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Abstract

Background: Observational studies have suggested that the risks of non-communicable

diseases in voluntary migrants become similar to those in the host population after one

or more generations, supporting the hypothesis that these diseases have a predomin-

antly environmental (rather than inherited) origin. However, no study has been con-

ducted thus far to identify alterations at the molecular level that might mediate these

changes in disease risk after migration.

Methods: Using genome-wide DNA methylation profiles from more than 1000 Italian

participants, we conducted an epigenome-wide association study (EWAS) to identify dif-

ferences between south-to-north migrants and their origin (southern natives) and host

(north-western natives) populations.

Results: We identified several differentially methylated CpG loci, in particular when com-

paring south-to-north migrants with north-western natives. We hypothesise that these al-

terations may underlie an adaptive response to exposure differentials that exist between

origin and host populations.

Conclusions: Our study is the first large agnostic investigation of DNA methylation

changes linked to migratory processes, and shows the potential of EWAS to investigate

their biological effects.
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Introduction

Observational studies have contributed to consolidating

the idea that the risks of many non-communicable diseases

in voluntary migrants become similar to those in the host

(native) population after one or more generations.1–3 For

example, seminal studies have revealed a gradient of

increasing incidence of coronary heart disease in Japanese

men from Japan to Hawaii to California.3,4 These observa-

tions have been used to support the hypothesis that these

diseases have a predominantly environmental origin

(rather than inherited). Nonetheless, differences persist

between native and migrant populations. For instance, mi-

grants from non-western countries are more prone to can-

cers related to infections experienced in early life, and less

likely to suffer from cancers commonly associated with a

Westernized lifestyle.5

In this paper, we speculate that the observed health dif-

ferentials might be mediated at the molecular level by

changes in DNA methylation. In particular, we hypothe-

size that these changes are brought about by exposure dif-

ferentials between the origin and host populations, and

that they are instrumental in coping with the ‘mismatch’

between early-life programming (due to perinatal expos-

ures) and changes in those same exposures that occurred

later in life as a result of migration. This hypothesis is

based on the concept that developmental history leaves its

mark primarily through potentially reversible epigenetic

changes.6 It is also supported by the observation that dis-

ease risks in migrants tend to increase with duration of

residence in the host population, eventually becoming in-

distinguishable from those in natives.3 Among epigenetic

changes, DNA methylation is thought to be relatively

stable due to its heritability across cell generations, and yet

flexible enough to allow differentiation into different cell

types, as well as adaptation to stress and the external envir-

onment.7–9 In addition, DNA methylation plays a pivotal

role in transcriptional repression and suppression of tran-

scriptional noise,10 and is tightly linked to other epigen-

etic mechanisms such as histone modifications and

chromatin remodelling.11,12 DNA methylation levels are

associated with environmental and lifestyle exposures

such as tobacco smoking,13 and altered DNA methylation

patterns have also been implicated in many human

diseases.14

Traditionally, epidemiological studies of migrants en-

deavoured to elucidate the relative contributions of genetic

background, environment and their interaction.15,16 Most

studies have focused on the effects of international migra-

tion, since risk factor differentials tend to be larger across

countries. In this case, genetic differences between mi-

grants and the host population may hinder the identifica-

tion of migration-specific effects. Italy represents an

interesting natural experiment, not only for its pronounced

economic, social and environmental south-to-north gradi-

ent and the mass migration of labour that took place from

the mid 1940s to the 1970s,17,18 but also for its relative

genetic homogeneity (with the possible exception of

Sardinia19).

Using genome-wide DNA methylation profiles obtained

from prospectively collected peripheral blood samples

from 1066 participants in the Italian component of

the European Prospective Investigation into Cancer and

Nutrition (EPIC-Italy),20 we present the first epigenome-

wide association study (EWAS) to identify DNA

Key Messages

• The risks of many non-communicable diseases in voluntary migrants become similar to those in the host population

after one or more generations, but the involvement of alterations at the molecular level (such as DNA methylation) in

this process is unclear.

• Using genome-wide DNA methylation profiles from more than 1000 Italian participants, we conducted an epigenome-

wide association studies (EWAS) to identify differences between southern migrants to north-western Italy, and their

origin and host populations.

• We identified several differentially methylated CpG loci, in particular when comparing south-to-north migrants with

north-western natives.

• We hypothesize that these alterations may be part of an adaptive response to cope with the ‘mismatch’ between early

life programming (due to perinatal exposures) and changes that occurred later in life as a result of migration.
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methylation changes associated with voluntary south-to-

north migration that occurred within Italy in the three dec-

ades after the end of WWII.

Methods

Study population and sample selection

All participants were recruited between 1993 and 1998 as

part of EPIC-Italy.20 Detailed lifestyle and dietary informa-

tion was collected at enrolment using self-administered

questionnaires and a validated food frequency question-

naire,21 respectively. Anthropometric measurements were

obtained at the inclusion visit, as were peripheral blood

samples that were aliquoted and stored in liquid nitrogen

on the day of collection.

A total of 1222 genome-wide DNA methylation profiles

were acquired as part of three separate prospective case-

control studies nested within EPIC-Italy on breast cancer

(N¼ 332), colorectal cancer (N¼338) and myocardial

infarction (EPICOR,22 N¼ 552). Eight profiles were

excluded because of unsatisfactory technical quality. A sin-

gle profile was retained, on the basis of technical quality,

for participants included in more than one study, leaving a

total of 1170 unique profiled participants. Within each

study, participants who developed the relevant condition

less than 1 year after blood draw (N¼46), or who de-

veloped any kind of haematological malignancy at any

time after enrolment (N¼ 4), were excluded; all remaining

subjects were considered healthy at inception. A total of 23

participants were excluded because of incomplete dietary

or lifestyle information. To minimize confounding by gen-

etic factors, participants born outside Italy (N¼ 18) or in

the insular region of Sardinia (N¼ 18) were also excluded.

The remaining 1061 participants were categorized as

follows:

i. south-to-north migrants (N¼ 190), recruited in Turin

(N¼148) or Varese (N¼ 42), and born in any south-

ern Italian region;

ii. southern natives (origin population, N¼ 123), re-

cruited by the two southern Italian EPIC centres of

Naples (N¼40) and Ragusa (N¼83), and born in any

southern Italian region;

iii. north-western natives (host population, N¼ 543),

recruited by the two north-western Italian EPIC

centres of Turin (N¼317) and Varese (N¼ 226), and

born in any north-western Italian region.

A total of 205 participants did not fall into any of the

above categories, and were excluded from subsequent

analyses. Detailed information on the 856 participants

included in the study is summarized in Table 1.

Laboratory analyses

Genome-wide DNA methylation analyses using the

Illumina Infinium HumanMethylation450 (HM450) plat-

form were carried out at the Human Genetics Foundation

(Turin, Italy) according to manufacturers’ protocols. Buffy

coats stored in liquid nitrogen were thawed, and genomic

DNA was extracted using the QIAGEN QIAsymphony

DNA Midi Kit; 500 ng of DNA were bisulphite-converted

using the Zymo Research EZ-96 DNA Methylation-

GoldTM Kit, and hybridized to Illumina Infinium

HumanMethylation450 BeadChips. These were subse-

quently scanned using the Illumina HiScanSQ system, and

sample quality was assessed using control probes present

on the microarrays. Finally, raw intensity data were ex-

ported from Illumina GenomeStudio (version 2011.1).

Data pre-processing was carried out using in-house soft-

ware written for the R statistical computing environment.

For each sample and each probe, measurements were set to

missing if obtained by averaging intensities over less than

three beads, or if averaged intensities were below detection

thresholds estimated from negative control probes.

Background subtraction and dye bias correction (for

probes using the Infinium II design) were also performed.

The subset of 470 870 probes targeting autosomal CpG

loci was selected for further analyses. DNA methylation

levels at each locus were expressed as the ratio of inten-

sities arising from methylated cytosines over total

intensities.

Statistical analyses

An EWAS was conducted to compare south-to-north

migrants with their origin (southern natives) and host

(north-western natives) populations, with the objective of

characterizing epigenetic adaptation processes subsequent

to migration to north-western Italy. For each probe, DNA

methylation levels were modelled as dependent variable in

a generalized linear model with beta-distributed response

using the parameterization of Ferrari and Cribari-Neto.23

All models were adjusted for microarray (N¼ 102) and

position on the microarray (N¼12), sex, and case-control

status (separately for cancers and myocardial infarction).

In place of age at recruitment, models were also adjusted

for two continuous variables representing the time to birth

and to recruitment of each participant (computed from an

arbitrary reference date). Since the difference between

these two quantities equals age at recruitment for any

choice of reference date, this approach grants an additional
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degree of freedom to account for possible differences in mi-

gration behaviour associated with birth date. The effect of

dietary and lifestyle factors, which are radically different in

southern regions,24 was investigated using a second set of

models additionally adjusted for 25 dietary variables (total

energy intake, protein from animal and vegetable sources,

fat from animal and vegetable sources, cholesterol, soluble

carbohydrates, starch, fibre, alcohol and vitamins and min-

erals as listed in Table 1), smoking status and level of phys-

ical activity (categorical variable). To prevent inclusion of

highly correlated variables and reduce the number of

estimated regression coefficients, dietary variables were

subjected to principal component analysis (PCA), and

the first 16 principal components (explaining more than

Table 1. Characteristics of participants included in the study. Counts and percentages are reported for categorical variables, and

medians and ranges for continuous variables

South-to-north migrants Southern natives North-western natives

N 190 123 543

Men 115 (60.5%) 62 (50.4%) 232 (42.7%)

Women 75 (39.5%) 61 (49.6%) 311 (57.3%)

Age (years) 51.2 (35.8 to 66.0) 52.7 (34.7 to 67.9) 54.4 (35.2 to 72.0)

Smoking status

Never 64 (33.7%) 41 (33.3%) 248 (45.7%)

Current 65 (34.2%) 40 (32.5%) 151 (27.8%)

Former 61 (32.1%) 42 (34.1%) 144 (26.5%)

Physical activity

1 30 (15.8%) 28 (22.8%) 116 (21.4%)

2 67 (35.3%) 36 (29.3%) 148 (27.3%)

3 67 (35.3%) 51 (41.5%) 251 (46.2%)

4 26 (13.7%) 8 (6.5%) 28 (5.2%)

5 0 (0%) 0 (0%) 0 (0%)

Energy (kcal) 2143.5 (487.7 to 5225.3) 2375.9 (1100.7 to 5476.9) 2184.0 (722.7 to 5309.2)

Protein (g) 85.5 (26.5 to 189.6) 94.1 (39.5 to 190.8) 89.7 (24.4 to 209.3)

From animal sources 53.9 (17.2 to 132.0) 51.3 (12.5 to 103.3) 58.2 (14.3 to 167.8)

From vegetable sources 29.3 (5.6 to 92.0) 40.0 (13.8 to 124.9) 26.3 (5.5 to 70.3)

Fat (g) 77.6 (21.0 to 199.0) 85.9 (36.3 to 178.4) 83.5 (18.9 to 227.7)

From animal sources 41.6 (14.5 to 108.5) 41.9 (12.1 to 105.1) 47.8 (6.4 to 174.6)

From vegetable sources 36.0 (5.6 to 90.5) 42.0 (12.5 to 91.6) 35.0 (4.4 to 91.0)

Cholesterol (mg) 326.7 (77.4 to 772.9) 288.4 (72.9 to 692.5) 358.0 (72.4 to 1002.5)

Available carbohydrates (g) 259.1 (50.8 to 685.9) 320.0 (120.3 to 780.5) 249.2 (48.9 to 760.6)

Soluble carbohydrates 93.6 (15.8 to 284.1) 95.5 (39.0 to 253.0) 98.5 (28.1 to 384.2)

Starch 158.5 (33.7 to 571.6) 209.2 (55.8 to 655.1) 144.0 (5.1 to 460.3)

Fibre (g) 21.0 (3.6 to 51.5) 33.4 (10.5 to 131.2) 19.5 (5.3 to 70.5)

Alcohol (g) 11.5 (0.0 to 90.9) 1.6 (0.0 to 50.4) 11.2 (0.0 to 105.4)

Vitamins

Vitamin A (mg RE) 944.8 (167.1 to 3467.5) 898.5 (260.1 to 5092.5) 1031.7 (175.4 to 6716.7)

Vitamin B1 (mg) 0.96 (0.24 to 2.12) 1.22 (0.40 to 4.40) 0.98 (0.33 to 2.18)

Vitamin B2 (mg) 1.46 (0.30 to 3.12) 1.58 (0.57 to 3.19) 1.58 (0.43 to 4.19)

Vitamin B3 (mg) 17.8 (5.2 to 39.6) 21.9 (7.8 to 63.9) 17.8 (4.9 to 39.5)

Vitamin B6 (mg) 1.84 (0.45 to 4.40) 2.28 (0.85 to 5.75) 1.87 (0.46 to 4.12)

Folic acid (mg) 269.8 (48.3 to 775.7) 335.0 (124.4 to 835.0) 261.0 (50.8 to 673.8)

Vitamin C (mg) 127.5 (16.9 to 413.5) 153.2 (63.4 to 672.7) 121.5 (5.9 to 888.5)

Vitamin D (mg) 1.24 (0.13 to 5.85) 1.05 (0.04 to 6.30) 1.34 (0.08 to 12.45)

Vitamin E (mg) 7.65 (1.90 to 24.18) 9.08 (3.78 to 20.04) 7.69 (1.50 to 22.60)

Minerals

Calcium (mg) 919.9 (279.6 to 2956.3) 834.3 (239.0 to 2050.2) 1020.1 (201.7 to 3833.4)

Iron (mg) 13.8 (2.9 to 35.0) 15.1 (5.8 to 42.9) 13.8 (4.8 to 31.9)

Phosphorus (mg) 1342.6 (382.9 to 2945.3) 1558.9 (576.4 to 3816.1) 1413.4 (487.0 to 3393.8)

Potassium (mg) 3207.2 (690.1 to 7023.0) 3564.4 (1414.5 to 8445.0) 3271.4 (982.1 to 8882.6)

Sodium (mg) 2164.9 (359.2 to 9837.6) 2365.8 (729.8 to 8879.0) 2227.3 (728.5 to 8636.5)

Zinc (mg) 11.7 (4.0 to 26.1) 14.2 (4.4 to 42.9) 12.4 (3.6 to 32.8)
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99% of the variance) were included in the models.

Multiple comparisons were accounted for by considering a

Bonferroni-corrected significance threshold a¼ 0.05/

470,870�1.1� 10�7, ensuring a stringent control of the

family-wise error rate at level 5%. Candidate CpG loci

were additionally filtered as follows. First, probe sequences

were aligned to the reference human genome using Bowtie

225 to assess the potential to cross-hybridize to multiple

genomic locations, thus affecting DNA methylation meas-

urements.26 CpG loci targeted by cross-hybridizing probes

(defined as those lacking unique genome alignments, with

up to three base mismatches) were excluded from further

consideration. Second, potential sources of genetic con-

founding and context disruption for DNA methylation

(such as polymorphisms at the CpG locus) were identified

by retrieving known genetic variations and computing the

corresponding minor allele frequencies (MAFs) in the

European population, based on publicly available data

generated by the 1000 Genomes project.27 As a precau-

tionary measure, CpG loci found within 100 base pairs

(bp) of non-rare variants (MAF greater than 1%) were

removed from the list of candidates.

Results

As illustrated in Figure 1A, the EWAS identified 20 differ-

entially methylated CpG loci in south-to-north migrants

with respect to the origin population (southern natives).

Two probe sequences were ambiguously aligned to the ref-

erence human genome, and genetic variations were found

in the vicinity of nine candidate CpG loci. A total of nine

CpG loci were left for further consideration, of which none

survived the adjustment for dietary and lifestyle factors

(Supplementary Table 1, available as Supplementary data

at IJE online).

Comparison of south-to-north migrants with respect to

the host population (north-western natives) revealed 91

differentially methylated CpG loci (Figure 1B). After re-

moval of 23 candidates whose associated probe sequences

could not be uniquely aligned to the reference human gen-

ome, and of 33 candidates in the proximity of non-rare

genetic variations, 35 CpG loci were left for further consid-

eration, and 22 survived the adjustment for dietary and

lifestyle factors. Of these, 17 were found to be relatively

hypermethylated in south-to-north migrants, and seven

were found in the pericentric region on the long arm of

chromosome 7 (from the centromere to 6.37� 107 bp).

These loci exhibited a consistent decreasing gradient from

south-to-north migrants to southern natives to north-west-

ern natives (Figure 2). They were also flanked by several

other loci that shared the same direction of association.

This region was additionally characterized by PCA of

DNA methylation measurements at 43 enclosed CpG loci

assayed by the HM450 platform (filtered according to the

Figure 1. Signed Manhattan plot for the EWAS comparing south-to-north migrants with: (A) the origin population (southern natives); (B) the host

population (north-western natives).
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criteria described above), before and after adjustment for

dietary and lifestyle factors. Irrespective of adjustment, the

first principal component explained approximately 35% of

the variance (Figure 3A), and was the only component ex-

plaining more than 10% of the variance. The association

of each principal component with migratory status was

formally assessed using Kruskal–Wallis rank sum tests.

Results were comparable before and after adjustment;

however, the second, third and 36th principal components

lost statistical significance after adjustment (Figure 3B).

The first principal component was consistently associated

with migratory status (P-values 1.71� 10�8 and

6.28� 10�6 before and after adjustment, respectively), as

was the 15th (P-values 0.043 and 0.041, respectively).

Scores exhibited a decreasing gradient similar to that

observed in Figure 2, albeit less markedly for the 15th prin-

cipal component (Figure 3C).

Discussion

To our knowledge, this is the first EWAS to examine DNA

methylation changes in voluntary migrants. The gamut of

alterations observed in south-to-north migrants offers evi-

dence that important environmental and lifestyle changes

Figure 2. Box-and-whisker plot across groups for CpG loci identified by the EWAS in the pericentric region on the long arm of chromosome 7.

Figure 3. PCA of DNA methylation levels assayed in the pericentric region on the long arm of chromosome 7: (A) scree plot; (B) Manhattan plot for

the association of PCs with migrant status (Kruskal–Wallis rank sum test); (C) box-and-whisker plot for PCs associated with migrant status (P< 0.05)

after adjustment for dietary and lifestyle factors.
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may induce molecular adaptation mechanisms to stressors

that are inheritable across cell divisions. Some of the differ-

ences are evident even after adjustment for dietary and life-

style factors, suggesting that these DNA methylation

changes are not merely ascribable to behaviour modifica-

tion following migration. Intriguingly, we found DNA

methylation changes in south-to-north migrants compared

to the host population at several CpG loci located on a

large pericentric region on the long arm of chromosome 7.

Pericentric regions have long been thought to be transcrip-

tionally inert, but recent evidence suggests that pericentric

and centromeric transcripts play an important role in pre-

serving genome stability.28 Additionally, transcription of

pericentric satellites appears to be a general cellular re-

sponse to external stressors including heat shock, ultravio-

let radiation and oxidative stress.29 In this light, it appears

that molecular consequences of migration may not be lim-

ited to specific genes, but may act at a higher complexity

level, for example on gene regulatory networks. The gradi-

ent observed in Figure 2 may thus epitomize an adaptive

mechanism to cope with the ‘mismatch’ between early-life

programming and exposure changes in later life: before

migration, south-to-north migrants and southern natives

share common environmental factors that affect DNA

methylation patterns and (possibly) differentiate them

from northern natives; the amplified response observed

after migration might therefore be a consequence of rela-

tive abundance or lack of these factors in the host popula-

tion. Such factors could include, for example, vitamin D

(in relation to more limited sun exposure in northern

Italy), other vitamins contained in food, occupational and

environmental exposure to pollutants and even exposure

to different infectious agents (with some viruses, for ex-

ample the hepatitis B virus, being more prevalent in south-

ern populations). This would not only explain the

observed DNA methylation gradient, but it would also be

consistent with the ‘developmental origins of disease’

hypothesis,30,31 and with current understanding of the role

of perinatal exposures in health and disease.

The main strengths of our study are its sample size

and the relative genetic homogeneity of its participants (all

born in Italy), which limits the potential for genetic con-

founding. Its main limitation is the lack of information

regarding the time of migration, from which age at migra-

tion and duration of stay could be computed and ac-

counted for. Nevertheless, absence of this information is

more likely to dilute any observable effect on DNA methy-

lation, rather than lead to false-positive results. The biolo-

gical interpretation of our results could be enhanced were

genome-wide gene expression data available for the same

subjects. These would allow us to establish whether the

observed DNA methylation changes are associated with

gene expression and its regulation, and would thus provide

a much deeper understanding of how migration exerts its

biological effects at different cellular complexity levels.

Despite these limitations, we think this work exemplifies

the promising potential of EWAS approaches to elucidate

complex and subtle effects of migration at the population

level.

Supplementary Data

Supplementary data are available at IJE online.
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Comparisons of migrant, native and host populations

are particularly useful in elucidating the balance between

genetic and environmental influences on disease risk. In

this issue of IJE, Campanella and colleagues1 have con-

ducted a novel study of epigenetics in Italian migrants and

non-migrants from the European Prospective Investigation
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