular oxygen, reduced flavin or flavoprotein as one
donor, and incorporation of one atom of oxygen). The upreg-
ulated DEGs were mainly responsible for protein binding,
microtubule motor activity, microtubule binding, chromatin
binding, and cyclin-dependent protein serine/threonine
kinase activity. In addition, GO cell component (CC) analysis
uncovered that the downregulated DEGs were principally
enriched in the extracellular region, extracellular space,
organelle membrane, integral component of plasma mem-
brane, and basolateral plasma membrane, while the upregu-
lated DEGs were mainly enriched in midbody, kinetochore,
condensed chromosome kinetochore, chromosome, centro-
meric region, as well as kinesin complex (Table 2).

Table 3 displayed the most significantly enriched KEGG
pathway of the upregulated and downregulated DEGs. These
downregulated DEGs were enriched in mineral absorption,
retinol metabolism, caffeine metabolism, drug metabolism-
Cytochrome P450, and chemical carcinogenesis, while the
upregulated DEGs were enriched in cell cycle, p53 signaling
pathway, progesterone-mediated oocyte maturation, and
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oocyte meiosis. Figures 2(a)–2(c) gives a GO and KEGG
pathway enrichment plot of HCC.

3.3. Hub Genes and Module Screening from the PPI Network.
Based on the information of the STRING protein query from
public databases, we constructed the PPI network of the top
15 hub genes according to the degree of connectivity
(Figure 2(d)). The top 15 hub genes with a higher degree of
connectivity are as follows: TOP2A, CDK1, CCNB1, BUB1,
CENPF, CCNB2, TTK, KIF2C, HMMR, MELK,CENPE,
KIF20A, KIF4A, PBK, and DLGAP5. By the Kaplan-Meier
plotter, we found that a total of 14 hub genes contributed to
worse overall survival situation except CCNB2. Again, based
on the GO function, KEGG pathway analysis, and the sur-
vival analysis, we unveiled that CCNB1, CDK1, BUB1, and
TTK were enriched in cell cycle.

In order to detect the most significant modules in
this PPI network, we employed the MCODE plug-in.
The top 3 modules were selected (Figure 3). KEGG
pathway analysis disclosed that the top 3 modules were
mainly associated with cell cycle, oxidative stress, and
liver detoxification (Table 4).

3.4. The Kaplan-Meier Plotter and Expression Level of Hub
Genes. We obtained the prognostic information of the top
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Figure 1: (a) Heat map of 50 representative DEGs. (b) Volcano plot of genes detected in HCC. Red means upregulated DEGs; green means
downregulated DEGs; blue means no difference.

Table 1: Top 15 hub genes with higher degree of connectivity.

Gene Degree of connectivity Adjusted P value

TOP2A 48 2.13E − 04
CDK1 43 1.87E − 03
CCNB1 42 3.57E − 04
BUB1 42 1.31E − 03
CENPF 41 2.23E − 04
CCNB2 40 3.11E − 04
TTK 40 1.06E − 03
KIF2C 40 5.80E − 03
HMMR 40 2.10E − 04
MELK 40 9.21E − 04
CENPE 39 2.49E − 03
KIF20A 39 1.33E − 04
KIF4A 39 4.66E − 04
PBK 39 1.07E − 03
DLGAP5 39 1.01E − 03
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15 hub genes in http://gepia.cancer-pku.cn/. It was demon-
strated that expression of TOP2A (HR high = 0 003,
logrank P = 0 0028) was associated with worse overall
survival (OS) for HCC patients, as well as CDK1(HR high
= 0 00022, logrank P = 0 00017), CCNB1 (HR high = 2E
− 04, logrank P = 0 00015), BUB1 (HR high = 0 0012,
logrank P = 0 001), CENPF (HR high = 0 0018, logrank
P = 0 002), TTK (HR high = 0 015, logrank P = 0 0017),
KIF2C (HR high = 1 1E − 05, logrank P = 1 7E − 05),
HMMR(HR high = 0 0031, logrankP = 0 0035),MELK(HR
high = 0 0015, logrank P = 0 0017), CENPE(HR high
= 0 011, logrank P = 0 012), KIF20A (HR high =
0 0034, logrank P = 0 037), KIF4A (HR high = 0 001,

logrank P = 0 0012), and DLGAP5(HR high = 0 00039,
Logrank P = 0 00049). Only the level of CCNB2 (HR h
igh = 0 053, logrank P = 0 052) had no obvious differ-
ence on the survival curve of HCC patients (Figure 4).

Then, we selected 4 hub genes based on the KEGG path-
ways (Table 5) of the top 15 genes to verify the expression
level in liver tissues between HCC and healthy people using
GEPIA, and Figures 5(a)–5(d) showed that compared to
normal group, the expression level of TOP2A, CCNB1,
KIF4A, and CCNB2 significantly elevated in HCC patients.
Intriguingly, CCNB2 in fact had no influence on the progno-
sis of HCC patients. Subsequently, we searched the immuno-
histochemical data in the HPA website. (The protein

Table 2: Gene ontology analysis of differentially expressed genes associated with hepatocellular carcinoma.

Expression Category Term Count % P value FDR

Downregulated

GOTERM_BP_DIRECT GO:0019373~epoxygenase P450 pathway 7 0.02 5.20E − 08 8.49E − 05
GOTERM_BP_DIRECT GO:0055114~oxidation-reduction process 26 0.09 7.31E − 08 1.19E − 04
GOTERM_BP_DIRECT GO:0071294~cellular response to zinc ion 7 0.02 7.53E − 08 1.23E − 04
GOTERM_BP_DIRECT GO:0045926~negative regulation of growth 7 0.02 7.53E − 08 1.23E − 04
GOTERM_BP_DIRECT GO:0042738~exogenous drug catabolic process 6 0.02 1.95E − 07 3.19E − 04
GOTERM_CC_DIRECT GO:0005576~extracellular region 54 0.18 2.46E − 12 3.08E − 09
GOTERM_CC_DIRECT GO:0005615~extracellular space 44 0.14 1.19E − 09 1.49E − 06
GOTERM_CC_DIRECT GO:0031090~organelle membrane 12 0.04 5.53E − 09 6.91E − 06

GOTERM_CC_DIRECT
GO:0005887~integral component of plasma

membrane
41 0.14 1.42E − 07 1.77E − 04

GOTERM_CC_DIRECT GO:0016323~basolateral plasma membrane 12 0.04 9.02E − 06 0.01

GOTERM_MF_DIRECT
GO:0016705~oxidoreductase activity, acting on
paired donors, with incorporation or reduction of

molecular oxygen
10 0.03 2.41E − 08 3.42E − 05

GOTERM_MF_DIRECT GO:0019825~oxygen binding 9 0.03 8.01E − 08 1.14E − 04
GOTERM_MF_DIRECT GO:0005506~iron ion binding 13 0.04 3.31E − 07 4.70E − 04
GOTERM_MF_DIRECT GO:0004497~monooxygenase activity 9 0.03 4.36E − 07 6.19E − 04

GOTERM_MF_DIRECT

GO:0016712~oxidoreductase activity, acting on
paired donors, with incorporation or reduction of
molecular oxygen, reduced flavin or flavoprotein as
one donor, and incorporation of one atom of oxygen

6 0.02 6.52E − 07 9.26E − 04

Upregulated

GOTERM_BP_DIRECT GO:0007067~mitotic nuclear division 19 16.67 5.25E − 15 7.80E − 12
GOTERM_BP_DIRECT GO:0051301~cell division 19 16.67 1.94E − 12 2.90E − 09
GOTERM_BP_DIRECT GO:0007062~sister chromatid cohesion 12 10.53 2.16E − 11 3.23E − 08
GOTERM_BP_DIRECT GO:0007059~chromosome segregation 8 7.02 1.44E − 07 2.16E − 04
GOTERM_BP_DIRECT GO:0034501~protein localization to kinetochore 4 3.51 2.31E − 05 0.03

GOTERM_CC_DIRECT GO:0030496~midbody 10 0.06 2.85E − 08 3.40E − 05
GOTERM_CC_DIRECT GO:0000776~kinetochore 8 0.05 2.45E − 07 2.93E − 04
GOTERM_CC_DIRECT GO:0000777~condensed chromosome kinetochore 7 0.04 6.94E − 06 0.01

GOTERM_CC_DIRECT GO:0000775~chromosome, centromeric region 6 0.03 1.29E − 05 0.02

GOTERM_CC_DIRECT GO:0005871~kinesin complex 5 0.03 1.81E − 04 0.22

GOTERM_MF_DIRECT GO:0005515~protein binding 72 63.16 4.54E − 06 0.01

GOTERM_MF_DIRECT GO:0003777~microtubule motor activity 5 4.39 0.001073553 1.34

GOTERM_MF_DIRECT GO:0008017~microtubule binding 6 5.26 0.006401849 7.77

GOTERM_MF_DIRECT GO:0003682~chromatin binding 8 7.02 0.006540341 7.93

GOTERM_MF_DIRECT
GO:0004693~cyclin-dependent protein serine/

threonine kinase activity
3 2.63 0.015639967 18.01

GO: gene ontology; FDR: false discovery rate.

5Oxidative Medicine and Cellular Longevity

http://gepia.cancer-pku.cn/


Table 3: KEGG pathway analysis of differentially expressed genes associated with hepatocellular carcinoma.

Category Term Count % P value Genes FDR

Downregulated
DEGs

hsa04978: mineral
absorption

9 0.03 2.22E − 07 MT1M, SLC5A1, MT2A, MT1E, TRPV6, MT1H,
MT1X, MT1G, and MT1F

2.68E − 04

hsa00830: retinol
metabolism

10 0.03 2.90E − 07 CYP3A4, CYP4A11, CYP2B6, CYP2C8, ADH4,
ADH1B, CYP26A1, CYP2A6, CYP1A2, and RDH16

3.50E − 04

hsa00232: caffeine
metabolism

4 0.01 2.79E − 05 XDH, NAT2, CYP2A6, and CYP1A2 0.03

hsa00982: drug
metabolism-cytochrome

P450
8 0.03 4.75E − 05 CYP3A4, CYP2B6, CYP2C8, ADH4, ADH1B,

CYP2A6, CYP2E1, and CYP1A2
0.06

hsa05204: chemical
carcinogenesis

8 0.03 1.35E − 04 CYP3A4, CYP2C8, ADH4, NAT2, ADH1B, CYP2A6,
CYP2E1, and CYP1A2

0.16

Upregulated
DEGs

hsa04110: cell cycle 8 0.05 9.30E − 07 CCNB1, CDK1, CCNB2, BUB1, TTK, PTTG1, SFN,
and CDC25C

9.18E − 04

hsa04115: p53 signaling
pathway

6 0.04 1.03E − 05 CCNB1, CDK1, CCNB2, RRM2, SFN, and GTSE1 0.01

hsa04914: progesterone-
mediated oocyte

maturation
5 0.03 5.69E − 04 CCNB1, CDK1, CCNB2, BUB1, and CDC25C 0.56

hsa04114: oocyte meiosis 4 0.03 0.01 CDK1, BUB1, PTTG1, and CDC25C 11.64

KEGG: Kyoto Encyclopedia of Genes and Genomes; FDR: false discovery rate.

10

8

6

G
en

e o
nt

ol
og

y

GO:0016712~oxidoreductase activity, acting on paired donors,
with incorporation or reduction of molecular oxygen

GO:0016705~oxidoreductase activity, acting on paired donors,
with incorporation or reduction of molecular oxygen

GO:0019825~oxygen binding

GO:0005506~iron ion binding

GO:0004497~monooxygenase activity

GO:0005576~extracellular region

GO:0005615~extracellular space

GO:0031090~organelle membrane

GO:0005887~integral component of plasma membrane

GO:0016323~basolateral plasa membrane

GO:0019373~epoxygenase P450 pathway

GO:0055114~oxidation-reduction process

GO:0071294~cellular response to zinc ion

GO:0045926~negative regulation of growth

GO:0042738~exogenous drug catabolic process

0.05 0.10 0.15
Ratio (%)

Category

NegLog10_P value
Count

10

20

30

40

50

GOTERM-BP_DIRECT
GOTERM-CC_DIRECT

GOTERM-MF_DIRECT

(a)

G
en

e o
nt

ol
og

y

GO:0005515~protien binding

GO:0003777~microtubule motor activity

GO:0008017~micritubule binding

GO:0003682~chromatin binding

GO:0030496~midbody

GO:0000776~kinetochore

GO:0000777~condensed chromosome kinetochore

GO:0000775~chromosome, centromeric region

GO:0005871~kinesin complex

GO:0007067~mitotic nuclear division

GO:0051301~cell division

GO:0007062~sister chromatid cohesion

GO:0007059~chromosome segregation

GO:0034501~protien localization to kinetochore

0 20 40
Ratio (%)

60

GO:0004693~cyclin-dependent protien serine/threonine kinase
activity

Category

Count
20
40

60

10

5

NegLog10_P value

GOTERM-BP_DIRECT

GOTERM-CC_DIRECT

GOTERM-MF_DIRECT

(b)

KE
G

G
 p

at
hw

ay

hsa04110: Cell cycle

hsa04115: p53 signaling pathway

hsa04914: Progesterone-mediated oocyte maturation

hsa04114: Oocyte meiosis

hsa04978: Miniral absorption

hsa00830: Retinol metabolism

hsa00232: Caffeine metabolism

hsa00982: Drug metabolism-cytochrome P450

hsa05204: Chemical carcinogenesis

0.02 0.03 0.04 0.05
Ratio (%)

4

5

6

7

8

9

10

Category
Downregulated

Upregulated

NegLog10_P value

6

5

4

3

(c)

BUB1
KIF2C

KIF20A

KIF4A

DLGAP5

MELK
TOP2A

PBK

HMMR

TTK

CCNB2

CDK1

CENPF

CENPE
CCNB1

(d)

Figure 2: (a) GO analysis of downregulated DEGs. (b) GO analysis of upregulated DEGs. (c) KEGG pathway of DEGs. (d) The protein-
protein interaction (PPI) network of the top 15 hub genes.
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(c)

Figure 3: Top 3 modules from the protein-protein interaction network: (a) module 1, (b) module 2, and (c) module 3.
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expression of CCNB2 was absent in HPA.) The staining pic-
tures demonstrated that the TOP2A, CCNB1, and KIF4A in
HCC patients exhibited higher expression levels compared
with those in healthy individuals, which further verified the
results of boxplots from GEPIA (Figure 5(e)).

Finally, we selected two most suspicious genes
(CCNB1 and CDK1) based the KEGG analysis of the top
15 hub genes. CCNB1 and CDK1 were two genes which were
implicated with cell cycle, progesterone-mediated oocyte
maturation, and p53 signaling pathway (Table 5). Using the
correlation analysis in GEPIA, we found that CCNB1 and
CDK1 are obviously positively correlated (P value = 0,
R = 0 77) (Figure 5(f)).

3.5. Gene Set Enrichment Analysis. To acquire further insight
into the function of the hub gene, GSEA was conducted to
map into GO analysis and KEGG pathways database.
Under the cut-off criteria FDR < 0 05, |enrichment score
ES ∣ > 0 6, and gene size ≥ 100, a total of 6 functional
gene sets were enriched, which mainly focused on path-
ways associated with cell proliferation and differentiation.
The six pathways were “spindle assembly,” “spindle,”
“negative regulation of mitotic nuclear division,” “spindle
microtubule,” “cytoskeleton dependent cytokinesis,” and
“regulation of sulfur metabolic process” (Figure 6).

3.6. Oxidative Stress Is Activated in HCC. Consistent with
what we have predicted, the level of oxidative stress was
significantly enhanced in carcinoma tissue compared with

adjacent tissue. In detail, the activity of SOD, one of the typ-
ical antioxidant enzymes, was decreased in carcinoma tissue
while the activity of GSH-Px as well as the level of
MDA were increased in carcinoma tissue (Figure 7(a)).
Meanwhile, the mRNA level of NADPH P67 and gp91
were also significantly upregulated in the HCC tissue
(Figure 7(b)). The results from the Western blot and immu-
nohistochemical staining further identified the protein level
of these biomarkers associated with oxidative stress
(Figures 7(c)–7(e)). Taken together, our experiments demon-
strated that oxidative stress was activated in HCC, which
further proved our hypothesis from bioinformatics.

4. Discussion

Trends of HCC mortality rates have elevated over recent
decades worldwide. Although the diagnostic and treatment
approaches have developed a lot recently, the prognosis of
HCC is still poor [20]. Thus, specific and sensitive bio-
markers for HCC are urgently needed to be selected. High-
throughput research can facilitate the in-depth exploration
of the vital mechanisms contributing to HCC. Our study
systematically focused on expression profiling obtained from
microarray studies of HCC. Our analysis included 20 HCC
samples and 20 normal samples from the GEO database of
GSE41804. A total of 503 DEGs were captured involving
360 upregulated genes and 143 downregulated genes. To
have a better exploration of these DEGs, we carried out GO
function and KEGG pathway analysis of these DEGs.

Table 4: The enriched pathways of top 3 modules.

Module Term P value FDR Genes

Module 1

Cell cycle 2.66E − 08 1.96E − 05 CCNB1, CDK1, CCNB2, BUB1, TTK, PTTG1, and CDC25C

ATP binding 3.86E − 07 3.59E − 04 CDK1, KIF4A, NEK2, KIF18B, TTK, CENPE, PBK, KIF2C, BUB1,
TOP2A, MELK, TRIP13, and KIF20A

Kinesin, motor region,
and conserved site

1.54E − 06 0.0016579 KIF2C, KIF4A, KIF18B, CENPE, and KIF20A

Kinesin, motor domain 2.30E − 06 0.00247205 KIF2C, KIF4A, KIF18B, CENPE, and KIF20A

p53 signaling pathway 3.59E − 06 0.002649002 CCNB1, CDK1, CCNB2, RRM2, and GTSE1

Module 2

Cytochrome P450,
conserved site

4.98E − 15 3.11E − 12 CYP3A4, CYP4A11, CYP2B6, CYP2C8, CYP26A1,
CYP2A6, and CYP1A2

Cytochrome P450 9.23E − 15 5.74E − 12 CYP3A4, CYP4A11, CYP2B6, CYP2C8, CYP26A1,
CYP2A6, and CYP1A2

Monooxygenase 3.58E − 14 2.84E − 11 CYP3A4, CYP4A11, CYP2B6, CYP2C8, CYP26A1,
CYP2A6, and CYP1A2

Organelle membrane 6.92E − 14 3.79E − 11 CYP3A4, CYP4A11, CYP2B6, CYP2C8, CYP26A1,
CYP2A6, and CYP1A2

Metal ion-binding site: iron
(heme axial ligand)

8.64E − 14 6.13E − 11 CYP3A4, CYP4A11, CYP2B6, CYP2C8, CYP26A1,
CYP2A6, and CYP1A2

Module 3

Metal-thiolate cluster 2.15E − 17 1.80E − 14 MT1M, MT2A, MT1E, MT1H, MT1G, MT1X, MT1F

Metallothionein, vertebrate,
and metal binding site

2.35E − 17 1.91E − 14 MT1M, MT2A, MT1E, MT1H, MT1G, MT1X, and MT1F

Metallothionein, vertebrate 5.17E − 17 4.19E − 14 MT1M, MT2A, MT1E, MT1H, MT1G, MT1X, and MT1F

Metallothionein domain 5.17E − 17 4.19E − 14 MT1M, MT2A, MT1E, MT1H, MT1G, MT1X, and MT1F

Metallothionein superfamily,
eukaryotic

5.17E − 17 4.19E − 14 MT1M, MT2A, MT1E, MT1H, MT1G, MT1X, and MT1F
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4.1. Oxidative Stress Is Critical in the Carcinogenesis of HCC.
Although many mechanisms have been disclosed to contrib-
ute to the progression of HCC, the predominant mechanism
implicated with tumorigenesis is still controversial, which
brings some difficulties to the diagnosis and treatment of
HCC. Gene ontology and PPI analysis in our study showed
that downregulated DEGs were primarily involved in oxida-
tive stress. Our experimental results in carcinoma tissue and
adjacent tissue further identified the vital role of oxidative
stress in HCC.

To our knowledge, oxidative stress is recognized to play a
vital part in the initiation and promotion of carcinogenesis
because it can occur and overproduce ROS and RNS through
endogenous or exogenous insults [21]. On the one hand, for
the reason that polymorphonuclear neutrophils (PMNs) are
a major source of ROS in an inflamed liver, oxidative stress
acts as a core player in the pathogenesis of chronic liver dis-
eases and precancerous lesions infected by hepatitis B virus
(HBV) or hepatitis C virus (HCV) [22]. On the other one
hand, nonparenchymal cells including macrophages and
Kupffer cells, which can release cytokines, are another

incentive of ROS production in hepatocytes [23]. To be more
specific, prolonged or upregulated ROS production is associ-
ated with modification and mutation of gene expression in
HCC. Particularly, unrepaired damage induced by oxidative
stress to DNA could give rise to mutations, given that the
repair of modified bases ensues later than cell replication.
Apart from oxidative nuclear DNA damage, formation of
mitochondrial DNA damage or mutation as well as alteration
of mitochondrial genomic function have also been unveiled
to induce the occurrence of carcinogenesis [3, 24]. Thus,
the level of oxidative stress can be a promising predictor in
the diagnosis and treatment of HCC.

Additionally, our gene ontology analysis indicated that
the downregulated DEGs were primarily related with the
alteration of extracellular structure including extracellular
space, organelle membrane, integral component of plasma
membrane, and basolateral plasma membrane. Increased
extracellular matrix remodeling has also been proved to be
associated with tumor progression in human HCC. For
instance, matrix metalloproteinase-2 (MMP-2) is an
important enzyme in the process of extracellular matrix
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Figure 4: Prognostic value of 15 genes ((a) TOP2A, (b) CDK1, (c) CCNB1, (d) BUB1, (e) CENPF, (f) CCNB2, (g) TTK, (h) KIF2C, (i)
HMMR, (j) MELK, (k) CENPE, (l) KIF20A, (m) KIF4A, (n) PBK, and (o) DLGAP5) in HCC. P < 0 05 was regarded statistically different.
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remodeling implicated with tumor invasion and metastasis.
Overexpression of MMP2 seemed strikingly associated
with HCC because MMP2 in the tumor is mainly respon-
sible for the fibrogenesis [25]. As reported, hepatic stellate
cells, acting as main connective tissue cells in the liver,
could be activated by oxidative stress and then produce
extracellular matrix which is essential for normal growth
and differentiation of cells after liver damage [26]. Our
result suggests that oxidative stress in HCC not only
directly affects the progression of HCC, but also interacts
with other events to modulate HCC.

What is more, KEGG analysis shows that the upregulated
DEGs are implicated with p53 signaling. Our data from
Western blot also identified that the expression of P-p53 in
HCC tissue was significantly higher than that in adjacent
tissue. To our knowledge, p53 genes are one of the sensitive
redox transcription factor which could be upregulated by
enhancing its translational speed and posttranslational mod-
ification when the DNA is damaged by oxidative stress in
cells. The posttranslational modification of oxidative stress
in cell, such as phosphorylation, ubiquitination, sumoylation,
acetylation, and methylation, may cause conformational and
locational changes of p53 and then affect its downstream
targets [27, 28]. Taken together, strategies to suppress the
alteration of oxidative stress or regulate various posttran-
scriptional modifications of p53 and formation of extracellu-
lar matrix through oxidative stress are helpful to develop
drugs for the treatment of HCC.

4.2. Targeting Cell Cycle Could Be a Potential Strategy for
Therapy of HCC. Dysregulated cell cycle-mediated cell trans-
formation and uncontrolled cell growth are some of the
fundamental biological features of malignant tumors. Ampli-
fication of cyclin genes, especially cyclins D and E, is a crucial
event process which occurs in the HCC [29, 30]. Masaki et al.
found that in Long-Evans Cinnamon (LEC) rats, with the
progression of HCC, cyclin D1-related kinase activities were
dramatically enhanced, in particular, the cyclin D1-related
enzymatic activity. On the contrary, the activity was relatively
low in the 2-month-old LEC rats as well as in the control rats
[31]. The top 15 hub genes with a higher degree of connectiv-
ity in our analysis demonstrated the significance of cell cycle
in the progression of HCC. Most of these hub genes includ-
ing CDK1 [32], CENPF [33], CCNB2 [34], MELK [35],
CENPE [36], KIF20A [37], KIF4A [38], PBK [39], and
DLGAP5 [40] have been proven to be responsible for the cell

cycle-associated proliferation and differentiation of tumor.
Additionally, GO analysis of DEGs showed that all upregu-
lated DEGs were also involved in cell cycle including mitotic
nuclear division, cell division, sister chromatid cohesion,
midbody, protein localization to kinetochore, and microtu-
bule binding, which indicated that the altered expression of
vital genes in HCC should be associated with cell cycle.
KEGG pathway analysis further verified the hypothesis
with the downregulated DEGs associated with cell cycle
and p53 signaling pathway. Taken together, from our
perspective based on the GO and KEGG analysis, drugs
targeting the cell cycle of cancer cells may be a potential
strategy for therapy of HCC.

4.3. Altered Cell Cycle, Dysfunction of Cytochrome P450, and
Impaired Liver Detoxification Effect Are 3 Typical Modules in
PPI Network for HCC. PPI is defined as the process by which
two or more kinds of protein molecules form a protein com-
plex by noncovalent bonding. The PPI network could pro-
vide a visible framework for a better understanding of the
functional organization of the proteome [41]. From the
enriched pathways of top 3 modules, we uncovered that the
interactions among the proteins in HCC mainly concen-
trated on pathways implicated with cell cycle, Cytochrome
P450, and liver detoxification.

Cytochrome P450 is a big family of enzymes localizing to
either the endoplasmic reticulum or mitochondrial mem-
branes, which exert various important roles in the process
of metabolizing endogenous and exogenous molecules, espe-
cially some drugs [42]. Previous studies have shown that
Cytochrome P450 genetic polymorphisms exhibited a certain
association with the risk of HCC in patients carrying chronic
hepatitis B [43]. In HCC patients, the levels of some Cyto-
chrome P450 also changed with the progression of HCC.
For instance, CYP2J2, a member in Cytochrome P450 family,
was discovered to have critical roles in the proliferation and
resistance to the anticancer drug (doxorubicin) in HepG2
cells by decreasing the ratio of Bax/Bcl622 ratio and elevating
pro62caspase623 levels [44]. Genetic polymorphisms of
some Cytochrome P450 enzymes, such as CYP2D6∗10, have
been proven to have influence on enzyme activity. In HCC
patients, CYP2D6∗10 allelic frequency was obviously differ-
ent compared with the control individuals [45]. Consistent
with these findings, module 2 showed that the PPI in tumor
groups and normal groups involved many members in Cyto-
chrome P450, such as CYP3A4, CYP4A11, CYP2B6,

Table 5: KEGG pathway analysis of top 15 hub genes with higher degree of connectivity.

Term Count % P value Genes FDR

cfa04110: cell cycle 5 0.18 5.08E − 07 CCNB1, CDK1, CCNB2, BUB1, and TTK 3.05E − 04
cfa04914: progesterone-mediated oocyte maturation 4 0.15 1.93E − 05 CCNB1, CDK1, CCNB2, and BUB1 0.01

cfa04115: p53 signaling pathway 3 0.11 8.88E − 04 CCNB1, CDK1, and CCNB2 0.53

cfa04114: oocyte meiosis 2 0.07 0.07 CDK1, BUB1 37.98

cfa04068: FoxO signaling pathway 2 0.07 0.09 CCNB1, CCNB2 44.34

KEGG: Kyoto Encyclopedia of Genes and Genomes; FDR: false discovery rate.
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CYP2C8, CYP26A1, CYP2A6, and CYP1A2, indicating that
some key Cytochrome P450 enzymes had essential functions
in HCC.

In addition, metallothionein is also involved in the differ-
entiation and proliferation of tumor cells. The relationship
between metallothionein and tumors mainly focused on the
metallothionein and tumorigenesis, toxic side effects of ant-

tumor drugs, as well as drug resistance. Metallothionein
expression defect is one of the symptoms of cancer; therefore,
the in-depth study of the relationship between metallothio-
nein and tumors is expected to obtain the target drugs for
the treatment of cancer [46]. Metallothionein is expressed
at a high level in liver tissues, which is mainly responsible
for liver detoxification and can be significantly induced by a
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Figure 5: (a–d) Expression level of TOP2A, CCNB1, KIF4A, and CCNB2 in HCC and normal tissues. Number (T = 369,N = 160); ∗P < 0 05.
(e) TOP2A, CCNB1, and KIF4A protein were strongly upregulated in HCC tissues compared with normal liver tissues based on The Human
Protein Atlas database. The normal liver tissue of TOP2A was from a female, aged 32, (patient ID: 1846; staining: not detected; intensity:
negative; quantity: negative; location: none), and the HCC tissue was from a male, aged 80 (patient ID: 2280; staining: low; intensity:
moderate; quantity: <25%; location: cytoplasmic/membranous nuclear). The normal liver tissue of CCNB1 was from a female, ages
63, (patient ID: 3222; staining: not detected; intensity: negative; quantity: negative; location: none), and the HCC tissue was from a
female, aged 41, (patient ID: 5037; staining: moderate; intensity: weak; quantity: <25%; location: cytoplasmic/membranous nuclear).
The normal liver tissue of KIF4A was from a female, aged 54 (patient ID: 3402; staining: not detected; intensity: negative; quantity:
negative; location: none), and the HCC tissue was from a male, aged 67, (patient ID: 3477; staining: moderate; intensity: moderate;
quantity: >75%; location: cytoplasmic/membranous nuclear). (f) The correlation analysis between CCNB1 and CDK1. CCNB1 and
CDK1 are obviously positively correlated.
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variety of drugs [47]. Datta et al. [48] demonstrated that in
hepatocarcinogenesis, the expression of metallothionein
was significantly blocked through inactivation of CCAAT/
enhancer-binding protein α by phosphatidylinositol 3-
kinase (PI3K) signaling pathway, which eventually caused
poor liver detoxification. Base on module 3 from the PPI net-
work, we found that the network mainly concentrated on
metallothionein, suggesting the vital significance of metallo-
thionein from the view of bioinformatics. Hence, monitoring
some indexes associated with metallothionein is of great
importance for the diagnosis and treatment of HCC.

4.4. CCNB2 May Be One of the Switches of HCC but Cannot
Promote Tumor Progression. As the Kaplan-Meier plotter
showed, the survival curve displayed no significant difference
in HCC patients with low expression and high expression of
CCNB2. Intriguingly, in the HCC group and healthy group,
the expression of CCNB2 exhibited obvious difference in
the box diagram.

To our knowledge, CCNB2 (Cyclin B2), which belelongs
to one of themembers in cyclin family proteins, has a core role
in G2/M transition of tumor. CCNB2 has been found to be
upregulated in many types of human tumors [49]. In Chinese
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Figure 6: Gene set enrichment analysis (GSEA). Listed pictures are 10 representative functional gene sets enriched in HCC with CCNB2
highly expressed.

12 Oxidative Medicine and Cellular Longevity



non-small-cell lung cancer (NSCLC)patients, high expression
levels of CCNB2 protein were positively correlated with the
tumor size, status of differentiated degree, distant metastasis,
lymph nodemetastasis, as well as clinical stage [50]. However,
expression levels of CCNB2 do nothing with survival condi-
tion in HCC patients, while the levels of CCNB2 in HCC
patients have obvious difference compared to the health
group, which indicates that CCNB2may act as a switch to ini-
tiate the occurrence ofHCC, but it does not exert other tumor-
related effects after the tumorigenesis. In fact, in the primary
HCC tissue samples, CCNB2has beenunveiled to be regulated
by its upstream karyopherin subunit-α 2, which can inhibit

cell proliferation and induce cell cycle arrest in the G2/M
phase [34]. Based on GSEA, we also found that the gene sets
associated with cell cycle-related pathways were enriched in
the samples with FCER1G highly expressed HCC patients.
But further study is required to clarify the process of CCNB2
transcriptional activation, the effect of CCNB2 on cell cycle
progression, and how this affects initiation of HCC.

In conclusion, we offer a novel and comprehensive anal-
ysis of gene expression profiles to identify DEGs, which may
play core roles in the occurrence, development, and progno-
sis in patients with HCC. Genes involved in oxidative stress
and cell cycle, Cytochrome P450, and metallothionein were
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significantly changed in HCC patients. To obtain more accu-
rate correlation results, we intend to initiate subsequent iden-
tification experiments later to verify these predictive results.
Taken together, we sincerely hope that this analysis will offer
valuable and powerful information for future research on the
molecular mechanisms contributing to HCC and provide
clues for the discovery of novel diagnosis biomarkers and
therapeutic strategies.
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