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Abstract

Cholangiocarcinomas are devastating cancers of biliary origin with limited treatment options. It 

has previously been shown that the endocannabinoid anandamide exerts antiproliferative effects 

on cholangiocarcinoma independent of any known cannabinoid receptors, and via the stabilization 

of lipid rafts, thereby allowing the recruitment and activation of the Fas death receptor complex. 

Recently, GPR55 was identified as a putative cannabinoid receptor; therefore, the role of GPR55 

in the antiproliferative effects of anandamide was evaluated. GPR55 is expressed in all 

cholangiocarcinoma cells and liver biopsy samples to a similar level as in non-malignant 

cholangiocytes. Treatment with either anandamide or the GPR55 agonist, O-1602 reduced 

cholangiocarcinoma cell proliferation in vitro and in vivo. Furthermore, knocking down the 

expression of GPR55 prevented the antiproliferative effects of anandamide. Coupled to these 

effects was an increase in JNK activity. The antiproliferative effects of anandamide could be 

blocked by pretreatment with a JNK inhibitor and the lipid raft disruptors β-methylcyclodextrin 

and fillipin III. Activation of GPR55 by anandamide or O-1602 increased the amount of Fas in the 

lipid raft fractions, which could be blocked by pretreatment with the JNK inhibitor. This data 

represent the first evidence that GPR55 activation by anandamide can lead to the recruitment and 

activation of the Fas death receptor complex and that targeting GPR55 activation may be a viable 

option for the development of therapeutic strategies to treat cholangiocarcinoma.
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Cholangiocarcinoma originates from the neoplastic transformation of epithelial cells that 

line the intra- and extrahepatic bile ducts (1, 2). Symptoms are usually only evident after 

blockage of the bile duct, and at this late stage, chemotherapy and radiotherapy are relatively 

ineffectual leaving surgical resection as the only option for treatment (1, 2). Because of this, 

these biliary cancers have a poor prognosis and improved treatments are urgently needed.

The endocannabinoid system was traditionally thought to consist of the cannabinoid 

receptors, Cb1 and Cb2, as well as a putative involvement of the vanilloid receptor (VR1), 

their endogenous ligands (endocannabinoids) and the proteins for their synthesis and 

inactivation (3). These cannabinoid receptors are seven-transmembrane-domain proteins 

coupled to Gi/o type of G-proteins (3). Anandamide (AEA) was the first endogenous ligand 

to be identified (4), which acts as a partial Cb1 agonist and weak Cb2 agonist. A number of 

endocannabinoids, in particular AEA, are capable of mediating a plethora of cell signaling 

effects via an interaction lipid rafts; cholesterol-rich microdomains of the cell membrane (5, 

6); as well as via the synthesis of the raft-associated, sphingolipid moiety, ceramide (7).

More recently, GPR55 was also identified as a putative cannabinoid receptor (8, 9) that is 

classified as a Gα12 G-protein coupled receptor (8). AEA has also been shown to function 

via GPR55, particularly with respect to controlling certain vascular endothelial cell 

functions (10). Furthermore, activation of Gα12 G proteins often leads to the activation of 

JNK-mediated pathways (11).

We have previously shown that AEA exerts growth-suppressing effects on 

cholangiocarcinoma by inducing apoptosis (12). This effect could not be blocked by Cb1, 

Cb2 or VR1 antagonists, or by the specific Gi/o inhibitor, pertussis toxin (12). At the time, 

we assumed that AEA was acting via a receptor-independent mechanism (12). However, 

given the recent discovery and characterization of GPR55 as a novel AEA receptor, our data 

need to be reassessed to determine if GPR55 activation can decrease cholangiocarcinoma 

cell proliferation. In addition, we have previously shown that AEA-induced cell death is 

dependent upon the stabilization of lipid rafts and the subsequent recruitment of the death 

receptor, Fas, into these structures (12). Thus, our aims are to determine if these AEA-

mediated effects on cholangiocarcinoma cell growth can be attributed to the activation of 

GPR55.

MATERIALS AND METHODS

Cell lines

Four human cholangiocarcinoma cell lines Mz-ChA-1 (gift from Dr. G. Fitz; University of 

Texas Southwestern Medical Center, Dallas, TX), and HuCC-T1, CCLP1, and SG231 (all 

from Dr A.J. Demetris University of Pittsburgh, PA) were used (13). The human 

immortalized, nonmalignant cholangiocyte cell line, H69 (from Dr. G.J Gores, Mayo Clinic, 
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MN), and the primary human intrahepatic cholangiocyte cell line (HIBEC) was purchased 

from Sciencell (Carlsbad, CA) were used as non-malignant control cell lines.

Real time PCR

RNA was extracted from all cell lines using the RNeasy Mini Kit (Qiagen Inc, Valencia, 

CA) according to the instructions provided by the vendor and reverse transcribed using the 

Reaction Ready™ First Strand cDNA synthesis kit (SA Bioscience, Frederick, MD). These 

reactions were used as templates for the PCR assays using a SYBR Green PCR master mix 

(SA Bioscience, Frederick, MD) in the real-time thermal cycler (ABI Prism 7900HT 

sequence detection system) using commercially available primers designed against human 

GPR55, Gα12 and GAPDH (SA Bioscience, Frederick, MD). A ΔΔCT analysis was 

performed using the untreated cells as the control sample (14, 15). Data are expressed as 

relative mRNA levels ± SEM (n=3).

Immunoblotting

Immunoblots to detect GPR55, Gα12, Flotillin-1, Fas and β-actin were performed as 

previously described (12) using specific antibodies against each protein. Where appropriate, 

data are expressed as fold change (mean ± SEM) of the relative expression after 

normalization with β-actin.

Immunofluorescence

Cells were seeded into six-well dishes containing a sterile coverslip on the bottom of each 

well. Cells were allowed to adhere overnight, washed once in cold PBS, fixed to the 

coverslip with 4% paraformaldehyde (in PBS) at room temperature for 5 minutes, 

permeabilized in PBS containing 0.2% Triton X-100 (PBST), and blocked in 4% bovine 

serum albumin (BSA in PBST) for 1 hour. GPR55 immunoreactivity was determined using 

a specific primary antibody (Genetex Inc. Irvine, CA), followed by immunofluorescent 

detection using cy3-conjugated secondary antibodies (Jackson Immunochemicals, West 

Grove, PA). Coverslips were mounted onto microscope slides with Antifade gold containing 

4V,6-diamidino-2- phenylindole (DAPI) as a counterstain (Molecular Probes, Eugene, OR). 

Negative controls were performed with the omission of the respective primary antibodies. 

Immunofluorescence was visualized using an Olympus IX-71 inverted confocal microscope.

Immunohistochemistry

Immunoreactivity for GPR55 was assessed in commercially available Accumax tissue arrays 

(Isu Abxis Co, LTD, Seoul, Korea) by immunohistochemistry as described (16) using 

specific antibodies. These tissue arrays contain 46 cholangiocarcinoma biopsy samples from 

a variety of tumor differentiation grades as well as 4 control liver biopsy samples.

MTS cell viability assays

Cell viability was evaluated by 3-(4,5-dimethylthiazol-2-yl)-5-(3- 

carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) assay in the 

indicated cell lines. After trypsinization, cells were seeded into 96-well plates (10,000 cells 

per well) in a final volume of 200 μL of medium. Cells were stimulated with various 
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concentrations of O-1602 or AEA (10−9 to 10−5M) for 48 hr in the presence of specific 

inhibitors. The inhibitors utilized were the lipid raft disruptors, methyl-β-cyclodextrin (0.1 

mM), (17), and filipin III (1 mg/mL) (18, 19), and the JNK inhibitor (10−7M; SP600125; 

EMD Chemicals, Gibbstown, NJ) (20). Data were expressed as the fold change of treated 

cells compared to vehicle-treated controls. Statistical significance was determined using a t-

test and p<0.05 was considered significant.

Annexin V staining

Apoptosis was evaluated using Annexin-V labeling of cells. Cell lines were seeded in 6 well 

plates (500,000 cells/well) containing sterile coverslips on the bottom of each well and 

allowed to adhere overnight. Cells were stimulated with O-1602 or AEA (both at 10−5M) for 

24 hr after which time; coverslips were removed and rinsed in cold incubation buffer (10 

mM HEPES, pH 7.4, 140 mM NaCl, 5 mM CaCl2) to remove excess media. Coverslips 

were then incubated in a solution containing Annexin V-biotin complex (1:50 dilution in 

incubation buffer) for 30 min at room temperature. After washing the coverslips to remove 

excess Annexin V-biotin, the cells were fixed in cold 4% PFA (in PBS) for 10 minutes. 

Bound Annexin V/biotin complex was detected with Cy2-labeled streptavidin (1:200 

dilution in PBS), mounted onto microscope slides with Prolong Antifade Gold containing 

DAPI and visualized using an Olympus IX-71 inverted confocal microscope. The number of 

Annexin V-positive cells was counted and expressed as a percentage of total cells in 8 

random fields for each treatment group. Data is average ± SEM of 8 fields in 3 independent 

experiments.

Establishment of stable transfected cell lines

Stable transfected cell lines were established using SureSilencing shRNA (SABiosciences, 

Frederick, MD) plasmids for human GPR55 or Gα12 G protein, which contain a marker for 

neomycin resistance for the selection of stably-transfected cells following the methodology 

described previously (21). Subsequent clones were then assessed for the relative knockdown 

of the specific target genes using real time PCR

Nude mice treatment

In vivo experiments were performed in accordance with the guidelines of the Scott & White 

IACUC committee. Mz-ChA-1 cells (3 × 106) were suspended in 0.25 mL of extracellular 

matrix gel and injected subcutaneously in the flanks of these animals. After the 

establishment of the tumors, mice received O-1602 (10 mg/kg ip) injected 3 times per week. 

In parallel, mice were injected with Mz-Neo neg cells (3 × 106 cells) or Mz-GPR55 shRNA 

cells and treated with O-1602 (10 mg/kg ip) or AEA (10 mg/kg ip) 3 times per week.

Tumor tissues were excised from the flank of these mice at the conclusion of the study, fixed 

in formalin, and embedded in paraffin. The cholangiocyte marker cytokeratin-19 (CK-19) 

was evaluated by immunohistochemical staining (13) and GPR55 immunoreactivity 

assessed by immunofluorescence. Apoptosis was detected in these sections using the 

ApopTag® peroxidase in situ apoptosis detection kit following the manufacturer's 

instructions (Millipore; Temucula CA).
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JNK activity kit

Phospho-JNK activity was assayed by ELISA (R&D Systems, Minneapolis, MN). Mz-

ChA-1, Mz-Neo neg, Mz-GPR55 shRNA and Mz-Gα12 shRNA cells were seeded in 6-well 

plates at a concentration of 500,000 cells/well. Cells were stimulated with AEA and O-1602 

(both at 10−5 M) for various times up to 6 hours. Phospho-JNK activity levels for the cell 

lysates were assayed according to manufacturer's specifications. All samples were assayed 

in triplicate, and pJNK values obtained were normalized with total protein levels. Data are 

expressed as average ± standard error of the mean, and statistical significance was 

determined using a t-test; p<0.05 was considered significant.

Isolation of lipid raft microdomains

Mz-ChA-1 cells were treated with AEA or O-1602 (10−5M) in the absence or presence of 

the JNK inhibitor SP600125 (10−7 M) for 24 hr. Cells were lysed and lipid rafts isolated by 

sucrose density centrifugation (12). In parallel, lipid rafts were fractionated from Mz-GPR55 

shRNA and Mz-Neo neg cells treated with AEA or O-1602. Fractions were collected and 

analyzed by western blotting as described previously using specific antibodies against 

Flotillin-1, β-Actin, GPR55, Gα12 G-protein, and Fas.

Co-localization labeling with lipid raft structures

Lipid rafts were visualized using the Vybrant® lipid raft labeling kit (Invitrogen, Carlsbad, 

CA) after AEA or O-1602 (10−5M) treatment for 24 hr and were double labeled with Fas 

and GPR55 receptor antibodies as described (12). Coverslips were mounted onto 

microscope slides with prolong Antifade gold containing DAPI and visualized using an 

Olympus IX-71 inverted confocal microscope.

Statistical Analysis

All data are expressed as mean ± SEM. Differences between groups were analyzed by the 

Student unpaired t-test when two groups were analyzed and ANOVA when more than two 

groups were analyzed, followed by an appropriate post hoc test. For the nude mice 

experiments where two parameters were variable (treatment and time) and two-way 

ANOVA analysis was performed followed by the appropriate post hoc test. In each case a p 

value of less than 0.05 was used to indicate statistical significance.

Results

GPR55 expression in cholangiocarcinoma

All of the cholangiocarcinoma cell lines studied here, as well as the non-malignant cell lines 

(H69 and HIBEC) expressed the mRNA (Figure 1A) and protein (Figure 1B) for GPR55. 

There was no obvious or consistent difference between the GPR55 mRNA and protein 

expression in the malignant and non-malignant cell lines (Figure 1A, 1B). By 

immunofluorescence, GPR55 immunoreactivity was predominantly found in the membrane 

and cytoplasm in all cell lines studied (Supplemental Figure S1 A). Furthermore, 

immunohistochemical analysis of human liver biopsy samples indicated similar intensity 
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and subcellular location of GPR55 immunoreactivity in malignant and non-malignant 

cholangiocytes (Supplemental Figure S1 B).

Activation of GPR55 exerts growth suppressive effects on cholangiocarcinoma in vitro 
and in vivo

Activation of GPR55 with the specific agonist O-1602 in vitro significantly decreased cell 

viability in all cholangiocarcinoma cell lines studied, but not in the non-malignant 

cholangiocyte cell lines (Figure 2A). Furthermore, there was an increase in apoptosis in all 

cholangiocarcinoma cell lines after O-1602 treatment as demonstrated by Annexin V 

staining (Supplemental Figure S2). Treating in vivo xenograft cholangiocarcinoma tumors 

with O-1602 significantly inhibited tumor growth (Figure 2B). In addition, the latency of 

tumor growth (i.e., time taken for tumor volume to increase to 150% of the original size) 

was increased from 5.8 ± 0.76 to 11.2 ± 2.74 days after chronic O-1602 treatment. 

Histological analysis of the excised tumors revealed that all cancer cells within tumors from 

O-1602-treated and vehicle-treated animals were CK-19 positive, indicating a cholangiocyte 

phenotype (Supplemental Figure S3). Furthermore, all cholangiocarcinoma cells in the 

tumor retained GPR55 immunoreactivity, which appeared to increase after O-1602 treatment 

(Supplemental Figure S3). Using TUNEL staining as a marker of apoptosis, O-1602 

treatment increased the incidence of apoptosis in the cholangiocarcinoma tumors 

(Supplemental Figure S3).

AEA exerts its antiproliferative actions through GPR55 activation

We have previously shown that AEA exerts antiproliferative effects on cholangiocarcinoma 

(12) in a similar manner to that shown here for GPR55 activation. Therefore, we wanted to 

assess definitively if AEA is working through a GPR55-dependent mechanism. To this end, 

we stably knocked down the expression of GPR55 by transfecting GPR55-specific shRNA 

constructs into Mz-ChA-1 cells. Characterization of the resulting cell line (Mz-GPR55 

shRNA) revealed a 60-70% knock down in GPR55 mRNA and protein expression when 

compared to the mock-transfected cell line (Mz-Neo neg; Supplemental Figure S4). Using 

these cell lines, we assessed the antiproliferative effects of both AEA and O-1602 in vitro 

and in vivo. Both AEA and O-1602 decreased cell viability in Mz-Neo neg to a similar 

degree, but failed to have any effect in Mz-GPR55 shRNA cells (Figure 3A). Similarly, 

AEA and O-1602 increased the amount of apoptotic cells in Mz-Neo neg cells, but had no 

effect in the Mz-GPR55 shRNA cells (Supplemental Figure S5). The growth suppressive 

effects of AEA and O-1602 were evident in the xenograft model of cholangiocarcinoma 

using Mz-Neo neg cells (Figure 3B), whereas tumors derived from the implantation of Mz-

GPR55 shRNA were not sensitive to AEA or O-1602 (Figure 3B).

GPR55 is a Gα12 G-protein-coupled receptor (8) and as such, we wanted to provide further 

evidence of the involvement of this receptor system in the antiproliferative actions of AEA. 

Again, we used a genetic approach and stably knocked down the expression of Gα12 by 

transfecting Gα12-specific shRNA constructs into Mz-ChA-1 cells. Characterization of the 

resulting cell line (designated Mz-Gα12 shRNA) revealed a 60% knock down in both 

mRNA and protein expression compared to the Mz-Neo neg cells (Supplemental Figure S6). 

We then assessed the effects of AEA and O-1602 on these cells in vitro and clearly 
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demonstrated that, as seen above, both AEA and O-1602 decreased cell viability in Mz-Neo 

neg to a similar degree, but failed to have any effect in Mz-Gα12 shRNA cells (Figure 4). 

Similarly, AEA and O-1602 increased the amount of apoptotic cells in Mz-Neo neg cells, 

but had no effect in the Mz-Gα12 shRNA cells (Supplemental Figure S7), suggesting a 

dependence on Gα12 for the antiproliferative effects of AEA and O-1602.

GPR55 activation requires JNK activity for its antiproliferative effects

One of the downstream consequences of the activation of Gα12 G-protein-coupled receptors 

is the activation of JNK (11). We therefore assessed the effects of AEA and O-1602 on JNK 

activity. Treatment of Mz-ChA-1 cells with AEA and O-1602 increased JNK activity 1 hr 

after stimulation, an effect that continued up to 6 hours (Figure 5A). Furthermore, 

pretreatment of Mz-ChA-1 cells with the JNK inhibitor attenuated the antiproliferative 

effects of both AEA and O-1602 (Figure 5B). To demonstrate the requirement of GPR55 

and Gα12 in the AEA-induced activation of JNK activity, we assessed the effects of AEA 

and O-1602 on JNK activity in our knockdown cell lines. Treatment of the Mz-Neo neg 

cells with AEA and O-1602 caused an increase in JNK activity in a similar manner to that 

seen in the parental cell line (Figure 5C). However, treatment of cells with reduced 

expression of either GPR55 (Mz-GPR55 shRNA) or Gα12 (Mz-Gα12 shRNA) with AEA or 

O-1602 failed to induce JNK activation (Figure 5C). Taken together, these data suggest that 

the activation of GPR55 by AEA requires JNK activity to exert its antiproliferative effects in 

vitro.

The antiproliferative effects of GPR55 activation requires lipid raft structures

We have previously shown that AEA exerts its tumor-suppressive effects via the 

stabilization of lipid raft structures and that disrupting lipid rafts prevents these 

antiproliferative effects (12). If our hypothesis that AEA is working via the activation of 

GPR55 is correct, the specific GPR55 agonist should also require lipid rafts for its function. 

To this end, cholangiocarcinoma cell lines were pretreated with the lipid raft disruptors, β-

methyl cyclodextrin and fillipin III, prior to the addition of O-1602. Disruption of lipid rafts 

by these two agents prevented the antiproliferative effects of GPR55 activation in Mz-

ChA-1 cells (Figure 6A) and the other cholangiocarcinoma cell lines studied (Supplemental 

Figure S8).

We then wanted to determine if GPR55 itself was recruited into lipid rafts or whether the 

lipid raft-mediated effects were downstream of receptor activation. Using sucrose density 

centrifugation, we isolated the detergent-resistant membrane fractions that contain the lipid 

raft structures. We have previously shown that under the conditions used in the experiments 

outlined here, lipid raft-enriched fractions can be found at the interface between the 5% 

sucrose and 30% sucrose layers (12), which corresponds to fractions 3 and 4. Using 

flotillin-1 as a lipid raft marker, it can be seen that the lipid rafts did indeed float to the 

interface between 5% and 30% sucrose layers under basal conditions and after AEA and 

O-1602 treatment, whereas the non-raft associated β-actin was used as a negative control to 

show that under our experimental conditions, non-raft-associated proteins were not found in 

the lipid raft fractions (Supplemental Figure S9 A). Using these characterized fractions, we 

showed that under basal conditions, GPR55 was exclusively found in the non-lipid raft 
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fractions. However, after AEA and O-1602 treatment, GPR55 could be found in the lipid 

raft fractions as well (Figure 6B). This suggests that upon activation, GPR55 migrates into 

lipid rafts in the plasma membrane. As mentioned previously, GPR55 is coupled to Gα12 

and therefore if GPR55 migrates into lipid rafts, Gα12 should also be found in lipid rafts. 

Indeed, Gα12 was found predominantly in non-lipid raft fractions under basal conditions; 

however, after AEA and O-1602 treatment, Gα12 was also found in lipid raft fractions 

(Figure 6B). Furthermore, Gα12 migration into lipid rafts after AEA and O-1602 treatment 

was observed in Mz-Neo neg (Supplemental Figure S9 B) but was absent in cells with 

GPR55 expression knocked down (Mz-GPR55 shRNA; Supplemental Figure S9 B), 

suggesting a requirement for GPR55 expression for the translocation of Gα12 into lipid rafts 

in response to AEA or O-1602 treatment.

In support of these data, double-staining experiments showed that under basal conditions 

there was a moderate overlap between GPR55 (red) and lipid raft-specific staining (green), 

indicated by the yellow color (Figure 6C). Pearson's correlation analysis of the degree of co-

localization revealed a Pearson's coefficient in the range of 0.36 to 0.57 in 6 random regions. 

However, after both AEA and O-1602 treatment, there was a greater degree of correlation 

and co-localization between GPR55 and lipid raft staining (Figure 6C), resulting in a 

Pearson's co-efficient in the range of 0.75 to 0.93.

The antiproliferative effects of GPR55 activation are the result of recruitment of Fas death 
receptor into lipid rafts

We have previously shown that AEA appears to activate pro-apoptotic events in 

cholangiocarcinoma that require the involvement of the TNF super family, the recruitment 

of Fas and Fas ligand into lipid raft structures and the downstream effector molecule, Fas-

associated death domain (FADD) (12). Therefore, we wanted to assess if this phenomenon 

also occurred with the GPR55 agonists. Under basal conditions Fas was found exclusively in 

the non-lipid raft fractions, but after AEA treatment, Fas could also be found in the lipid raft 

fractions (Figure 7A). Similarly, the recruitment of Fas into lipid raft fractions could also be 

detected after treatment with O-1602 (Figure 7A), suggesting that this recruitment of Fas 

into lipid rafts may be via GPR55 activation.

In support of these data, co-localization experiments showed that under basal conditions 

there was a moderate overlap between Fas (red) and lipid raft-specific staining (green), 

indicated by the yellow color (Figure 7B). Pearson's correlation analysis of the degree of co-

localization revealed a Pearson's coefficient in the range of 0.33 to 0.65 in 6 random regions. 

However, after both AEA and O-1602 treatment there was a greater degree of correlation 

and co-localization between Fas and lipid raft staining (Figure 7B) resulting in a Pearson's 

co-efficient of 0.74 to 0.94.

To clearly demonstrate the requirement of GPR55 expression in the AEA- and O-1602-

mediated recruitment of Fas into lipid rafts, we evaluated this phenomenon in cells with 

suppressed GPR55 expression. As with the parental cell line, AEA and O-1602 treatment of 

mock-transfected cells (Mz-Neo neg) resulted in the recruitment of Fas into lipid raft 

structures (Figure 7C), whereas Fas recruitment into lipid rafts was not observed in Mz-

GPR55 shRNA after AEA or O-1602 treatment (Figure 7C).
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In addition, because we have demonstrated that GPR55-mediated effects on 

cholangiocarcinoma cell viability require the activation of the JNK pathway, we wished to 

assess if the AEA- and O-1602-mediated recruitment of Fas into lipid rafts is also dependent 

on JNK activation. Indeed, pretreatment of cholangiocarcinoma cells with a JNK inhibitor 

prevented the translocation of Fas into lipid raft fractions after GPR55 activation (Figure 

7C).

Discussion

The major findings of this study relate to the endocannabinoid system as a potential 

therapeutic target aimed at regulating cholangiocarcinoma cell growth. We have previously 

shown that the antiproliferative and pro-apoptotic actions of AEA require lipid raft 

structures and depend upon the translocation of Fas and FasL into these lipid raft structures 

(12). With the identification of GPR55 as a novel cannabinoid receptor capable of regulating 

the effects of AEA (8, 9) we reassessed the mechanism by which AEA exerts its effects and 

have shown that: 1) both malignant and non-malignant cholangiocytes express GPR55 to a 

similar degree; 2) a specific GPR55 agonist has a similar suppressive effect on 

cholangiocarcinoma growth both in vitro and in vivo as AEA; 3) knocking down the 

expression of GPR55 prevents the antiproliferative action of AEA; 4) the growth 

suppressing effects of GPR55 activation by AEA requires Gα12 and JNK activation and 

subsequent translocation of Fas into the lipid raft structures. These data suggest that GPR55 

offers an intriguing target for the design of potential chemotherapeutic agents.

Consistent with our observation that AEA has antiproliferative and pro-apoptotic properties, 

cannabinoids of various origins (endogenous, plant-derived or synthetic analogues) have 

been shown to suppress cancer cell growth in vitro (22-25) as well as in vivo (26). In 

addition to the lipid-raft mediated effects of AEA, we have shown that AEA induces a 

concomitant activation of the non-canonical Wnt pathway via upregulation of Wnt 5a (15) 

as well as an increase in the proteolytic processing, and hence activation of the Notch 1 

signaling pathway (27). How these seemingly independent observations fit together is a 

topic of ongoing research in our laboratory. The dependence and recruitment of the γ-

secretase complex to lipid raft structures has previously been shown to modulate γ-secretase 

activity (28), therefore it is conceivable that agents that stabilize or disrupt lipid raft 

structures such as cannabinoids (12) may indeed also regulate the Notch signaling pathway. 

Furthermore, activation of the Wnt signaling pathway has been shown to overlap and cross 

talk with the Notch signaling pathway (29-31). Indeed, activation of Notch 1 has been 

shown to upregulate the expression of Wnt5a in a number of cell models (30). The 

involvement of lipid rafts in the differential activation of the Notch signaling pathways by 

endocannabinoids and how the Wnt and Notch signaling pathways interact in these 

conditions are a topic of ongoing research in our laboratory.

In the present study we demonstrate that the antiproliferative actions of AEA that we 

previously thought were cannabinoid receptor-independent (12), are indeed through a 

GPR55-dependent mechanism. The identification of GPR55 as a putative cannabinoid 

receptor is still contentious. Pharmacological evidence suggests that the interaction of AEA 

with GPR55 is cell-type and tissue-specific (32, 33). Indeed, the majority of evidence 
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identifying GPR55 as an AEA receptor was performed in endothelial cells (34). Little is 

known about the physiological role of GPR55 in the liver and is a topic of research in our 

laboratory.

It is interesting to note that the effects of AEA and O-1602 were not evident in the non-

malignant cholangiocyte cell lines even though GPR55 expression was found in malignant 

and non-malignant cells and tissues to a similar degree. There is a growing body of evidence 

indicating that cancer cells are enriched in cholesterol (35-37) and display higher levels of 

cholesterol-rich lipid rafts than their non-malignant counterparts (38). It is conceivable that 

because we have shown dependence on lipid rafts in the anti-tumoral effects of GPR55 

receptor activation, the relative abundance of lipid rafts structures between malignant and 

non-malignant cholangiocytes may be the reason behind the difference in susceptibility of 

these two cell types. Indeed therapies that specifically induce lipid raft clustering and 

recruitment of apoptotic cascades (coined CASMERs; Clustering of Apoptotic Signaling 

Molecule-Enriched Rafts) are being developed as potential therapies for various cancers as 

they tend to be more effective in inducing apoptosis in cancer cells than in non-cancerous 

cells (39, 40).

The identification of GPR55 as a potential therapeutic target for the treatment of cancer is 

gaining momentum. Recently, GPR55 has been shown to regulate the growth-promoting 

effects of lysophosphatidylinositol in a number of tumor-types (41-43) via an increase in 

extracellular signal-regulated kinase cascade (41, 42). Furthermore, GPR55 expression in 

tumors from different origins correlates with their aggressiveness (42) and its activation 

increases migration and invasive properties of breast cancer cells (43) . In contrast, the data 

presented here suggest that upon activation with AEA, GPR55 has an antiproliferative and 

pro-apoptotic effect on cholangiocarcinoma cell growth. Presumably these contradictory 

data are due to the ligand and subsequent downstream molecular events associated with 

GPR55 activation in this particular cell type and are a topic of further investigation in our 

laboratory.

Data, such as that presented here, demonstrating the recruitment of protein components of 

the death receptor complexes into lipid raft structures are voluminous. It is widely accepted 

that both the TNF-receptor complex and the Fas receptor complex are recruited into lipid 

rafts in response to apoptosis-inducing drugs which facilitates the receptor complex 

formation and is critical for their function (44). Indeed, we have previously shown that this 

recruitment into lipid rafts by cannabinoid stimulation occurs in cholangiocarcinoma cells 

via a mechanism that we previously thought to be cannabinoid receptor-independent (12). In 

addition, these receptor complexes all require FADD to function (45). By over expressing 

dominant negative FADD, we blocked the antiproliferative effects of AEA, suggesting that 

the formation of these death receptor complexes is required for the AEA-mediated effects on 

cholangiocarcinoma cell growth (12). The data presented here confirm the recruitment of 

Fas receptor into lipid rafts by AEA, but clearly demonstrate a requirement for GPR55 

expression in this event. Furthermore, our data also suggest that the recruitment of GPR55 

and Gα12 occurs upon receptor activation by AEA and O-1602. To our knowledge, this is 

the first demonstration of the recruitment of GPR55 into lipid rafts, but Gα12 has previously 

been shown to be recruited via an interaction with heat shock protein 90 (46).
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In the present study, we demonstrated a role for JNK activation in the effects of AEA on 

cholangiocarcinoma cells, which is consistent with previous studies (47). In Chang liver 

cells, AEA administration activated JNK and resulted in the subsequent increase in AP1 

DNA-binding activity and an increase in FasL expression (47). This effect was prevented by 

pretreatment with β-methyl cyclodextrin (47), which supports the data presented here. How 

JNK activity leads to the recruitment of Fas into lipid rafts is unknown. One possibility may 

be that JNK, via its interaction with the chaperone heat shock protein 90, is recruited into 

lipid rafts (48) and somehow serves to stabilize lipid raft structures thereby facilitating the 

death receptor complex formation. The lipid raft-stabilizing function of heat shock proteins 

has previously been shown in neuronal cells (49). Another alternative may be that JNK 

signaling may merely increase the amount of Fas and FasL in the cells (47). Studies into the 

precise mechanism whereby JNK activation results in Fas recruitment into lipid raft 

structures are warranted.

In conclusion, we have clearly demonstrated a role for GPR55 in the antiproliferative effects 

of AEA in vivo and in vitro. Furthermore, GPR55 activation results in the recruitment of 

GPR55 and Gα12 into lipid raft structures and subsequent activation of JNK. Downstream 

of these AEA-mediated effects was the recruitment of Fas into lipid rafts, which did not 

occur in cells with GPR55 or Gα12 expression knocked down, nor after the pretreatment of 

cells with a JNK inhibitor. Taken together with our previous studies demonstrating a 

requirement for Fas and FADD in the pro-apoptotic effects of AEA on cholangiocarcinoma 

cells, our data suggest that the stabilization of lipid raft structures by AEA, facilitates the 

interaction between Fas and the other constituents of the Fas-containing death receptor 

complex, resulting in the induction of apoptosis in these cells. Cholangiocarcinoma has a 

very poor prognosis and survival rate; therefore we propose that the development of novel 

therapeutic strategies that target GPR55 may prove beneficial for the treatment of this 

devastating disease.
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AEA Anandamide

Cb Cannabinoid receptor
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DAPI 6-diamidino-2- phenylindole

FADD Fas-associated death domain

ip intraperitoneal

JNK c-Jun N-terminal kinases

shRNA short hairpin RNA

TUNEL Terminal deoxynucleotidyl transferase dUTP nick end labeling

VR1 Vanilloid receptor 1
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Figure 1. 
GPR55 is expressed in cholangiocyte and cholangiocarcinoma cell lines. GPR55 levels were 

assessed in four cholangiocarcinoma cell lines as well as the non-malignant cholangiocyte 

cell lines H69 and HIBEC, by real time PCR (A), immunoblotting (B). Data are expressed 

as average relative GPR55 mRNA expression (± SEM) in each cell line compared to H69 

cells after using GAPDH expression as a loading control (n=3; A).
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Figure 2. 
(A) Cholangiocarcinoma cells (Mz-ChA-1, HuCCT-1, CCLP-1 and SG231) and non-

malignant H69 and HIBEC cells were treated with various concentrations of the GPR55 

agonist, O-1602 (10−9 to 10−5 M) for 48 hr. Cell viability was assessed by MTS assays. Data 

are expressed as fold change in viability (average ± SEM, n=7) * p<0.05 compared to basal 

treatment within each cell line. (B) Mz-ChA-1 cells were injected into the flank of athymic 

mice. After tumors were established, mice were treated with 10 mg/kg/day (ip) O-1602, 

three days per week and tumor volume assessed.
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Figure 3. 
Specific knockdown of GPR55 receptor expression prevents the antiproliferative effects of 

AEA in vitro and in vivo. Mz-ChA-1 cells were stably transfected with GPR55 shRNA 

vectors. The effect of AEA and O-1602 on cells with low levels of GPR55 expression (Mz-

GPR55 shRNA) was assessed in vitro by MTS assay (A). Mz-Neo neg and Mz-GPR55 

shRNA cells were treated with various concentrations of the GPR55 agonists, AEA and 

O-1602 (10−5 M) for 48 hr. Cell viability was assessed by MTS assays. Data are expressed 

as fold change in viability (average ± SEM, n=7; * p<0.05 compared to basal treatment 

within each cell line). The effect of AEA and O-1602 on cells with low levels of GPR55 

expression was assessed in vivo using the xenograft model of cholangiocarcinoma (B). Mz-

Neo neg cells and Mz-GPR55 shRNA cells were injected into the flank of athymic mice. 

After tumors were established, mice were treated with 10 mg/kg/day (ip) O-1602, three days 

per week and tumor volume assessed.
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Figure 4. 
Specific knockdown of Gα12 G protein expression prevents the antiproliferative effects of 

GPR55 activation in vitro. Mz-ChA-1 cells were stably transfected with Gα12 shRNA 

vectors (Mz-Gα12 shRNA). The effect of AEA and O-1602 on cells with low levels of 

Gα12 expression was assessed in vitro by MTS assay (A). Mz-Neo neg and Mz-Gα12 

shRNA cells were treated with various concentrations of the GPR55 agonist, O-1602 (10−9 

to 10−5 M) for 48 hr. Cell viability was assessed using an MTS cell proliferation assay. Data 

are expressed as fold change in viability (average ± SEM, n=7, *p<0.05 compared to basal 

treatment within each cell line).
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Figure 5. 
GPR55 activation by AEA and O-1602 increases JNK activity. (A) Mz-ChA-1 cells were 

treated with AEA or O-1602 (both at 10−5 M) for various time points up to 6 hr. JNK 

activity was assessed by commercially available ELISA kits (average ± SEM, n=4; * p<0.05 

compared to basal treatment. (B) Mz-ChA-1 cells were pretreated with the JNK inhibitor 

SP600125 (10−7 M) for 1 hr prior to the addition of AEA or O-1602 (both at 10−5 M) for 48 

hr. Cell viability was assessed by MTS assays. Data are expressed as fold change in viability 

(average ± SEM, n=7, *p<0.05 compared to basal treatment within each cell line). (C) Mz-

Neo neg, Mz-GPR55 shRNA and Mz-Gα12 shRNA cells were treated with AEA or O-1602 

(both at 10−5 M) for 6 hr. JNK activity was assessed by commercially available ELISA kits. 

* p<0.05 compared to basal treatment within each cell line.
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Figure 6. 
Disruption of lipid rafts inhibits the antiproliferative effects of GPR55 activation. (A) Mz-

ChA-1 cells were pretreated with lipid raft disrupters 0.1 mM β–methylcyclodextrin, or 1 

μg/mL filipin III for 1 hr prior to the addition of O-1602 (10−5 M). Cell viability was 

determined by MTS assays. Data are expressed as average ± SEM (*p<0.05) compared to 

basal treatment (n=7). (B) Mz-ChA-1 cells were treated with AEA or O-1602 (both at 10−5 

M) for 4 hr and detergent-resistant lipid rafts were isolated on a discontinuous 5%-40% 

sucrose gradient. The resulting fractions were analyzed by immunoblotting using GPR55 

and Gα12-specific antibodies. (D) Co-localization of GPR55 immunoreactivity and lipid raft 

staining after AEA and O-1602 treatment. Mz-ChA-1 cells were treated with AEA and 

O-1602 (both at 10−5 M) and the lipid rafts were stained with Alexa Fluor 488-conjugated 

cholera toxin B subunit (green) as well as GPR55 immunoreactivity (red). Co-localization is 

indicated by yellow areas. Nuclei were counterstained with DAPI (blue). Scale bar 

represents 10 μm.
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Figure 7. 
Fas receptor is recruited into lipid rafts after GPR55 receptor activation. (A) Mz-ChA-1 cells 

were treated with AEA or O-1602 (both at 10−5 M) for 24 hr and detergent-resistant lipid 

rafts were isolated on a discontinuous 5%-40% sucrose gradient. The resulting fractions 

were analyzed by immunoblotting using a Fas-specific antibody to determine the subcellular 

location of these proteins. (B) Co-localization of Fas immunoreactivity and lipid raft 

staining after AEA and O-1602 treatment. Mz-ChA-1 cells were treated with AEA and 

O-1602 (both at 10−5 M) and the lipid rafts were stained with Alexa Fluor 488-conjugated 

cholera toxin B subunit (green) as well as Fas immunoreactivity (red). Co-localization is 

indicated by yellow areas. Nuclei were counterstained with DAPI (blue). Scale bar 

represents 10 μm. (C) Mz-Neo neg and Mz-GPR55 shRNA were treated with AEA or 

O-1602 (both at 10−5 M) for 24 hr and detergent-resistant lipid rafts were isolated. In 

addition Mz-ChA-1 cells were pretreated with the JNK inhibitor, SP600125 (10−7 M) for 1 

hr prior to the addition of AEA or O-1602 (both at 10−5 M) for 24 hr followed by lipid raft 

fractionation. The resulting fractions were analyzed by immunoblotting using a Fas-specific 

antibody to determine its subcellular location.
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