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Previous studies suggested that the thrombospondin-1/transforming growth factor-β1
(TSP-1/TGF-β1) pathway might be critical in synaptogenesis during development and
that the purinergic P2 receptor family could regulate synaptogenesis by modulating
TSP-1 signaling. However, it is unclear whether this pathway plays a role in
synaptogenesis during epileptic progression. This study was designed to investigate this
question by analyzing the dynamic changes and effects of TSP-1 levels on the density
of synaptic markers that are related to epileptic seizure activity. In addition, we evaluated
whether P2-type receptors could regulate these effects. We generated a rat seizure
model via amygdala kindling and inhibited TSP-1 activity using small interfering RNA
(siRNA) interference and pharmacological inhibition. We treated the rats with antagonists
of P2 or P2Y receptors, pyridoxalphosphate-6-azophenyl-2’,4’-disulfonic (PPADS) or
Reactive Blue 2. Following this, we quantified TSP-1 and TGF-β1 immunoreactivity
(IR), the density of synaptic markers, and seizure activity. There were significantly
more synapses/excitatory synapses in several brain regions, such as the hippocampus,
which were associated with progressing epileptic discharges after kindling. These were
associated with increased TSP-1 and TGF-β1-IR. Genetic or pharmacologic inhibition
of TSP-1 significantly reduced the density of synaptic/excitatory synaptic markers and
inhibited the generalization of focal epilepsy. The administration of PPADS or Reactive
Blue 2 attenuated the increase in TSP-1-IR and the increase in the density of synaptic
markers that follows kindling and abolished most of the epileptic seizure activity.
Altogether, our results indicate that the TSP-1/TGF-β1 pathway and its regulation by
P2, particularly P2Y-type receptors, may be a critical promoter of synaptogenesis during
the progression of epilepsy. Therefore, components of this pathway may be targets for
novel antiepileptic drug development.
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Abbreviations: AD, afterdischarge; ADD, afterdischarge duration; ADT, afterdischarge threshold; ANOVA, analysis of
variance; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; GFAP, glial fibrillary acidic protein; LSKL, Leu-Ser-Lys-
Leu; PPADS, pyridoxalphosphate-6-azophenyl-2’,-4-disulfonic acid; pSmad2/3, phosphorylated Smad2/3; siRNA, small
interfering RNA; Smad2/3, small mothers against decapentaplegic 1 and 2; TGF-β1, transforming growth factor beta 1;
TSP-1, thrombospondin-1.
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INTRODUCTION

Epilepsy is considered a network-level disease, where abnormal,
synchronized firing of a population of neurons in one location
spreads outward via synaptic connections to involve other areas
of the brain, which in turn spread the wave further. The neural
network mediates this propagation from focal to generalized
seizure activity (Haneef et al., 2015; Xiao et al., 2015; Kros et al.,
2017; Sánchez-Ramón and Faure, 2017). Epileptic activity can
induce excitotoxic damage locally, but it can also propagate
through white matter tracts and damage distant areas, including
areas that are contralateral to the focus (Feldt Muldoon et al.,
2013; Burns et al., 2014; Caciagli et al., 2014; Xu et al., 2014).
For example, complex partial seizures in patients with epilepsy
were found to begin at abnormal hippocampal synapses in the
middle temporal lobe (Colder et al., 1996) and were found to
propagate through the hippocampal network to cause temporal
lobe epilepsy (Garcia-Ramos et al., 2017; Lupica et al., 2017).
This propagation can cause a pathological restructuring of the
affected networks by increasing synaptogenesis that facilitates
the development and spread of seizure activity (Fidzinski et al.,
2015; Heller and Rusakov, 2015; Amakhin et al., 2016). In fact,
in the normal brain, changing the synaptic number, connection
strength, and local network connectivity can induce epileptiform
activity (Netoff et al., 2004). Consequently, interfering with this
synaptogenesis may inhibit, or at least delay, the formation of the
epileptic network.

In recent years, astrocytes have been found to function
not only as neuronal support cells and neuroimmune cells
but also as regulators that stabilize synapses (Codazzi et al.,
2015; Murphy-Royal et al., 2015; Charvériat et al., 2017; van
Deijk et al., 2017; Dubový et al., 2018; Milton and Smith,
2018). Barres and Smith (2001) found that including astrocytes
in neuronal cultures, even as a feeder lay, can significantly
increase synapse formation, and these synapses demonstrated
normal postsynaptic potentials and frequency multiplication
(Ullian et al., 2001). By contrast, purified neuronal cultures
demonstrated only minimal synapse formation, indicating that
astrocytes may secrete one or more extracellular signal molecules
that strongly support synaptogenesis (Ullian et al., 2001).

One such molecule that is secreted by astrocytes is the
extracellular matrix protein, thrombospondin-1 (TSP-1). In
normal mouse brain development, TSP-1 localization and timing
were correlated with synaptogenesis, and the TSP-1 knockout
significantly reduced the number of new synapses (Pfieger and
Barres, 1997). Another study confirmed that adding either
purified TSP-1 or astrocytes to neuronal cultures generated the
same synaptic microstructure and vesicle number in both the
culture conditions (Christopherson et al., 2005). These studies
strongly indicate that TSP-1 produced by astrocytes is a key
molecule in synapse formation. Upstream of TSP-1, TSP-1
expression and secretion are positively regulated by astrocytic
purinergic P2-type (extracellular ATP-binding) receptors. For
example, administration of a P2 family receptor antagonist
decreases the expression of TSP-1 by 80% (Ribeiro et al., 1999).
Further research demonstrated that the P2Y4 subtype (Tran
et al., 2012), which is coupled to protein kinase signaling

pathways that include p38/MAPK and Akt, is the primary
mechanism through which TSP-1 is regulated (Diniz et al., 2012).
Downstream of TSP-1, TSP-1 activates latent transforming
growth factor-β1 (TGF-β1), which, according to evidence, is an
important effector of TSP-1-mediated synaptogenesis. Activated
TGF-β1 that was added to cell culture media significantly
increased the number of synapses, with normal ultrastructural
and electrophysiological features (Tran and Neary, 2006). TSP-1
was found to activate TGF-β1 by binding the Leu-Ser-Lys-Leu
(LSKL) peptide sequence in the latency-associated peptide (LAP)
region of the latent TGF-β1 complex (Tran et al., 2012). Notably,
administration of exogenous LSKL peptide can block binding
by TSP-1, significantly inhibiting the activation of the molecule
(Tran et al., 2012).

These data indicate that the P2-type receptor-regulated
TSP-1/TGF-β1 pathway is highly active in developmental
synaptogenesis. Given the similar mechanisms of synaptogenesis
due to epileptic activity, it can be hypothesized that this pathway
may also be involved in synaptogenesis that is related to epileptic
activity or its propagation. This study was designed to test this
hypothesis in a rat model of epilepsy in which focal kindling
of the amygdala had progressed to generalized seizure activity.
We quantified the immunoreactivity (IR) of TSP-1 and synaptic
number in Sprague-Dawley model rats, and we compared these
data to model rats administered with TSP-1 small interfering
RNA (siRNA) or LSKL peptide (a TSP-1 antagonist), the broad-
acting P2 receptor antagonist pyridoxalphosphate-6-azophenyl-
2’,4’-disulfonic acid (PPADS), or the P2Y receptor antagonist
Reactive Blue 2. We also analyzed epileptiform activity in the
rat groups to identify associations between TSP-1 density and
epileptiform activity in the kindled rat model.

MATERIALS AND METHODS

Animals and Surgery
We used male Sprague-Dawley rats (Certificate No. SCXK2014-
0006; provided by Jinan Jinfeng Experimental Animal Co.
Ltd, Shandong, China), weighing 280–300 g, that were fed
separately and given water and food ad libitum. All experiments
were conducted in accordance with the ethical guidelines
of the Binzhou Medical University Animal Experimentation
Committee (approval no. 2015005) and in complete compliance
with the National Institutes of Health (NIH) Guide for the
Care and Use of Laboratory Animals (NIH Publications No.
8023, revised 1996). The experiments were performed between
9:00 and 17:00. All efforts were made to minimize the number of
animals used and their suffering. A total of 286 rats were used in
this study.

Rats were mounted on a stereotactic apparatus after
anesthesia (chloral hydrate, 400 mg/kg, intraperitoneal
injection). Electrodes (diameter 0.2 mm, A.M. Systems, Sequim,
WA, USA) were made of teflon-coated, twisted stainless steel
wires with an uncoated tip that was 0.5 mm long and were
implanted into the right basolateral amygdala (anteroposterior:
−2.4 mm, lateral: −4.8 mm, ventral: −8.8 mm). Kindling
stimulation and electroencephalograms (EEGs) were recorded
through the same electrodes by using a PowerLab system
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(ADInstruments, Sydney, NSW, Australia). A stainless steel
cannula (Reward, China) was implanted into the right lateral
cerebral ventricle (anteroposterior: −1.8 mm, lateral: −0.96 mm
and ventral:−3.8 mm) as previously described (Sun et al., 2016).
Animals were allowed to recover from surgery for 10 days.

Kindling and Epileptic Seizure Analysis
Stimulation of the amygdala (1 s, monophasic square-wave
pulses) were delivered at 60 Hz, while EEG monitoring and
recording were carried out from about 5 min before kindling
stimulation through to the cessation of afterdischarge (AD).
The AD threshold (ADT) for each animal was determined on
day 0 as previously reported (Sun et al., 2017). All animals
were subsequently subjected to kindling stimulation of the same
current intensity as the determined ADT once daily, and the
seizure stage (see below) and AD duration (ADD) were recorded
for 15 min. Control rats were connected to the stimulator for
15 min, but no current was delivered.

Epileptic seizure severity during kindling progression was
staged as 1–5 using Racine’s criteria (Sun et al., 2017). In
short, stages 1–3 were considered focal seizures, while stages 4
and 5 were considered generalized seizures. The ADT was
determined after the last stimulation at the end of behavioral
testing. Electrode placements were histologically verified. Only
animals with electrodes that were correctly implanted in the
basolateral amygdala and with successful right lateral cerebral
ventricle cannulation were included in the statistical analysis.

Drug Administration and siRNA
Interference
After determining the ADT, either LSKL (50, 100, or 200 µg,
Sigma, St. Louis, MO, USA), PPADS (10, 20, or 30 µg, Abcam,
Cambridge,MA, USA), Reactive Blue 2 (20µg, Bomei, China), or
saline in 5 µl volume was injected once daily into the right lateral
cerebral ventricle, over a period of 10 min, using a disposable
dental needle. The needle was held in place for 5 min before
being slowly retracted. siRNA was designed and synthesized by
Tuoran Biological Technology Co., Ltd. (Shanghai, China) using
the following oligonucleotide sequences: 5’-GCCAGUAUGUUU
ACAACGUdTdT-3’ and 5’-ACGUUGUAAACAUACUGGCd
TdT-3’. Negative controls were produced using the following
oligonucleotides: 5’-UUCUCCGAACGUGUCACGUTT-3’ and
5’- ACGUGACACGUUCGGAGAATT-3’.

Increasing doses of siRNA (0.5, 1.5, 2.5 µg) or negative
control (control; all 5 µl) were injected into the right lateral
cerebral ventricle every other day. The injection was performed
over a period of 10 min, after which the needle was held in place
for 5 min. Behavioral seizure activity and EEGs in the amygdala
were recorded after kindling stimulation every day. The ADTwas
then determined again after the stimulations.

Immunohistochemistry
During every Racine stage (1–5) in the kindling group or on the
10th day of amygdala kindling in drug/siRNA treated groups,
four rats out of each group were deeply anesthetized and perfused
intracardially with 4% paraformaldehyde in PBS. Coronal slices,
10 µm thick, were prepared by using a cryostat (CM3050s,

Leica, Germany). In every group, immunofluorescence staining
for post synaptic density protein 95 (PSD-95, 1:200, Abcam,
ab2723) and double-immunofluorescence staining for glial
fibrillary acidic protein (GFAP, 1:100, Beijing Zhongshan,
ZA-0117)/TSP-1 (1:100, Abcam, ab1823) were performed.
Sequentially, the sections were incubated with secondary
antibodies (fluorescein isothiocyanate (FITC)-conjugated, 1:200,
EMD Millipore; cyanine-3 (Cy3)-conjugated, 1:200, Beyotime
Institute of Biotechnology), after washing it thrice with 0.01M
PBS, the sections were coverslipped and observed under a
fluorescence microscope (CX41, Olympus, Japan). In addition,
the optical density of IR was quantified with ImageJ 1.37 software
(NIH, Bethesda, MD, USA). For additional analysis, three fields
(80 µm × 60 µm/field) were selected randomly in every 200×
microscope view, and PSD-95-positive puncta in the fields were
counted and averaged.

Western Blot Analysis
As previously described in the immunohistochemistry section,
four rats from each group at the same time points were deeply
anesthetized and decapitated, and the brains were removed
without delay. The excised brains were then microdissected into
the hippocampus, piriform cortex (PC), remaining cortex (except
the PC), and amygdala and were individually sonicated on ice.
Their protein content was quantified as previously described
(Sun et al., 2013). Homogenates were mixed with sample
loading buffer, separated on 12% SDS-polyacrylamide gels, and
electrically transferred onto PVDF membranes. After blocking
with 5% skimmed milk for 1 h, the membranes were incubated
with mouse monoclonal antibody against synapsin-I (1:1,000,
Abcam, ab8), PSD-95 (1:1,000; Abcam, ab2723), vesicular
glutamate transporter-1 (vGluT-1, 1:1,000; Abcam, ab106289), or
glyceraldehyde-3-phosphate dehydrogenase (GAPDH, 1:2,000,
Goodhere, AB-P-R-001) at 4◦C overnight. Immunoreactive
bands were visualized by using enhanced chemiluminescence
via horseradish peroxidase-conjugated IgG secondary antibodies.
The normalized intensity relative to GAPDH was obtained to
verify equal loading.

Flow Cytometry
Brains were obtained from four rats per Racine stage and
microdissected as previously described, and then they were
rapidly soaked in cell staining buffer. Single cell suspensions
were prepared by using filtration and then fixed with 4%
paraformaldehyde for 10 min, followed by 0.1% triton-X
100 treatment for 10 min, and then they were washed with 0.01M
PBS via repetitive centrifugation; cells were resuspended and
counted with cell staining buffer. Cells were diluted to 5–10× 106

cells/ml, and 100 µl of cell suspension (5–10 × 105 cells/tube)
was added to each detection tube. Blocking was accomplished
by treating with 5% bovine serum albumin (BSA) for 10 min in
an ice bath. Monoclonal anti-TGF-β1 (1:100; R&D, Minneapolis,
MA, USA, MAB240) antibody was administered into each tube,
after which the tubes were incubated at 4◦C for 20 min. After
washing thrice with 0.01M PBS, the cells were treated with the
secondary antibody, FITC-conjugated anti-mouse IgG (1:400,
Biyuntian, China, A22110), for 15 min. After washing thrice with
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0.01M PBA, the samples were analyzed for green (500–550 nm)
fluorescence by using a flow cytometer (Becton Dickinson,
Franklin Lakes, NJ, USA) with CellQuest analysis software (BD
Biosciences, San Jose, CA, USA).

Statistical Analysis
All data are presented as mean ± SEM. Statistical analysis
was performed by SPSS v13.0 for Windows. After normal
distribution test, one-way analysis of variance (ANOVA) and
Tukey’s t-test were used for the normally distributed data
(P > 0.1), and nonparametric Kruskal-Wallis H test was used
for the comparison of non-normally distributed data (P < 0.1)
in terms of IR, change of ADT, and seizure stage in every group.
Analysis of group progression of seizure stage and ADD during
kindling acquisition was performed by two-way ANOVA for
repeated measures followed by Tukey’s t-test. For these analyses,
P < 0.05 was considered significant.

RESULTS

Increased Immunoreactivity of TSP-1 and
Synaptic Number During Amygdala
Kindling
When compared with the control group, the IR of TSP-1 after
kindling increased in different brain regions progressively as
epileptic activity increased (stage 1–5; Figure 1). Beginning
at seizure stage 2, an increase in TSP-1-IR was observed in
the ipsilateral PC (78.1% higher than the control, P < 0.05;
Figures 1N,Q,T). Beginning at seizure stages 4 and 3, an
increase in TSP-1-IR was demonstrated by the ipsilateral
hippocampus and cortex (except the PC; 2.83- and 1.45-fold
higher than the control, P < 0.001 and P < 0.05, respectively;
Figures 1E,H,S,U). Notably, an increase in TSP-1-IR was
observed in the contralateral hippocampus (P < 0.05; Figure 1U)
and cortex (P < 0.05; Figure 1S), beginning at seizure stage 4.
These data indicate that TSP-1-IR increased synchronously with
the spread of kindling-induced seizure activity, from the kindled
amygdala (data not shown) and ipsilateral PC to other ipsilateral
regions, and, finally, to the contralateral hippocampus and cortex
(Figure 1). No significant differences in TSP-1-IR were found in
other subregions or at other seizure stages (data not shown).

Synaptic density, represented by synapsin-I IR in western
blots during kindling, demonstrated increases that were
synchronized to those of TSP-1-IR. The IR of synapsin-I in the
ipsilateral amygdala and PC were 3.33- and 2.56-fold higher
than the control group, respectively, when seizures progressed
to stage 2 (P < 0.001 and 0.001; Figure 2A). A greater density
of synaptic markers was found in the remaining ipsilateral
cortex (except the PC), beginning at seizure stage 3 (data not
shown), and in the ipsilateral hippocampus, beginning at stage 4
(P < 0.001; Figure 2B). In the contralateral hippocampus
and the remaining cortex, the IR of synapsin-I was 2.22- and
1.93-fold greater than those in the control group, respectively
(P < 0.001 and P < 0.01; Figure 2B).

Further experiments were performed to investigate the
changes in excitatory synapses. These results confirmed the

increases in the excitatory postsynaptic marker, vGluT-1/PSD95,
(via western blot; Figure 2C) in synchrony with the increased
IR of synapsin-I and TSP-1 during the kindling progression.
Additionally, a parallel change was observed in TGF-β1-IR while
using flow cytometry, which was consistent with the increase in
TSP-1-IR and synapse numbers during kindling (Figure 2D).

Inhibition of TSP-1 Activity Reduced Both
Synaptic Density and Evoked Seizures
The relationship among increased TSP-1, the density of synaptic
markers, and seizure progression was assessed by inhibiting
TSP-1 with LSKL during kindling progression. Treatment with
LSKL significantly slowed the progression of kindling (P< 0.001;
Figure 3E) and attenuated synapsin-I-IR (P < 0.01 and
P < 0.001; Figures 3B,C), PSD-95-IR (P < 0.001; Figures 3A,D)
and vGluT-1-IR (Figure 3B). Even at day 20 after the final
stimulation, the average seizure stage in LSKL-treated groups
(50 µg, stage 1.88; 100 µg, stage 1.5; and 200 µg, stage 0.25)
was significantly lower than that seen in the vehicle control
group (stage 4.9; P < 0.001, 0.001 and 0.001, respectively;
Figure 3F). A similar lower duration of generalized seizures
was found after 20 stimulations (P < 0.05, 0.001 and 0.001,
respectively; Figure 3G). The ADD of rats that received
LSKL treatment was also significantly shorter than the saline-
treated rats (P < 0.001; Figure 3H). After 20 stimulations,
the average ADD in the LSKL group (50 µg, 18.38 s;
100 µg, 11.5 s; and 200 µg, 1.25 s) was shorter than that
seen in the control group (68.7 s, Figure 3H). In the LSKL
200 µg group, five/eight rats were at stage 0 (no epileptic
activity) and showed no AD during kindling progression. The
EEGs for each group after 20 stimulations are shown in
Figure 3J.

Epileptic susceptibility was assessed by ADT detection after
20 kindling stimulations. In kindled rats treated with saline, ADT
decreased by 28 µA, whereas ADT in the 50 µg LSKL group
showed a significantly smaller reduction (2.5 µA; P < 0.01;
Figure 3I). Interestingly, the ADT in the moderate- and
high-dose (100 µg and 200 µg) LSKL groups increased (2.5 µA,
P < 0.001; and 15 µA, P < 0.001, respectively; Figure 3I).

To further verify the role of TSP-1 upregulation during
kindling, siRNA interference of TSP-1 expression was
performed. When compared with the negative control treatment
(control group), administration of 0.5 µg of siRNA failed to
significantly affect TSP-1-IR (P > 0.05; Figures 4A,B) synaptic
number (P > 0.05; Figures 4A,E) and epileptic severity or
susceptibility (P> 0.05; Figures 4C,D,F–H). However, the 2.5µg
dose reduced TSP-1-IR and synaptic number (Figures 4A,B,E)
and demonstrated significantly slower progression (P < 0.001;
Figure 4D), lower average seizure stage (P < 0.001; Figure 4F),
reduced ADD (P < 0.001; Figure 4C), generalized seizure
duration (P < 0.001; Figure 4H), and epileptic susceptibility
(P < 0.001; Figure 4G). The 1.5 µg siRNA dose produced
effects between the other two doses, indicating a probable
dose-response effect (Figures 4A–H). These data indicate that
the inhibition of TSP-1 function can reduce synaptic number,
delay epileptic progression, and diminish the severity of and the
susceptibility to kindling.
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FIGURE 1 | Increased immunoreactivity (IR) of thrombospondin-1 (TSP-1) in the amygdala-kindled rat model. The represented changes in IR of TSP-1 that begin at
different stages in different subregions are presented. IR of glial fibrillary acidic protein (GFAP; green) and TSP-1 (red) in the ipsilateral hippocampus (A–I, bar = 200
µm) and ipsilateral piriform cortex (PC; J–R, bar = 200 µm) during seizure acquisition induced by amygdala kindling (Ip-cortex, ipsilateral cortex, except PC;
Con-cortex, contralateral cortex except PC). DAPI, blue. The mean intensity of TSP-1-IR was significantly increased when compared with the controls (S–U,
n = 4 per group). Data are shown as mean ± SEM. ∗P < 0.05, ∗∗P < 0.01 and ∗∗∗P < 0.001 compared with controls.

P2 Receptor Antagonism Reduced TSP-1,
Synaptic Number, and Epileptic Seizure
Activity
The broadly-acting P2-type receptor antagonist, PPADS (10,
20, and 30 µg) or the P2Y antagonist, Reactive Blue 2 (20 µg),
was administered intracerebroventricularly to evaluate the
regulation of TSP-1-IR during kindling by the P2 receptor

family. All doses of PPADS significantly reduced the IR of
TSP-1 (P < 0.001; Figures 5A,B) and the number of synapses
(visualized via synapsin-I-IR, Figure 5D), including PSD-95-IR
stained excitatory synapses (P < 0.001; Figures 5A,C). Epileptic
progression was significantly delayed in every PPADS group
(P < 0.001; Figure 5E). After 19 kindling stimulations, nearly
all the rats in the control group demonstrated fully effective
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FIGURE 2 | Increased synaptic density and transforming growth factor-β1 (TGF-β1) during epileptic progression. The represented changes in IR of related proteins
that begin at different stages in different subregions are presented. Measurements of synapsin-I-IR in the ipsilateral hippocampus (Hip), PC and amygdala (AM) in
stage 2 (A) and bilateral hippocampus (H), piriform cortex (P) and cortex except PC (C) in stage 4 (B; i-ipsilateral; c-contralateral) by western blotting during epileptic
progression (n = 4 per group). Ipsilateral IR of post synaptic density protein-95 (PSD-95) and vesicular glutamate transporter-1 (vGluT-1) in stage 2 and 4 (C, no
changes, –; increase, ↑; n = 4 per group). Flow cytometry-based quantification of TGF-β1 (D, n = 4 per group). The bands were excised from different gels, which
were run under the same electrophoresis condition. Data are shown as mean ± SEM. ∗∗P < 0.01 and ∗∗∗P < 0.001 compared with controls.

kindling; however, six/eight rats in the 30 µg PPADS group
were at seizure stage 0 and never demonstrated epileptiform
discharges during stimulations. The remaining two rats had
progressed only to stage 1. Finally, significantly shorter average
ADDs, generalized seizure duration, and significantly attenuated
susceptibility and seizure stage were noted in every rat from the
PPADS group (P < 0.001; Figures 5E–H). Similar inhibition,
such as decreased TSP-1/PSD95-IR, attenuated epileptic
progression, and reversed ADT, were observed in the Reactive
Blue 2 group (Figure 6). The EEGs from every group after
19 stimulations supported this effect (Figure 5J).

DISCUSSION

Here, we provide the first evidence that increased level of TSP-
1 accompanies increased density of synaptic and excitatory
synaptic markers in the amygdala-kindling rat epilepsy model.

Inhibiting TSP-1 activity with either LSKL or siRNA application
led to reduced synaptic/excitatory synaptic formation and seizure
activity. Antagonism of P2 receptor family mediated by PPADS
or administration of the P2Y antagonist, Reactive Blue 2,
attenuated the increased TSP-1 activity and synaptic number
and significantly reduced the epileptic activity. Not surprisingly,
epilepsy progression and the analyzed biomarkers, as well as
increases in the density of synaptic and excitatory synaptic
markers and TSP-1-IR, were associated with the anatomical
spread of the focal seizures away from the kindled amygdala,
through the ipsilateral PC and the hippocampus and then to the
remaining ipsilateral cortex and the contralateral regions.

Epilepsy progresses via an ‘‘epilepsy network’’ that requires
synaptogenesis to develop (Fidzinski et al., 2015; Heller and
Rusakov, 2015); therefore, TSP-1 may be involved in epilepsy-
related, as well as developmental, synaptogenesis. In fact,
our data demonstrate that TSP-1 increased synchronously
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FIGURE 3 | Inhibitory effects of the leu-ser-lys-leu (LSKL) peptide delivered to the lateral ventricle on synapses and kindling progression. (A) IR of PSD-95 (green,
sham group, without kindling; bar = 10 µm), (B,C) the ipsilateral IR of synapsin-I/vGluT-1 after different doses of LSKL (H, hippocampus; P, piriform cortex; C, cortex
except PC), (D) number of PSD-95-positive puncta in the field (80 µm × 60 µm), (E) Racine stage progression of epilepsy, (F) seizure stages after 20 stimulations,
(G) generalized seizure duration after 20 stimulations, (H) afterdischarge duration (ADD), (I) changes in AD threshold (ADT) and (J) respective electroencephalograms
(EEGs) recorded from the amygdala in kindled rats (saline group, n = 10; LSKL groups, n = 8–10 per group). The bands were excised from different gels, which were
run under the same electrophoresis condition. Data are shown as mean ± SEM. Asterisks show significant differences from the control group (∗P < 0.05;
∗∗P < 0.01; ∗∗∗P < 0.001).

with: (1) increased density of synaptic and excitatory synaptic
markers in areas with epileptiform activity; (2) increased seizure
severity; and (3) increased seizure propagation into networked
brain regions (i.e., anatomical progression towards generalized
seizures).

Previous reports have shown that along with the progression
of kindling with repeated stimuli, the same stimulus intensity
produces longer and more widely propagating events that
originate from the amygdala, demonstrating that epilepsy
requires synaptically networked populations of neurons that
generate abnormally synchronized discharges for progression
and propagation. This stimulus progressively recruits a larger
neural network and generalizes synchronous discharges across
the cortex (Hsu, 2007). In kindling-generated focal seizures, the
epileptic AD was usually generated focally in the limbic system
and then propagated in the generalized seizures (Kanter-Schlifke
et al., 2007).

It has been confirmed that the PC is critical to the
epileptogenic network, specifically the limbic seizure network
(Schwabe et al., 2000, 2004a,b) because of the PC’s extensive
connections with other limbic regions. The PC is connected
not only to ipsilateral limbic structures but also to contralateral
limbic structures such as the contralateral amygdala and PC
through the anterior commissure (Schwabe et al., 2004a).
Moreover, the PC plays an important role in the maintenance
of limbic epileptogenesis and in the development of complex
partial seizures (Löscher and Ebert, 1996). The PC may promote
generalized seizures directly or indirectly by preferred access
(Majak et al., 2004; Schwabe et al., 2004b). Therefore, the PC is
regarded as a reasonable target for therapeutic intervention in
epilepsy (Schwabe et al., 2000, 2004a,b). In amygdaloid kindling
animals, the ipsilateral PC contributes to the pathological
changes in the early stages (Ebert and Löscher, 1995; Vessal et al.,
2004), further leading to a significant increase in the excitability
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FIGURE 4 | Inhibitory effects of small interfering RNA (siRNA) interference on synapses and kindling progression. (A) IR of TSP-1 (red), GFAP (green, bar = 200 µm)
and PSD-95 (green, sham group, without kindling; bar = 10 µm) in the cortex, (B) mean intensity of TSP-1 immunostaining, (C) ADD, (D) Racine stage progression
of epilepsy, (E) number of PSD-95-positive puncta in the field (80 µm × 60 µm), (F) seizure stage after 20 stimulations, (G) change in the ADT and (H) generalized
seizure duration in kindling rats (control group, n = 9; siRNA groups, n = 8–10 per group). Data are shown as mean ± SEM. Asterisks show significant differences
from the control group (∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001).

of the amygdala-PC circuitry. This enhancement plays a critical
role in epileptogenesis (McIntyre and Wong, 1985, 1986; Racine
et al., 1988; Gean et al., 1989). Based on previous studies, we
investigated the changes in IR of proteins such as synapsin-I,
PSD-95, vGluT-1, TSP-1 and TGF-β1, especially in the PC.
Consistent with previous reports, the IR of synaptic markers,
synapsin-I, vGluT-1 and PSD-95, and related proteins, such as
TSP-1 and TGF-β1, increased in the ipsilateral PC, beginning at
stage 2, and this occurred earlier than in the other cortical regions
or hippocampus.

The hippocampus is more sensitive to excitatory input
and is considered a ‘‘promoter’’ or ‘‘amplifier’’ of epileptiform
discharges (Stringer and Lothman, 1992; Hsu, 2007). Neural
network modeling determined that changes in the number
of hippocampal synapses, connection strength, and network
connectivity can induce epileptiform activity (Netoff et al., 2004).
These changes can be visualized in the kainic acid-induced
rat epilepsy model; synapsin-I levels increase significantly and
bilaterally in the hippocampal CA1 pyramidal cell region
(Furtinger et al., 2003). Patients with temporal lobe epilepsy
and experimental animal models have demonstrated that
abnormal electrical activity of single neurons in the hippocampus
can increase excitatory synaptic connections. With excessive
excitatory synapses, the normal feedback inhibition in cortical
neurons is overwhelmed, and the network takes on epileptic
characteristics (Bragin et al., 2002). Therefore, the sensitivity of
the hippocampus to this excitatory synaptogenesis causes the
amplification effect described above.

In combination with previous studies, this study suggests
that the TSP-1/TGF-β1 pathway, regulated by members of
the P2 receptor family, is an important component in the
progression and propagation of epilepsy. P2 receptors can
be activated by ATP, which is a danger signal (Rodrigues
et al., 2015) and is released during epileptic seizures. A large
elevation in ATP release has been reported in response to
pilocarpine-induced status epilepticus (Lietsche et al., 2016),
electrical stimulation of the cortex and the Schaffer pathway
(Wu and Phillis, 1978; Wieraszko and Seyfried, 1989), and
overdischarge of neurons during epilepsy (Henshall and Engel,
2015) in vivo. The increased release of ATP was also involved
in brain hyperexcitability and increased seizure susceptibility
in seizure prone mice (Wieraszko and Seyfried, 1989) and was
observed in response to epilepsy induced by high frequency
stimulation (Cunha et al., 1996). Moreover, injection of ATP
into the brain can exacerbate seizures during status epilepticus
(Engel et al., 2012), and the microinjection of ATP analogs into
the PC leads to the generation of motor seizures (Knutsen and
Murray, 1997). These previous reports indicate that increased
ATP contributes to epileptic seizure and may be a crucial
trigger in epileptic seizure. Consequently, we speculate that
local elevated ATP levels induced by a focal seizure lead
to P2 receptor family activation, which increases astrocytic
TSP-1 secretion via protein kinase-mediated signaling (Diniz
et al., 2012). Increased TSP-1 secretion activates more latent
TGF-β1 and, thus, promotes synaptogenesis (Tran and Neary,
2006).

Frontiers in Cellular Neuroscience | www.frontiersin.org 8 October 2018 | Volume 12 | Article 302

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Sun et al. Thrombospondin-1, Synapse and Epileptogenesis

FIGURE 5 | Effect of pyridoxalphosphate-6-azophenyl-2’,4’-disulfonic (PPADS) on TSP-1, synapses and kindling progression. (A) IR of TSP-1 (red), GFAP (green,
bar = 200 µm), and PSD-95 (green, sham group, without kindling; bar = 10 µm) in the dentate gyrus of the hippocampus, (B) mean intensity of TSP-1
immunostaining, (C) number of PSD-95-positive puncta in the field (80 µm × 60 µm), (D) the ipsilateral IR of synapsin-I after different doses of PPADS (H,
hippocampus; P, piriform cortex; C, cortex except PC), (E) ADD, (F) seizure stage after 19 stimulations, (G) duration of generalized seizures, (H) Racine stage
progression of epilepsy, (I) change in the ADT, and (J) respective EEGs in kindled rats (saline group, n = 10; PPADS groups, n = 8–10 per group). The bands were
excised from different gels, which were run under the same electrophoresis condition. DAPI, blue. Data are shown as mean ± SEM. Asterisks show significant
differences from the control group (∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001).

In short, elevated ATP levels form a positive feedback loop
in which P2-type receptors, TSP-1 and TGF-β1 increase in
activity; this increases the number of excitatory synapses that
later promote focal epileptic discharge. In addition, connections
to other brain regions are enhanced; therefore, as the intensity of

the focal discharge increases, the increased number of synapses
on projecting axon terminals from the synchronized neurons
will concurrently increase ATP release at their target regions,
propagating the discharge until enough populations develop
epileptiform activity. At this point, seizures become generalized.
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FIGURE 6 | Effect of Reactive Blue 2 on TSP-1, synapses and kindling
progression. (A) Mean IR of TSP-1, (B) Racine stage progression of epilepsy,
(C) PSD-95 in the dentate gyrus of the hippocampus, (D) duration of
generalized seizures and (E) change in ADT (control group, n = 10; Reactive
blue group, n = 7). Data are shown as mean ± SEM. Asterisks show
significant differences from the control group (∗P < 0.05; ∗∗∗P < 0.001).

Our results support this hypothetical mechanism. We found that
the dynamics of TGF-β1 matched those of TSP-1 after kindling.
Furthermore, inhibition of either of the two upstream members
of the pathway (P2/P2Y receptors or TSP-1) prevented both
synaptic increase and seizure activity in terms of both severity
and propagation.

Interestingly, neuronal damage was found both in kindled
animals, including those with amygdaloid kindling after a
period of days to months, and in epileptic patients (DeGiorgio
et al., 1992; Wieshmann et al., 1996; Van Landingham et al.,
1998; Tuunanen and Pitkänen, 2000). For example, amygdaloid
damage and hippocampal damage were observed in about 3%
and 10% of patients with temporal lobe epilepsy, respectively
(Pitkänen et al., 1998), and a large number of seizures over
a lifetime are associated with increased severity of damage in
AM (Kälviäinen et al., 1997) or hippocampus (Kälviäinen, 1998).
Consequently, activity-dependent neurodegeneration has been
regarded as a critical player in epileptogenesis and a target for
antiepileptic drugs (Meldrum, 2002).

Amygdaloid kindling is a subconvulsive stimulus. After
repeated stimulation, generalized seizures (stages 4 or 5) are
eventually evoked (Goddard, 1969). Callahan et al. (1991)
reported a decrease in the density of gamma-aminobutyric acid
(GABA) neurons several months after 3–5 kindled seizures
(Callahan et al., 1991). In our study, we observed changes in the
progression (stage 1–5) of amygdaloid kindling before kindled
seizures. Unlike the neuronal damage that is observed several
months after stage 5 (kindled seizures), an increased number

of synapses, especially excitatory synapses, but not neuron loss
(data not shown) was observed in different subregions. These
results indicate that the contribution of neurons varies during
different epileptic periods. In the development of epilepsy, the
observed increase in the number of synapses, especially excitatory
synapses may contribute to the epileptic network development
and in the kindled seizures, and the observed decreases in the
number of GABA neurons may promote further overexcitation
and neuronal functional defect.

The functional implication of this model supports further
testing in clinical situations. The potency with which the P2/P2Y
receptor antagonism inhibits both synaptogenesis and seizure
activity suggests that they could be strong therapeutic targets,
especially in epilepsies that are refractory to other treatments.
While TSP-1 inhibition is likely to be effective, the need
for intracerebroventricular delivery owing to its small peptide
structure makes it the less attractive option. However, TGF-β1
has many effects, so future studies will need to focus on the ability
to inhibit this pathway safely and effectively.

CONCLUSION

The present study found that increased activity in the TSP-1/
TGF-β1 pathway is a critical component in promoting
synaptic/excitatory synaptic formation and in increased
epileptic seizure progression, in kindling-induced epilepsy. This
mechanism might be regulated in part by P2/P2Y purinergic
receptors, as demonstrated by the potent regulation of TSP-1,
seizure activity, and the density of synaptic markers by PPADS
or Reactive Blue 2. Inhibition of this pathway at one or more
points could significantly inhibit epileptic activity and/or its
spread and might provide novel therapeutic targets for treating
epilepsy. Given the broad distribution of P2 receptors in the
brain and the relatively broad spectrum of activity of PPADS,
further investigation of the specific P2 family receptor subtypes
regulating this system is warranted.
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